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In several previous papers we have shown how to calculate Haus-
dorff dimension and measure for certain classes of regular w-languages
(cf. [MS94], [St89], and [St93]). In this note we show that the re-
sults obtained in the papers [MS94] and [St93] can be used to give
an effective procedure for the calculation of the Hausdorff measure for
arbitrary regular w-languages.

To this end we derive a decomposition lemma for regular w-languages
which extends in some sense decompositions presented by A. Arnold
[Ar83], K. Wagner [Wa79] and L. Staiger and K. Wagner [SW74].

We assume the reader to be familiar with the basic facts of the theory
of regular languages. Let X be a finite alphabet of cardinality r :=
card X > 2, and let X* and X“ be the sets of (finite) words and w-
words over X, respectively. Concatenation is denoted by “-” and the
prefix relation by “C”. As usual, we consider X“ as a topological space
(Cantor space). The closure of a subset FF C X¥, C(F), is described as
C(F):={¢: A({¢}) C A(F)}, where A(E) is the set of all finite prefixes
of w-words n € F.

We postpone the definition of regularity for w-languages to Section 2.
For more details on w-languages and regular w-languages see the sur-
vey papers [St97] and [Th90].

*This paper was written during my visit to the CDMTCS, Auckland, August 1998
tThis paper was written during my visit to the CDMTCS, Auckland, August 1998
tElectronic mail: staiger@cantor.informatik.uni-halle.de




1 Hausdorff Dimension and Hausdorff Measure

First, we shall describe briefly the basic formulae needed for the defini-
tion of Hausdorff dimension and Hausdorff measure. For more back-
ground and motivation see Section 1 of [MS94].

We define for a € [0, c0)

L (F;V) = Y, cpyr P and
Lo(F)  := liminf {]La(F; V):V-XDF A (V) > n} oM
n—oo

where (V) := inf{|v] : v € V}.
Now consider IL,(F) as a function of «. Then there is an a(F) € [0, o)

such that . ()
oo, ifa<alF),
Lo(F) = {o, if o > a(F). 2)

This number «(F) is called the Hausdorff dimension of F, dim F', that
is, the Hausdorff dimension of F is given by

dimF =sup{a:a =0V L,(F) =00} =inf{a : Ly(F) = 0}.

Hausdorff dimension for regular w-languages has been proved to be
computable (cf. [Ba89], [MW88] or [St89]). The aim of this note is to
show how one can compute the value Ly, »(F') (the Hausdorff measure
of F) for an arbitrary regular w-language.!

In [MS94] we presented an algorithm which computes simultaneously
the dimension dim F' and the value Ly, »(F) for closed (in the Cantor
topology of X, that is, F' = C(F)) regular w-languages. Our new al-
gorithm will be based on this procedure. To this end we derive some
properties of the function IZL,. From the definition (1) one has imme-
diately

Lo(w- F) = r~0l L (F) (3)

Since regular w-languages are Borel sets in Cantor space (cf. [St97],
[Th90]), IL, is a measure on the class of regular w-languages. Thus we
have the following (cf. [Fa85]).

Proposition 1 If (F;);°, is a family of mutually disjoint regular w-lan-
guages then

Lo({JF) = ) _ La(F)

lObserve that Lginm, #(F) is not specified by (2).
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Finally, we quote Theorem 6 of [MS94] (see also Section 4 of [St93]).

Proposition 2 Let V C X* be regular and prefix-free. Then

Lo (V¥) = Lo (C(V¥)) -

2 Decomposition of Regular w-languages

An w-language F C XV is called regular provided there are a finite
automaton A = (X, S, sp,A) and a table 7 C {S’: S C S} such that ¢
F if and only if Inf (2, &) € T where Inf (%, ¢) is the set of all states s € S
through which the automaton 2 runs infinitely often when reading the
input &.

Observe that the w-language F = {¢ : Inf(2,§) € T} is the disjoint
union of all sets Fsr = {¢: Inf(2,&) = S’} where S" € T.

We are going to split F' into smaller mutually disjoint parts. Let 2 =
(X, S, s0,A) be fixed. We refer to a word v € X* as (s, S’)-loop com-
pleting if and only if

1. v is not the empty word,
2. A(s,v) =sand {A(s,v') : v C o} =5 and

3. {A(s,v") : v £ 0"} C S for all proper prefixes v" C v with
A(s,v") = s,

and we call a word w € X* (s,S5")-loop entering provided

1. A(sg,w) =s, and

2. if w=w"-z for some z € X then A(sg,w’) ¢ 5.

Denote by V, ¢ the set of all (s, S’)-loop completing words and by
Wis,sy the set of all (s,S")-loop entering words. Both languages are
regular and constructible from the finite automaton 2f = (X, S, sg, A).
Moreover, V|, s is prefix-free, whereas W, ¢y need not be so.

Nevertheless, every £ € Fs: has a unique representation ¢ = w-vy -« -v; - - -
where w € W, ¢y and v; € V{, sy. Here the state s € S’ is uniquely de-
termined as the state succeeding the last state § ¢ S’ in the sequence
(A(s0,u)),e- Thus we obtain the following.



Lemma 3 (Decomposition Lemma) Let 2l = (X, S, sy, A) be a finite au-
tomaton and let S’ C S. Then

Fgi = U U Vie.sn (4)

ses! weW(S S’)

and the sets w - Vi ) are pairwise disjoint.

3 The Algorithm

From the decomposition in Lemma 3 we obtain via (3) and Proposi-
tion 1 a formula for the Hausdorff measure of Fy:

dFo) =3 (X ) Ea(es) (5)

s€S" weW(, gr

Since for regular languages L C X* the structure generating function
of L, s,(t) :== Y, t™! is rational with integer coefficients and com-
putable from L (cf. [KS86] or [SS78]), the sum Zwew(sﬁ,) r-lvl is com-
putable, provided a is computable.

Proposition 2 shows that La(V({ sy) = La(C(V(;s)), because the lan-
guage V[, sy is regular and prefix-free.

Thus we obtain

o(Fsr) = ZEW( o (1) - La(C(V(S 1) - (6)

ses!

Now the simultaneous computation of Hausdorff dimension and Haus-
dorff measure of a regular w-language F C X¥ given by some finite
automaton 2 = (X, S, sp,A) and a table 7 C {S': S’ C S} proceeds as
follows. Details should be carried out analogously to the algorithm
described in Section 3 of [MS94].

1. For every S’ € T and every s € S’ estimate the regular languages
V(s,gr) and W(s’gr).

2. For every S’ € T estimate the adjacency matrix Ag of C( s S,)) 2

2We may here confine to one matrix for each S’, because for all s € S’ the adjacency
matrices of the w-languages C (V(‘; S,)) are the same, up to the indexing of rows and

columns by states (cf. [MS94]).



S s W

. Calculate an eigenvalue \g: of Ag of maximum modulus.3
Amax := max{|Ag/|: S" € T}.

dim F' := log, Amax-

If [Asr| < Amax then Lgim r(C(V{2 1)) := 0.

7. If [As/| = Anax then compute

(@) Laimr(C(V( ) according to Section 3 of [MS94], and
(b) 5W(8751) ()\I;léx)'

8.
Lgim p(F') := Z ZEW(S,SI)(AQQX) * Laim 7 (C(Vi5 51))) -
Ag’=Amax $E€S'
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