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Abstract

A real � is computably enumerable if it is the limit of a computable, increasing,
converging sequence of rationals; � is random if its binary expansion is a random
sequence. Our aim is to o�er a self-contained proof, based on the papers [7, 14, 4, 13],
of the following theorem: a real is c.e. and random if and only if it a Chaitin 
 real,

i.e., the halting probability of some universal self-delimiting Turing machine.

1 Introduction

We will consider only reals in the unit interval. A real � is computably enumerable (c.e.)
if it is the limit of a computable, increasing, converging sequence of rationals. A real � is
random if its binary expansion is a random (in�nite) sequence (cf. [7, 8, 1]); the choice
of base is irrelevant (cf. [5]).

The halting probability of a universal self-delimiting Turing machine (Chaitin's 

real, [7, 8, 10]) is a random c.e. real. Are there other c.e. random reals? We will show
that the answer is negative: the set of c.e. random reals coincides with the set of Chaitin's


 reals.

The proof uses an intermediate class of c.e. reals, Solovay's 
-like reals, and shows
that this class coincides with the class of 
 reals, on one hand, and with the class of
c.e. reals, on the other hand.

Chaitin [7] proved that every 
 real is c.e. and random. Solovay [14] proved that

-like reals are c.e. and random. Solovay also showed that every Chaitin 
 real is 
-like.
In [4] Calude, Hertling, Khoussainov and Wang showed that the converse implication is
true as well: every 
-like real in the unit interval is the halting probability of a universal
self-delimiting Turing machine. Finally, Slaman [13] proved that every c.e. random real
is 
-like.

The paper is organised as follows. Section 2 is devoted to basic notation; in Section
3 we introduce self-delimiting Turing machines, program-size complexity, Chaitin's 
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reals, and c.e. reals. In Section 4 we prove that every 
 real is c.e. and random. Section
5 introduces Solovay's domination relation and proves some basic facts about it. In
Section 6 we prove that every 
 real is 
-like. In the next section we prove the converse
implication, namely, that every 
-like real is the halting probability of some universal
self-delimiting Turing machine. Section 8 shows that every c.e. random real is 
-like.
Finally, Section 9 is dedicated to some comments.

2 Notation

By N we denote the set of nonnegative integers. A sequence q0; q1; q2; : : : of numbers
(integers, rationals, or reals) is said to be increasing (non-decreasing) if qi < qi+1 (if qi �
qi+1) for all i. If f and g are natural number functions, the formula f(n) � g(n) +O(1)
means that there is a constant c > 0 with f(n) � g(n)+ c, for all n. If X and Y are sets,
then f : X

o
! Y denotes a partial function de�ned on a subset of X.

Let � = f0; 1g denote the binary alphabet. Let �� be the set of (�nite) binary strings,
and �! the set of in�nite binary sequences. The length of a string x is denoted by jxj; �
is the empty string. Let < be the quasi-lexicographical order on �� induced by 0 < 1 and
let stringn (n � 0) be the nth string under this ordering. For strings x; y 2 ��, xy is the
concatenation of x and y. For a sequence x = x0x1 � � � xn � � � 2 �! and an integer number
n � 1, x(n) denotes the initial segment of length n of x and xi denotes the ith digit of x,
i.e., x(n) = x0x1 � � � xn�1. Lower case letters k; l;m; n will denote nonnegative integers,
and x; y; z strings. By x;y; � � � we denote in�nite sequences from �!; �nally, we reserve
�; �;  for reals. Capital letters are used to denote subsets of ��. We �x a standard
computable pairing function �k; yhk; yi de�ned on N� �� with values in ��. For a set
A � �� let Ak = fx j hk; xi 2 Ag. For A � ��, A�! denotes the set of sequences
fwx j w 2 A;x 2 �!g. The sets A�! are the open sets in the natural topology on �!.
Computably enumerable (c.e.) open sets are sets of the form A�!, where A � �� is c.e.
Let � denote the usual product measure on �!, given by �(fwg�!) = 2�jwj, for w 2 ��.
For a measurable set C of in�nite sequences, �(C) is the probability that x 2 C when x
is chosen by a random experiment in which an independent toss of a fair coin is used to
decide whether xn = 1. A set A � �� is pre�x-free if no string in A is a proper pre�x of
another. If A is pre�x-free, then �(A�!) =

P
w2A 2

�jwj:
We assume familiarity with Turing machine computations, cf. Soare [12].

3 C.E. Reals

A self-delimiting Turing machine C has a program tape, an output tape, and a work
tape. Only 0's, 1's and blanks can ever appear on a tape. The program tape and the
output tape are in�nite to the right, while the worktape is in�nite in both directions.
Each tape has a scanning head. The program and output tape heads cannot move left,
but the worktape head can move in both directions. The program tape is read-only, the
output tape is write-only, and the worktape is read/write.

The machine C starts in the initial state with a program x 2 �� on its program
tape, the output tape blank, and the worktape blank. The left-most cell of the program
tape is blank and the program tape head initially scans this cell. The program x lies
immediately to the right of this cell and the rest of the program tape is blank. The
output tape head initially scans the left-most cell of the output tape.
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During each cycle of operation the machine reads the content of the scanned program
tape cell and of the scanned worktape cell; it may halt, move the read head of the program
tape one cell to the right, write a 0, a 1, or a blank on the scanned worktape cell, move
the read/write head of the worktape one cell to the left or to the right, and write a 0 or
a 1 on the scanned output tape cell and move the write head of the output tape one cell
to the right. The machine changes state: the action performed and the next state are
both functions of the present state and the contents of the two cells being scanned by
the program tape head and the worktape head.

If, after �nitely many steps, C halts with the program tape head scanning the last
bit of x, then the computation is a success, and we write C(x) < 1; the output of
the computation is the string C(x) 2 �� appearing on the output tape. Otherwise, the
computation is a failure, we write C(x) =1, and there is no output.

A successful computation must end with the program tape head scanning the last
bit of the program. Since the program tape head is read-only and cannot move left, the
program set

PROGC = fx 2 �� j C(x) <1g

is an instantaneous code, i.e., a pre�x-free set of strings; of course, PROGC is c.e.
Conversely, every pre�x-free c.e. set set of strings is the domain of some self-delimiting
Turing machine. It follows by Kraft's inequality that, for every self-delimiting Turing
machine C,


C = �(PROGC�
!) =

X
x2PROGC

2�jxj � 1:

The number 
C is called the halting probability of C.
Let C be a self-delimiting Turing machine. The program-size complexity of the string

x 2 �� (relatively to C) is HC(x) = minfjyj j y 2 ��; C(y) = xg, where min ; =1.

Theorem 3.1 (Invariance Theorem; Chaitin [7]) There is a self-delimiting Turing ma-

chine U such that for every self-delimiting Turing machine C, HU (x) � HC(x) +O(1).

A self-delimiting Turing machine U satisfying Theorem 3.1 is called universal.
Clearly, every universal self-delimiting machine produces every string. We denote by

x� the canonical program of x, i.e., x� = minfy 2 �� j U(y) = xg, where the minimum is
taken on strings according to the quasi-lexicographical order.

The halting probability 
U of a universal self-delimiting machine U is called a Chaitin

 real.

The following extension due to Chaitin [7] (see Calude, Grozea [3] for a short proof)
of Kraft's inequality is very useful to construct self-delimiting Turing machines satisfying
certain properties:

Theorem 3.2 (Kraft-Chaitin) Given a c.e. list of \requirements" hni; sii (i � 0; si 2
��; ni 2 N) such that

P
i 2

�ni � 1, we can e�ectively construct a self-delimiting Turing
machine C and a computable one-to-one enumeration x0; x1; x2; : : : of strings xi of length
ni such that C(xi) = si for all i and C(x) =1 if x 62 fxi j i 2 Ng.1

Random (in�nite) sequences were de�ned by Martin-L�of [11] using \randomness
tests". A Martin-L�of test is a c.e. set A � �� satisfying the inequality

�(Ai�
!) � 2�i;

1Notice that 
C =
P

i
2�ni .
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for all i 2 N. An alternative characterization can be obtained using program-size com-
plexity (see Calude [1] for more details).

Theorem 3.3 Let x 2 �!. The following statements are equivalent:

1. There is a constant c such that HU (x(n)) > n� c, for every integer n > 0.

2. For every Martin-L�of test A, x =2
T
i�0(Ai�

!):

3. We have: limn!1H(x(n))� n =1.

A real � is called c.e. if it is the limit of a computable increasing sequence of rationals;
equivalently, � is if the set of all rationals less than � is c.e.

A sequence x 2 �! is random if it satis�es one of the equivalent conditions in Theo-
rem 3.3.2 A real � is random if its binary expansion x (i.e., � = 0:x) is random.3

4 
 Reals Are C.E. and Random

This section is devoted to the following result:

Theorem 4.1 (Chaitin [7]) The halting probability 
U , of a universal self-delimiting
machine U , is random.

Proof. Let f be a computable one-to-one function which enumerates PROGU , the
domain of U . Let !k =

Pk
j=0 2

�jf(j)j. Clearly, (!k) is a computable, increasing sequence
of rationals converging to 
U , so 
U is c.e. Consider the binary expansion of 
U =
0:
0
1 � � �

We de�ne a self-delimiting Turing machine C as follows: on input x 2 �� C �rst
\tries to compute" y = U(x) and the smallest number t with !t � 0:y. If success-
ful, C(x) is the �rst (in quasi-lexicographical order) string not belonging to the set
fU(f(0)); U(f(1)); : : : ; U(f(t))g; otherwise, C(x) =1 if U(x) =1 or t does not exist.

If x 2 PROGC and x0 is a string with U(x) = U(x0), then C(x) = C(x0). Applying
this to x 2 PROGC and the canonical program x0 = (U(x))� of U(x) yields

HC(C(x)) � jx0j = HU (U(x)):

Furthermore, by the universality of U , for all x 2 PROGC :

HU (C(x)) � HC(C(x)) +O(1) � HU(U(x)) +O(1): (1)

Now, �x a number n and assume that x is a string with U(x) = 
0
1 � � �
n�1.
Then C(x) < 1. Let t be the smallest number (computed in the second step of the
computation of C) with !t � 0:
0
1 � � �
n�1. We have

0:
0
1 � � �
n�1 � !t < !t +
1X

s=t+1

2�jf(s)j = 
U � 0:
0
1 � � �
n�1 + 2�n :

2Note that the program-size complexities of every two universal self-delimiting machines U and V are
asymptotically equal: HU(x) = HV (x)+O(1). Hence the choice of the underlying universal self-delimiting
Turing machine is irrelevant in the above characterization.

3The choice of the binary base does not play any role, cf. Calude, J�urgensen [5]: randomness is a
property of reals not of names of reals.
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Hence,
P1

s=t+1 2
�jf(s)j � 2�n, which implies jf(s)j � n, for every s � t+ 1.

>From the construction of C we conclude that HU(C(x)) � n. Using (1) we obtain

n � HU(C(x)) � HC(C(x)) +O(1) � HU (U(x)) +O(1) = HU(
0
1 � � �
n�1) +O(1):

which proves that the sequence 
0
1 � � � is random, i.e., 
U is random. 2

5 Domination and 
-like Reals

In order to compare the information contents of c.e. reals, Solovay [14] has introduced
the following de�nition (see also Chaitin [8]): a c.e. real � dominates a c.e. real �
(write � �dom �) if there are two computable, increasing (or non-decreasing) sequences
(ai)i and (bi)i of rationals and a constant c with limn!1 an = �, limn!1 bn = �, and
c(� � an) � � � bn, for all n.

The relation �dom is transitive and reexive, hence it naturally de�nes a partially
ordered set whose elements are the =dom-equivalence classes of c.e. reals.

45

We continue by considering a relation between c.e. sets which is very close, but
not equivalent, to the domination relation. Let A;B be in�nite, pre�x-free c.e. sets.
Following [4], we say that the set A strongly simulates the set B (write B �ss A) if there
is a partial computable function f : ��

o
! �� which satis�es the following conditions:

1. A = dom(f),

2. B = f(A),

3. jxj � jf(x)j+O(1), for all x 2 A.

Note that �ss is reexive and transitive.

Lemma 5.1 If A;B are in�nite pre�x-free c.e. sets and B �ss A, then �(B�!) �dom

�(A�!).

Proof. Let (xi) be a one-to-one computable enumeration of A. Let f be a function
and c > 0 be a constant as in the above de�nition. For each n and each y 2 B n
ff(x0); : : : ; f(xn)g there is a string x 2 Anfx0; : : : ; xng with y = f(x) and jxj � jf(x)j+c.
Hence,

2�B � 2�ff(x0);:::;f(xn)g = 2�(Bnff(x0);:::;f(xn)g)

� 2c � 2�(Anfx0;:::;xng)

= 2c � (2�A � 2�fx0;:::;xng) :

4This partially ordered set has a minimum element which is the equivalence class containing exactly all
computable reals. It has a maximum element which is the equivalence class containing exactly all Chaitin

 reals. In fact, it is an upper semilattice: the least upper bound of any two classes containing c.e. reals
� and �, respectively, is the class containing the c.e. real �+�; cf. Calude, Hertling, Khoussainov, Wang
[4].

5There is an important relationship between domination and randomness. If � �dom �, then � is
\more random" than � in the sense that the program-size complexity of the �rst n digits of � does not

exceed the complexity of the �rst n digits of � by more than a constant, cf. Solovay [14]. The more
random an e�ective object is, the closer it is to Chaitin 
 numbers; the less random an e�ective object
is, the closer it is to computable reals. The converse implication is false, namely there are c.e. reals 0:x
and 0:y such that H(x(n)) � H(y(n)) +O(1) and 0:y does not dominate 0:x; cf. Calude, Coles [2].
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We conclude that �(B�!) �dom �(A�!). 2

The following partial converse implication in Lemma 5.1 is true and very important,
cf. Calude, Hertling, Khoussainov, Wang [4].6

Theorem 5.2 Let � be a c.e. real, and B be an in�nite pre�x-free c.e. set. If

�(B�!) �dom �, then there is an in�nite pre�x-free c.e. set A � �� such that

� = �(A�!) and B �ss A.

Proof. Assume that �(B�!) �dom �. Let (yi) be a one-to-one computable enumera-
tion of B and (an)n be an increasing computable sequence of positive rationals converging
to �. In view of the domination property of �, there are an increasing, total computable
function f : N! N and a constant c 2N such that, for each n 2 N,

2c � (�� an) � �(B�!)�
f(n)X
i=0

2�jyij : (2)

Without loss of generality, we may assume that

a0 >

f(0)X
i=0

2�jyij�c (3)

(otherwise we increase c). We construct a computable sequence (ni)i�0 of numbers and
a computable double sequence (mi;j)i;j�0 of elements in N [ f1g. These numbers ni
and the numbers mi;j 6= 1 will be the lengths of the strings in the set A which will be
constructed. The numbers ni will guarantee that B �ss A. The numbers mi;j will be
used \to �ll" the set A up in order to get exactly � = �(A�!). This will follow directly
from Equation (4) below.

Construction of (ni): Put ni = jyij+ c, for all i.

Begin of construction of (mi;j).

Stage 0. Let mi;j = 1, for all i < f(0) and j 2 N, and de�ne the positive
integers (mf(0);j)j�0 inductively in such a way that

1X
j=0

2�mf(0);j = a0 �
f(0)X
i=0

2�ni :

Stage s (s � 1). If

as �
f(s)X
i=0

2�ni +

f(s�1)X
i=0

1X
j=0

2�mi;j ;

6In [4] one proves the existence of two in�nite pre�x-free c.e. sets A and B such that �(A�!) =
�(B�!) = 1 but A 6�ss B and B 6�ss A.
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then let mi;j = 1, for all i with f(s� 1) < i � f(s) and j 2 N. Otherwise,
let mi;j = 1, for all i with f(s� 1) < i < f(s) and j 2 N, and let positive
integers (mf(s);j)j�0 be inductively de�ned in such a way that

1X
j=0

2�mf(s);j = as �

0
@
f(s)X
i=0

2�ni +

f(s�1)X
i=0

1X
j=0

2�mi;j

1
A :

End of construction of (mi;j).

Next we prove the equality:

� =
1X
i=0

0
@2�ni +

1X
j=0

2�mi;j

1
A ; (4)

by distinguishing the following two cases.
Case 1. If there are in�nitely many stages s such that

as =

f(s)X
i=0

0
@2�ni +

1X
j=0

2�mi;j

1
A ;

then (4) holds.

Case 2. Assume the inequality as <
Pf(s)

i=0

�
2�ni +

P1
j=0 2

�mi;j

�
holds true for almost

all s 2 N and we notice that

� = lim
s!1

as �
1X
i=0

0
@2�ni +

1X
j=0

2�mi;j

1
A : (5)

For the inverse estimate, we de�ne s0 to be the largest stage such that

as0 =

f(s0)X
i=0

0
@2�ni +

1X
j=0

2�mi;j

1
A :

Such a stage s0 exists because of (3) and the construction. By (2) we have

�� as0 �
1X

i=f(s0)+1

2�jyij�c:

Hence, by the construction,

� �
1X
i=0

0
@2�ni +

1X
j=0

2�mi;j

1
A : (6)

By combining (5) and (6) we obtain the equality (4) also in this case.

Let h : N ! f(i; j) 2 N2 j mi;j 6= 1g be a computable bijection (note that by
construction the set f(i; j) 2 N2 j mi;j 6= 1g is in�nite) and de�ne a computable
sequence (m0

i)i of numbers bym
0
i = mh(i). Using this sequence we de�ne (n

0
i)i by n

0
2i = ni

and n02i+1 = m0
i. By Kraft-Chaitin Theorem 3.2 and (4), combined with 0 < � � 1, we

7



can construct a one-to-one computable sequence (xi)i of strings with jxij = n0i such that
the set fxi j i 2 Ng is pre�x-free. Set A = fxi j i 2Ng and, using (4), obtain

�(A�!) =
1X
i=0

2�n
0

i =
1X
i=0

2�ni +
1X
i=0

2�m
0

i = � :

Finally we de�ne a computable function g : A ! B by g(x2i) = yi and such that
jg(x2i+1)j � jx2i+1j, for all i. This is possible because B is in�nite. Obviously, g(A) = B,
and jxj � jg(x)j + c, for all x 2 A, showing that B �ss A. 2

6 
 Reals Are 
-Like

Following Solovay ([14]) we say that a computable increasing, and converging sequence
(ai)i of rationals is universal if for every computable, increasing and converging sequence
(bi)i of rationals there exists a number c > 0 such that c(� � an) � � � bn; for all n,
where � = limn!1 an and � = limn!1 bn. Solovay called a real 
-like if it is the limit
of a universal computable, increasing sequence of rationals.

In [4] one proves the following:

Theorem 6.1 (Solovay) Let U be a universal self-delimiting Turing machine. Every

computable, increasing sequence of rationals converging to 
U is universal.

Proof. Let (an) be an increasing, computable sequence of rationals with limit 
U ,
and let (bn) be an increasing, computable, converging sequence of rationals. Set � =
limn!1 bn. We have to show that there is a constant c > 0 with c(
U � an) � � � bn
for all n.

Let (xi) be a one-to-one, computable enumeration of PROGU , and 
U;n =Pn
i=0 2

�jxij. We de�ne a total computable, increasing function g : N ! N, where
we also de�ne g(�1) = �1, by

g(n) = minfj > g(n� 1) j 
U;j � ang :

The sequence (
U;g(n)) is an increasing, computable sequence with limit 
U . In view of
the inequality 
U � an � 
U � 
U;g(n); it is su�cient to prove that there is a constant
c > 0 with c(
U � 
U;g(n)) � � � bn for all n.

For each i 2 N, let yi be the �rst string (with respect to the quasi-lexicographical
ordering) which is not in the set fU(xj) j j � g(i)g [ fyj j j < ig. Furthermore, put
ni = [� log(bi+1 � bi)] + 1. Since

P1
i=0 2

�ni � � � b0 < 1, by Kraft-Chaitin Theorem 3.2
we can construct a self-delimiting Turing machine C such that, for every i 2 N, there is
a string ui 2 �ni satisfying C(ui) = yi. Hence, there is a constant cC such that HU (yi) �
ni + cC . In view of the choice of yi, there is a string x0i 2 PROGU n fxj j j � g(i)g
such that jx0ij � ni + cC and U(x0i) = yi. For di�erent i and j we have yi 6= yj, whence
x0i 6= x0j. Finally we obtain


U � 
U;g(n) =
P1

i=g(n)+1 2
�jxij �

P1
i=n 2

�jx0ij

�
P1

i=n 2
�ni�cC � 2�cC�1

P1
i=n(bi+1 � bi) = 2�cC�1(� � bn);

which proves the assertion. 2
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7 
-like Reals Are 
 Reals

First we note that

Lemma 7.1 An 
-like real dominates every c.e. real.

Theorem 7.2 (Calude, Hertling, Khoussainov, Wang [4]) Every 
-like real � is an 

real, i.e., there exists a universal self-delimiting Turing machine U such that � = 
U .

Proof. Let V be a universal self-delimiting Turing machine. Since � is 
-like it
dominates every c.e. real, in particular, �(PROGV�

!) �dom �. By Theorem 5.2 there
exist an in�nite pre�x-free c.e. set A with �(A�!) = �, a computable function f :
A ! PROGV with A = dom(f), f(A) = PROGV , and a constant c > 0 such that
jxj � jf(x)j+ c, for all x 2 A. We de�ne a self-delimiting Turing machine U by U(x) =
V (f(x)). The universality of V implies the universality of U and

� = �(A�!) = �(PROGU�
!) = 
U :

2

In view of Lemma 7.1 and Theorem 7.2 we get:7

Theorem 7.3 Let � be a c.e. real. The following statements are equivalent:

1. There exists a universal computable, increasing sequence of rationals converging to

�.

2. Every computable, increasing sequence of rationals with limit � is universal.

3. The real � dominates every c.e. real.

8 Every C.E. Random Real Is 
-like

Theorem 3.3 can be re-phrased directly for reals as follows: A real � is random if and

only if for every Martin-L�of test A, � =2
T
i�0Ai: In the context of reals, a Martin-L�of

test A is a uniformly c.e. sequence of c.e. open sets (An)n of the space �! such that
�(An) � 2�n.

Lemma 8.1 (Slaman [13]) Let (an)n; (bn)n be two computable, increasing sequences of

rationals converging to � and �, respectively. One of the following two conditions hold:

A) There is a Martin-L�of test A such that � 2
T
i�0Ai:

B) There is a rational constant c > 0 such that c(� � ai) � � � bi; for all i.

Proof. We enumerate the Martin-L�of set A by stages. Let An[s] be the union of
�nitely many open c.e. sets that have been enumerated into An during stages less than
s. Put An[0] = ; and An[s+ 1] = An[s][ (as; as + (bs � bs0)2

�n); in case as 62 An[s] and
bs 6= bs0 ; here s0 is the last stage during which we enumerated a c.e. open set into An or

7The equivalence of the statements 1 and 3 comes from Chaitin [8].
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s0 = 0 if there was no such stage; otherwise, An[s+ 1] = An[s]. Clearly, An =
S
sAn[s]

is a disjoint union of c.e. open sets.
Let t1; t2; : : : ; tn; : : : be the sequence of stages during which we do enumerate open

sets into An. Then,

�(An) = �(
[
s

An[s]) =
X
i�1

�(An[ti])

=
1

2n
(bt1 � b0) + (bt2 � bt1) + (bt3 � bt2) + � � �

=
1

2n
(� � b0) �

1

2n

If � 2
T
i�0Ai, then A) holds. Assume that � 62 An, for some n. We shall prove that

2i(�� ai) � � � bi; for almost all i, so B) holds.
If the open set (as; as+(bs� bs0)2

�n) is enumerated into An at stage s, then there is
a stage t > s such that at > as+(bs� bs0)2

�n. Fix i > 0 and let t0 be the greatest stage
t � i such that we enumerate something into An during stage t or t0 = 0; otherwise. Let
t0; t1; t2; : : : ; tn; : : : be the sequence of stages during which we do enumerate open sets
into An. Clearly, t0 < i � t1. As

�� at1 > atk � at1 + (btk � btk�1
)2�n;

for all k and atk 62 An[t1] [An[t2] [ � � � [An[tk�1], it follows that

atk � at1 > atk�1
� at1 + (btk�1

� btk�2
)2�n;

so
�� at1 �

X
k�1

(btk � btk�1
)2�n = (� � bt0)2

�n:

Finally, for every i � maxft0; t1g,

�� ai � �� at1 � (� � bt0)2
�n � (� � bi)2

�n;

because (an)n; (bn)n are increasing. 2

Theorem 8.2 (Slaman [13]) Every c.e. random real is 
-like.

Proof. Apply Lemma 8.1: if A) holds, then � is not random; if B) holds, then
� �dom �, and the theorem follows as � has been arbitrarily chosen. 2

9 Final Comments

The following theorem summarizes the characterization of c.e. and random reals:

Theorem 9.1 Let � be a c.e. real. The following conditions are equivalent:

1. The real � is c.e. and random.

2. For some universal self-delimiting Turing machine U , � = 
U .

10



3. The real � is 
-like.

4. There exists a universal computable, increasing sequence of rationals converging to

�.

5. Every computable, increasing sequence of rationals with limit � is universal.

C.e. random reals have many interesting properties; for example, they are wtt-
complete, but not tt-complete (cf. Calude and Nies [6]).
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