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Abstract

The minimization of nondeterministic automata without initial states (developed
within a game-theoretic framework in Calude, Calude, Khoussainov [3]) is presented
in terms of bisimulations; the minimal automaton is unique up to an isomorphism
in case of reversible automata. We also prove that there exists an infinite class
of (strongly connected) nondeterministic automata each of which is not bisimilar
with any deterministic automaton. This shows that in the sense of bisimilarity
nondeterministic automata are more powerful than deterministic ones. It is an open
question whether the method of bisimulations can produced, in general, the unique
minimal nondeterministic automaton.

1 Introduction

Minimal deterministic automata (with initial states) accepting the same language are
isomorphic; in contrast, minimal nondeterministic automata (with initial states) accept-
ing the same language may be non-isomorphic (for the classical theory of automata see
[2, 15, 22, 25, 3]). Automata without initial states have been studied as toy models for
quantum uncertainty (see [19, 23, 5]). This motivated the study of automata without
initial states, in particular, the minimization problem for these automata (see [4, 7, 8, 3]).
In [3] a game-theoretic solution was presented for the minimization problem for nonde-
terministic automata without initial states: it leads to a solution that is unique up to
an isomorphism. The equivalence relation used to collapse states satisfies a condition
(called in [3] “well-behaveness”) which is very similar to Park’s bisimulation notion for
concurrent branching processes.1 Inspired by Goguen [11, 12], Kozen [16] and Rutten
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[21], we present the theory in [3] in terms of bisimulations. The minimal automaton ex-
ists and is unique for reversible automata. We prove that there exists an infinite class of
nondeterministic (strongly connected) automata each of which is not bisimilar with any
deterministic automaton. This shows that in the sense of bisimilarity nondeterministic
automata are more powerful than deterministic ones.

The paper is structured as follows. Section 2 is devoted to notation and main def-
initions. In Section 3 we study the relation of bisimulation for nondeterministic au-
tomata. Section 4 discusses a solution to the minimization problem for nondeterministic
reversible automata without initial states in terms of bisimulations. Section 5 contrasts
deterministic and nondeterministic automata; in particular one proves that in the sense
of bisimulation nondeterministic automata are more powerful than deterministic ones.

2 Notation

If S is a finite set, then #(S) denotes the cardinality of S. If f : S → T is a function
and X ⊂ S, then f(X) = {f(x) | x ∈ X}. Any relation �⊂ S × T extends naturally to
sets X ⊂ S, Y ⊂ T : X � Y if for every x ∈ X there exists y ∈ Y such that x � y and
for every y ∈ Y there exists x ∈ X such that x � y.

Let Σ be a finite set (sometimes called alphabet); the set Σ? stands for the set of
all finite words over Σ with the empty word denoted by λ. The length of a string x is
denoted by |x|. If X,Y ⊂ Σ∗, then their concatenation is X · Y = {xy | x ∈ X, y ∈ Y }.

We fix two finite alphabets Σ and O: Σ contains input symbols, and O contains
output symbols. A nondeterministic finite automaton (without initial states) over
the alphabet Σ and O is a triple A = (SA,∇A, FA), where

• SA is a finite nonempty set of states,

• ∇A is a function from SA × Σ to the set 2SA of all subsets of SA, called the
transition table,

• FA is a mapping from the set of states SA into the output alphabet O, called the
output function.

The output FA(s) is “emitted” by A on state s. In what follows we will take O =
{0, 1}, so states will split into two categories, final states s in case FA(s) = 1 and nonfinal
states s in case FA(s) = 0.

The transition function can be naturally extended to ∇̃A : 2SA × Σ∗ → 2SA by the
equations

∇̃A(X,λ) = X,

∇̃A(X,wσ) =
⋃

q∈∇̃A(X,w)

∇A(q, σ),

for all X ⊂ SA, w ∈ Σ∗, σ ∈ Σ. It is seen that ∇̃A(∇̃A(X,u), v) = ∇̃A(X,uv), for all
X ⊂ SA, and u, v ∈ Σ∗.

If #(∇̃A(p, σ)) = 1, for every p ∈ SA, σ ∈ Σ, then the automaton is deterministic; in
this case the transition function will be denoted by ∆A.
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All automata will act on a fixed input alphabet Σ. Unless specified in the context,
automata will be nondeterministic, so, the adjective “nondeterministic” will be frequently
omitted.

A morphism from A to B is a function h : SA → SB compatible with the
transition and output functions of A, that is, a function h satisfying the following
two conditions: a) h(∇A(p, σ)) = ∇B(h(p), σ), for all p ∈ SA, σ ∈ Σ, b) FA(p) =
FB(h(p)), p ∈ SA. Note that condition a) is an equality between sets of states, so
#(∇A(p, σ)) ≥ #(∇B(h(p), σ)). It is easy to prove that every morphism h satisfies the
equality h(∇A(p,w)) = ∇B(h(p), w), for all p ∈ SA, w ∈ Σ∗. An isomorphism is a
bijective morphism.

Next we follow Moore’s Gedanken-experiments [19] to define the “response” of an
automaton A = (SA,∇A, FA) to an input sequence of signals: the only thing one can
observe about the state of an automaton is whether it is final or not, i.e., the value of
the output function FA. Take w = σ1 . . . σn ∈ Σ? and s0 ∈ SA. A trajectory of A on
s0 and w is a sequence

s0, s1, . . . , sn

of states such that si+1 ∈ ∇A(si, σi+1), for all 0 ≤ i ≤ n− 1.2 A trajectory s0, s1, . . . , sn
emits the output FA(s0)FA(s1) · · ·FA(sn).

The response of the automaton A is the function RA : SA × Σ? → 2{0,1}
∗

which to
any (s,w) assigns the set of all outputs emitted by all trajectories of A on s and w.

The function RA extends naturally to R̃A : 2SA × Σ∗ → 2{0,1}
∗

by the equations:

R̃A(X,λ) = FA(X),

R̃A(X,wσ) = R̃A(X,w) · FA(∇̃A(X,wσ)).

An automaton A is connected if for every pair of states p, q ∈ SA there is a word w
such that q ∈ ∇̃A(p,w) or p ∈ ∇̃A(q,w). An automaton A is strongly connected if for
every pair of states p, q ∈ SA there is a word w such that p ∈ ∇̃A(q,w). An automaton
is A reversible in case for every pair of states p, q ∈ SA, if there is a word w such that
q ∈ ∇̃A(p,w), then p ∈ ∇̃A(q, u), for some word u. Reversible automata play a special
role in the theory of reversible computations, computations which can be undone (see,
for instance, [6, 24]). It is easy to see that an automaton is strongly connected if and
only if it is connected and reversible.

3 Bisimulations

The aim of this section is to model “observationally undistinguishable” states, i.e. states
that appear identical for every Moore Gedanken-experiment: the states emit the same
output and performing on both states the same experiment will lead to new states which
are still undistinguishable (see Calude, Calude, Svozil, Yu [5] for a detailed discussion).

Let A = (SA,∇A, FA) and B = (SB,∇B, FB) be two automata. A non-empty relation
�⊂ SA × SB is a bisimulation if the following two conditions hold true for all p � q

(p ∈ SA, q ∈ SB):

1. ∇A(p, σ) � ∇B(q, σ), for all σ ∈ Σ,

2If s0, s1, . . . , sn is a trajectory ofA on s0 andw = σ1 . . . σn, then∇A(si, σi+1) 6= ∅, for all 0 ≤ i ≤ n−1.
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2. FA(p) = FB(q).

So, two states related by a bisimulation are observationally undistinguishable.

Proposition 1 Let A and B be two automata and h : SA → SB a function. Then, the
following two conditions are equivalent:

1. The function h is a morphism.

2. The graph of h is a bisimulation.

Proof. Assume that h : SA → SB is a morphism. For p ∈ SA, q ∈ SB define p � q if
q = h(p). We will prove that � is a bisimulation. Clearly, from the compatibility between
h and the output functions we get FA(p) = FB(q) provided q = h(p). Now assume again
that p � q and prove that ∇A(p, σ) � ∇B(q, σ), for every σ ∈ Σ. If s ∈ ∇A(p, σ),
then h(s) ∈ h(∇A(p, σ)) = ∇B(h(p), σ) = ∇B(q, σ). Finally, if t ∈ ∇B(q, σ), then
t ∈ h(∇A(p, σ)) (h is morphism), so t = h(s) for some state s ∈ ∇A(p, σ).

Conversely, assume that the graph of the function h : SA → SB is a bisimulation, i.e.,
the relation p � q if q = h(p) is a bisimulation. We shall prove that h is a morphism.
Again, FA(s) = FB(h(s)) is immediate. Next we prove that h(∇A(s, σ)) = ∇B(h(s), σ),
for all s ∈ SA. If q ∈ h(∇A(s, σ)), then there is a state p ∈ ∇A(s, σ) such that q = h(p)
as ∇A(s, σ) � ∇B(h(s), σ). So, p � t for some t ∈ ∇B(h(s), σ), that is t = h(p) = q ∈
∇B(h(s), σ). Conversely, if q ∈ ∇B(h(s), σ), then q ∈ ∇A(s, σ) (because s � h(s) and
∇A(s, σ) � ∇B(h(s), σ)). Consequently, there is a state p ∈ ∇A(s, σ) such that q = h(p),
so q ∈ h(∇A(s, σ)). 2

Two automata A, B are called bisimilar (we write A ≡ B) in case there is a
bisimulation �⊂ SA × SB. It is easy to see that bisimilarity is an equivalence relation
(if A ≡ B via �1 and B ≡ C via �2, then A ≡ C via the composition �1 ◦ �2).

Remark 2 Bisimilarity can be very “superficial”: two automata A and B may be very
different, but still bisimilar, if, for example, there are two states p ∈ SA, q ∈ SB such that
FA(p) = FB(q) and ∇A(p, σ) = ∇B(q, σ) = ∅, for all σ ∈ Σ. The notion of bisimulation
defined here is quite different from that defined in usual process algebras. In contrast with
processes in process algebras, which have an implicit initial state, here we are dealing
with automata without initial states. As it is clear from Kozen [16], if we assume an
initial state, the notions become more similar.

Proposition 3 Let A and B be two bisimilar automata via �. Let X ⊂ SA, Y ⊂ SB be
such that X � Y . Then ∇̃A(X,w) � ∇̃B(Y,w), for all w ∈ Σ∗.

Proof. The proof is done by induction on the length of w. 2

Proposition 4 Let A and B be two bisimilar automata via �. Let X ⊂ SA, Y ⊂ SB be
such that X � Y . Then R̃A(X,w) = R̃B(Y,w), for all w ∈ Σ∗.
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Proof. As X � Y , FA(X) = FB(Y ), so for every w ∈ Σ∗, FA(∇̃A(X,w)) =
FB(∇̃B(Y,w)). 2

Recall that the language recognized by the automaton A with initial states I ⊂ SA
is the set of words leading to a terminal computation, that is, L(A, I) = {w ∈ Σ∗ | 1 ∈
FA(∇̃A(I,w))}.

Corollary 5 Let A and B be two bisimilar automata via �, and let IA ⊂ SA, IB ⊂ SB
be sets of initial states. If IA � IB, then L(A, IA) = L(B, IB).

Proof. Note that FA(∇̃A(IA, w)) is the last letter of the word R̃A(IA, w). 2

A simple verification proves the following:

Proposition 6 Let A and B be two bisimilar automata. If (�i)i∈I is a family of bisim-
ulations from SA × SB, then their union, �=

⋃
i∈I �i is also a bisimulation.

LetA andB be two bisimilar automata. Denote by Ξ(A,B) the set of all bisimulations
from SA × SB. In view of Proposition 6, Ξ(A,B) contains a coarsest bisimulation.
This result will be crucial for constructing the minimal automaton bisimilar to a given
automaton.

4 Minimization

This section contains the main result of the paper: the existence and unicity of the
minimal nondeterministic reversible automaton.

An automaton B is minimal for A if B ≡ A and for every automaton C ≡ A, we
have #(SB) ≤ #(SC).

Lemma 7 Every minimal automaton is connected.

Proof. Deleting a state which cannot be accessed we get a bisimilar automaton with less
states. 2

Example 8 There exists a minimal automaton which which is not strongly connected.

Proof. Let A have three states {p, q, r}, the one-letter alphabet Σ = {a}, ∇A(p, a) =
{q, r},∇A(r, a) = {p},∇A(q, a) = ∅, and FA(p) = FA(q) = 1, FA(r) = 0. 2

Example 9 There exist two bisimilar nondeterministic automata A and B, a word w

and a state p ∈ SA such that for every state q ∈ SB we have RA(p,w) 6= RB(q,w).
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Proof. Let Σ = {a, b} and A be given by SA = {p1, p2, p3}, ∇A(p1, a) =
{p1, p2},∇A(p1, b) = {p2},∇A(p2, a) = ∇A(p2, b) = ∇A(p3, a) = {p2},∇A(p3, b) =
{p1, p3}, FA(p1) = FA(p3) = 0, FA(p2) = 1, and B be given by SB = {q1, q2, q3},
∇B(q1, a) = {q1, q2},∇B(q1, b) = ∇B(q3, b) = {q3},∇B(q2, a) = {q2},∇A(q3, a) =
∇B(q2, b) = {q2, q3}, FB(q1) = 0, FB(q2) = FB(q3) = 1.

The automata A and B are bisimilar via {(p1, q1), (p2, q2), (p2, q3)}, but they produce
different responses on w = ba: RA(p3, w) 6= RB(q,w), for all q ∈ SB. 2

We use bisimulations to prove Theorem 7.4 in [3] for reversible automata. It is an
open question whether the method of bisimulations can produced, in general, the unique
minimal nondeterministic automaton.

Theorem 10 Let A be a reversible automaton. There is a reversible automaton M(A)
satisfying the following properties:

1. A ≡M(A).

2. M(A) is minimal for A.

3. If B is reversible and minimal for A, then M(A) is isomorphic to B.

Proof. Notice first that Ξ(A,A) is non-empty because the equality is an autobisimulation
for A. Denote by �A the greatest bisimulation of Ξ(A,A) (see Proposition 6) and note
that �A is actually an equivalence relation on SA. Construct the automaton M(A) =
(SM(A),∇M(A), FM(A)) by factoring the elements of A to �A: note that the construction
is well-defined because �A is a bisimulation. Denote by [p] the �A—class of the state
p ∈ SA.

The automata A and M(A) are bisimilar via the bisimulation (denoted by 1) in-
duced by the projection function p ∈ SA 7→ [p] ∈ SM(A), which is a morphism (see
Proposition 1). The automaton M(A) is reversible because A is reversible.

Intermediate Step. If �∈ Ξ(M(A),M(A)) and [p] � [q], then p �A q.3

Indeed, assume by absurdity that there exists a bisimulation �⊂ SM(A)×SM(A) such
that there exist two different classes [p0], [q0] ∈ SM(A) such that [p0] � [q0]. Consider the
bisimulation on SA defined by

∼= =1 ◦ � ◦ 1r,

where [p] 1r q if q 1 [p] (the composition of two bisimulations is again a bisimulation).
As �A is the greatest bisimulation on SA, it follows that ∼= is a subset of �A. However,
p0 6�A q0 (as [p0] and [q0] are distinct), but [p0] � [q0], so p0

∼= q0 (�A is an equivalence
relation hence p0 �A p0, q0 �A q0, and [p0] � [q0]), a contradiction.

We can now argue that M(A) is minimal and unique for A. Let B be a reversible,
minimal automaton bisimilar to A, so B ≡ M(A) via a bisimulation �⊂ SM(A) × SB.

3In general, � may not be the diagonal of M(A): it’s just a subset of the diagonal. For example,
consider the automaton A having three states p, q, r, the one-letter alphabet Σ = {a}, the transition
∇A(p, a) = {q, r},∇A(q, a) = r,∇A(r, a) = ∅ and output function FA(p) = FA(r) = 1, FA(q) = 0.
It is seen that A is minimal and the relation {(q, q), (r, r)} is an autosimulation of A. The diagonal
{(p, p), (q, q), (r, r)} is also an autosimulation of A.
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In view of the Intermediate Step, the composition of ∼= =� ◦ �r is a subset of the
identity. This means that if [p] � u and [q] � u, then [p] = [q], i.e., � is one-to-one.
Let [p0] � u0 (� is non-empty) and v ∈ SB. In view of reversibility, the automaton
B is strongly connected (see Lemma 7), that is, there is a word w ∈ Σ∗ such that
v ∈ ∇̃B(u0, w) � ∇̃M(A)([p0], w), so there is a state [p] ∈ SM(A) such that [p] � v. This
state [p] is unique by virtue of the Intermediate Step. Consequently, we have obtained
a bijection from SB to SM(A). Its graph is a bisimulation, so by Proposition 1, it is a
morphism, in fact an isomorphism. 2

5 Contrasting Deterministic and Nondeterministic Au-
tomata

The subset construction shows that from the point of view of recognized languages,
deterministic automata are as powerful as the nondeterministic ones (see [15, 22, 16]).
It is not difficult to see that if A and B are bisimilar automata, then the deterministic
automata obtained from A and B by the subset construction are also bisimilar (see,
for example Proposition 17). Does the subset construction provide a way to pass from
a nondeterministic automaton to a bisimilar deterministic automaton? The answer is
negative.

Theorem 11 There exist infinitely many nondeterministic (strongly connected) au-
tomata each of which is not bisimilar with any deterministic automaton.

Proof. Let A be a (strongly connected) nondeterministic automaton such that for every
state s ∈ SA there are σ ∈ Σ and ps,σ, qs,σ ∈ ∇A(s, σ) such that FA(ps,σ) 6= FA(qs,σ).
Then no deterministic automaton B = (SB,∆B, FB) is bisimilar with A. Indeed, assume
by absurdity, that there is a deterministic automaton B and a bisimulation �⊂ SA×SB.
Consider two states s, t, s � t (� is non-empty) and consider the states ps,σ, qs,σ ∈
∇A(s, σ) such that FA(ps,σ) 6= FB(qs,σ). As � is a bisimulation, ∇A(s, σ) � ∆B(t, σ), so
there is a state r1 ∈ ∆B(t, σ) such that ps,σ � r1. Similarly, there is a state r2 ∈ ∆B(t, σ)
such that qs,σ � r2. Because B is deterministic, r1 = r2 and FA(ps,σ) = FB(r1) =
FB(r2) = FA(qs,σ), a contradiction.

2

Proposition 12 Let A and B be two deterministic automata. The relation

ρ = {(p, q) ∈ SA × SB | RA(p,w) = RB(q,w), for all w ∈ Σ∗} (1)

is a bisimulation provided it is not empty.

Proof. Clearly, FA(p) = RA(p, λ) = RB(q, λ) = FB(q). If RA(p,w) = RB(q,w), for all
w ∈ Σ∗, then RA(∆A(p, σ), u) = RB(∆B(q, σ), u), for all u ∈ Σ∗. This can be proved by
induction on u using the relation FA(∆A(p, u)) = FB(∆B(q, u)). 2

Proposition 12 is not true for all nondeterministic automata.

Example 13 There exist two strongly connected nondeterministic automata A and B

such that the relation ρ given by (1) is not empty but not a bisimulation.
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Proof. Take Σ = {a}, and consider the automata A and B defined by SA =
{p1, p2, p3, p4}, ∇A(p1, a) = {p2},∇A(p2, a) = {p3, p4},∇A(p3, a) = ∇A(p4, a) =
{p1}, FA(p1) = FA(p2) = FA(p4) = 0, FA(p3) = 1 and SB = {q1, q2, q3, q4, q5},
∇B(q1, a) = {q2, q4},∇B(q2, a) = {q3},∇B(q3, a) = ∇B(q5, a) = {q1},∇B(q4, a) = {q5},
FB(q1) = FB(q2) = FB(q4) = 0, FB(q5) = FB(q3) = 1. It is routine to check that
RA(p1, w) = RB(q1, w), for all w ∈ Σ∗, that is (p1, q1) ∈ ρ, but (∇A(p1, a),∇B(q1, a)) 6∈ ρ
as RA(p2, a) = 01 6= 00 = RB(q4, a). 2

Remark 14 Example 13 is similar to a well-known phenomenon in process algebras:
trace equivalence (the process-algebra analogue of the equivalence of automata, see Hoare
[13]) is weaker (i.e., relates more pairs of processes) than bisimilarity; see Bloom, Istrail,
Meyer [1], van Glabbeek [9, 10].

Example 15 There exist two strongly connected nondeterministic automata A and B

for which the relation (1) is a bisimulation.

Proof. Let Σ = {a, b} and A be given by SA = {p1, p2, p3, p4}, ∇A(p1, a) =
{p2},∇A(p1, b) = {p3},∇A(p2, a) = {p2, p4},∇A(p2, b) = {p4},∇A(p4, a) =
{p1, p4},∇A(p4, b) = ∇A(p3, b) = {p4},∇A(p3, a) = {p3, p4}, FA(p1) = FA(p4) =
0, FA(p2) = FA(p3) = 1, and B be given by SB = {q1, q2, q3}, ∇B(q1, a) = ∇B(q1, b) =
{q2},∇B(q2, a) = {q2, q3},∇B(q3, b) = ∇B(q2, b) = {q3},∇B(q3, a) = {q1, q3}, FB(q1) =
FB(q3) = 0, FB(q2) = 1.

The relation (1), ρ = {(p1, q1), (p2, q2), (p3, q2), (p4, q3)}, is a bisimulation.
Note that B is minimal: it follows from collapsing states p2 and p3 in A. 2

We show now the compatibility between the bisimulation approach and the simulation
approach for deterministic automata (see Calude, Calude, Khoussainov [4]). Recall that
the deterministic automaton A is simulated by the deterministic automaton B if there
is a function h : SA → SB preserving responses, that is, RA(p,w) = RB(h(p), w), for all
w ∈ Σ∗. The automaton A is strongly simulated by the deterministic automaton B if
there is a function h : SA → SB which preserves responses and internal transitions (that
is h(∆A(p, σ)) = ∆B(h(p), σ), for all p ∈ SA, σ ∈ Σ).

Proposition 16 Every morphism of deterministic automata preserves responses.

Proof. We prove by induction on w the formula: RA(p,w) = RB(h(p), w). For w = λ

we have: RA(p, λ) = FA(p) = FB(h(p)) = RB(h(p), λ). If RA(p,w) = RB(h(p), w) and
σ ∈ Σ, then

RB(h(p), wσ) = RB(h(p), w) · FB(∇̃B(h(p), wσ))

= RA(p,w) · FB(∇̃B(h(p), wσ))

= RA(p,w) · FA(∇̃A(p,wσ))

= RA(p,wσ). 2

Theorem 17 Let A and B be deterministic automata and h : SA → SB a function.
Then, the following statements are equivalent:
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1. The function h is a morphism.

2. The graph of h is a bisimulation.

3. The automaton A is strongly simulated by the automaton B via h.

Proof. In view of Propositions 1 and 16 we need to prove only the implication 3. ⇒ 1.,
that is, FA(p) = RA(p, λ) = RB(h(p), λ) = FB(h(p)). 2

Remark 18 In Theorem 17 we cannot replace the condition “the automaton A is
strongly simulated by the automaton B via h” by “the automaton A is simulated by
the automaton B via h”. Indeed, the last condition is weaker. For example, consider
the automata A = ({p, q}, {a},∆A, FA), where p 6= q, ∆A(p, a) = ∆A(q, a) = q, FA(p) =
FA(q) = 0, and B = ({p′, q′}, {a},∆B , FB), where p′ 6= q′, ∆B(p′, a) = q′,∆B(q′, a) = p′,
FB(p′) = FB(q′) = 0. Every function h from {p, q} to {p′, q′} respects outputs, but it’s
not a morphism.

Combining Theorem 17 and Corollary 2.2 in [4] we get:

Corollary 19 Let A and B be deterministic minimal automata and h : SA → SB a
function. Then, the following statements are equivalent:

1. The function h is a morphism.

2. The graph of h is a bisimulation.

3. The automaton A is strongly simulated by the automaton B via h.

4. The automaton A is simulated by the automaton B via h.

5. The automata A and B are isomorphic via h.

Acknowledgment

Discussions with J. Goguen, in San Diego and Auckland, have inspired and encouraged
us: we express him our gratitude. We thank the anonymous referees for their most
valuable comments and suggestions leading to improvements and corrections. The first
author was partially supported by AURC A18/XXXXX/62090/F3414075.

References

[1] Bloom, B., Istrail, S., Meyer, A. R. Bisimulation Can’t Be Traced: Preliminary
Report, MIT-LCS-TM-345 (1987), 42 pp.

[2] Brauer, W. Automatentheorie. Teubner, Stuttgart, 1984.

[3] Calude, C. S., Calude, E., Khoussainov, B. Finite nondeterministic automata: sim-
ulation and minimality. Theoret. Comput. Sci. 215 (1999), in press.

9



[4] Calude, C., Calude, E., and Khoussainov, B. Deterministic automata: simulation,
universality and minimality. Annals of Pure and Applied Logic 90, 1-3 (1997), 263–
276.

[5] Calude, C., Calude, E., Svozil, K., and Yu, S. Physical versus computational com-
plementarity I. International Journal of Theoretical Physics, 36 (1997), 1495–1523.
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