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A Note on Pseudorandom Generators

Cristian S. Calude! Wolfgang Merkle! and Yongge Wang!

Abstract

The concept of pseudorandomness plays an important role in cryptogra-
phy. In this note we contrast the notions of complexity-theoretic pseudoran-
dom strings (from algorithmic information theory) and pseudorandom strings
(from cryptography). For example, we show that we can easily distinguish
a complexity-theoretic pseudorandom ensemble from the uniform ensemble.
Both notions of pseudorandom strings are uniformly unpredictable; in contrast
with pseudorandom strings, complexity-theoretic pseudorandom strings are not
polynomial-time unpredictable.

1 Introduction

There are two possible approaches to define the concept of randomness. The “onto-
logical” approach looks at the “simplest description” of a string and declares random
a string which has roughly the same length as its simplest description. Algorith-
mic information theory—initiated by Solomonoff [11], Kolmogorov [9], and Chaitin
[5]—defines the simplest description of a string x by the minimal input necessary
to a universal algorithm to produce x. Depending upon the choice of the universal
algorithm, two theories have emerged: Kolmogorov-Chaitin theory in which one uses
a universal Turing machine and Chaitin theory relying on a self-delimiting universal
Turing machine (see [4],[6]). Only the second theory is compatible with a theory of
random infinite sequences. The first theory has been relativized (in time or space); it
led to some complexity-theoretic definitions of pseudorandom strings. These notions
have been very useful in many places (see [8] for a recent survey), but as Goldreich
[7] observed, not in designing pseudorandom generators.

Cryptography suggests an alternative “behaviouristic” approach to pseudoran-
domness. Instead of considering the “explanation” of a phenomenon, it takes into
account the phenomenon’s effect on the environment. A string is said to be pseudo-
random if no efficient observer can distinguish it from a uniformly chosen string of
the same length. The underlying postulate is that objects that cannot be told apart
by efficient procedures are considered equivalent. This approach naturally leads to
the concept of pseudorandom generator, which is fundamental for cryptography.

Our aim is to contrast these two definitions of pseudorandom strings. For exam-
ple, we show that we can easily distinguish a complexity-theoretic pseudorandom
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ensemble from the uniform ensemble. Both notions of pseudorandom strings are uni-
formly unpredictable; in contrast with pseudorandom strings, complexity-theoretic
pseudorandom strings are not polynomial-time unpredictable.

We close this section by introducing some notation we will use. The set of non-
negative integers is denoted by . By {0,1}* we denote the set of (finite) binary
strings; {0,1}" is the set of binary strings of length n. The length of a string =
is denoted by |z|. For a string x € {0,1}* and an integer number n > 1, z[l..n]
denotes the initial segment of length n of x (z[1..n] = x if |x| < n) and x[i] denotes
the i-th bit of z, i.e., z[l..n] = z[1]...z[n].

2 Computational indistinguishability

Computational indistinguishability is a fundamental concept in cryptography. The
following paragraph is quoted from page 87 of [7]:

The concept of efficient computation leads naturally to a new kind of
equivalence between objects. Objects are considered to be computation-
ally equivalent if they can not be told apart by any efficient procedure.
Considering indistinguishable objects as equivalent is one of the basic
paradigms of both science and real-life situations. Hence, we believe
that the notion of computational indistinguishability is fundamental.

Two distributions are called computationally indistinguishable if no efficient al-
gorithm can tell them apart. Given an efficient algorithm D, we consider the prob-
ability that D accepts (e.g., outputs 1 on input) a string taken from the first dis-
tribution. Likewise, we consider the probability that D accepts a string taken from
the second distribution. If these two probabilities are close, we say that D does not
distinguish the two distributions.

Typically, an ensemble of the form X = {X,,},cn has each X, ranging over
strings of length n. We will use U = {U, }nenr to denote the uniform ensemble, that
is, Uy, denotes a random variable uniformly distributed over {0,1}".

Definition 2.1 ([7]) Two ensembles, X = {Xp}nen and Y = {Y, }nen, are indis-
tinguishable in polynomial-time if for every probabilistic polynomial-time algorithm
D, every polynomial p(-), and all sufficiently large n such that the following two
conditions are satisfied

Z Prob(X, =x) #0 and Z Prob(Y,, = z) # 0,
zc{0,1}" z€{0,1}"

the following inequality holds:
|Prob(D(X,) =1) — Prob(D(Y,) =1)| < —.
p

The probabilities in the above definition are taken over the corresponding random
variables X; (or Y;) and the internal coin tosses of the algorithm D.

Definition 2.2 ([7]) Let U = {U, }nen be the uniformly distributed ensemble, and
X = {X,}nen be an ensemble. The ensemble X is called pseudorandom if X and
U are indistinguishable in polynomial-time.



Definition 2.3 ([7]) A pseudorandom generator is a deterministic polynomial-time
algorithm G from strings to strings satisfying the following two conditions:

1. There exists a function | : N — N such that [(n) > n for allmn € N, and
|G(x)] = I(|x]), for all z € {0,1}*.

2. The ensemble {G(Uy) }nen is pseudorandom.

3 No complexity-theoretic pseudorandom ensemble is
pseudorandom

Let RAND, = UpcAyRAND,,, and RAND{ = U,exRAND! , be the sets of Kol-
mogorov c-random and Kolmogorov t-time bounded c-random strings respectively,
where ¢ > 1 and ¢t : N — N is some time-constructible function such that
t(n) > n? for all n € N. That is, for a universal Turing machine M, let
RAND,,, = {x € {0,1}" : if M(y) = x then |y| > |z| — ¢} and RAND, = {az €
{0,1}™ = if M(y) = = and M (y) halts in less than ¢(|x|) steps then [y| > |z| — c}.
The strings in RAND,. (respectively RAND!) are called c-random (respectively c-
pseudorandom). Let R. = {Rcpn}nen and RL = {RL,}nepr be two ensembles such
that R., and Rén are uniformly distributed over RAND,, and RAND! = respec-

c,n
tively. Our first results show that these two ensembles are not pseudorandom.

Theorem 3.1 The ensemble R = {R!, ninen 18 not pseudorandom.
Proof. Define a polynomial-time algorithm D by letting

0, if 2 = 0loglzlly for some y € {0,1}*,
D(w) = { 1, otherwise.

It is straightforward to show that RAND!, N {z € {0,1}* : 2 =
oleglelly for some y € {0,1}*} = 0 for sufficiently large n. Hence Prob(D(R.,,) =
1) =1 and Prob(D(U,) = 1) = 1 — 2ll9enl=" for sufficiently large n. That is,

|Prob(D(RL,,) = 1) = Prob(D(Uy) = 1)| = 2He&n=n >

3I'—*

This shows that the ensembles {R,}nen and {Uplnepn are distinguishable in
polynomial-time, hence R! = {R! n}ne A 1s not pseudorandom. |

Theorem 3.2 The ensemble R, = { Ry nen is not pseudorandom.

Proof. The proof is similar to the proof of Theorem 3.1. [ |

4 Unpredictability

In this section we will show that c-random strings, c-pseudorandom strings, and
pseudorandom strings are uniformly unpredictable. In contrast with pseudorandom
strings, complexity-theoretic pseudorandom strings are not polynomial-time unpre-
dictable.



4.1 Uniform unpredictability

One of the fundamental properties of random strings is the unpredictability of the
i-th bit from the first ¢ — 1 bits of the sequence (see [1] or [12, 13]). A weaker
property, has been discussed in [4]: strings in RAND, are normal.

Definition 4.1 Let p(-) be a given polynomial. An ensemble X = {X,}nen s
called uniformly unpredictable in polynomial-time if for every polynomial-time algo-
rithm D : {0,1}* — {0, 1}, there is a constant ng such that for all n > ng, a string
x € Xy, satisfies the following condition (1) with a probability of at least 1 — ﬁ:

I{i <n: D(x[lnz —1]) = z[i]}| < % n /lognl(;glogn. (1)

Note that, due to the law of the iterated logarithm, in (1) the term /5nloslogn

n

cannot be strengthened to ﬁ, for some polynomial p(-). In [12, 13] it is shown
that the law of the iterated logarithm holds for infinite pseudorandom sequences.

Now we show that both type pseudorandom ensembles are uniformly unpre-
dictable in polynomial-time. We need for the proof Chernoff’s Bound.

Chernoff’s Bound. Let Xi, Xs,..., X, be independent 0-1 random variables so
that Prob(X; =1) = %, for each i. Then, for all 0 < § < i, the following condition
holds:

Prob (’M—%' 2(5) <2.e (2)
n

Lemma 4.2 Let U = {Up}nen be the uniform ensemble, D : {0,1}* — {0,1} be
a polynomial-time algorithm, and {Ap}tnen be a sequence of sets of strings defined

as follows:
Ap, ={x €{0,1}" : (1) does not hold for x}. (3)

Then A =US° | Ay, is a polynomial-time computable set and
||An|| < 2n+1—210gelognloglogn,
for sufficiently large n.

Proof. Tt is straightforward to check that A is polynomial-time computable. By
Chernoff’s Bound (2) we derive the following bound for the cardinality of A:

_ 2nlognloglogn

[An]] < 27-e B

= 9on. e—QIanloglogn

— 2n+1—2 logelognloglogn

Theorem 4.3 The ensemble R. = {R.,}nen is uniformly unpredictable in
polynomial-time, where t(n) > 22" is some time-constructible function.



Proof. Let D : {0,1}* — {0,1} be a polynomial-time algorithm, and { A, }nenr
as in Lemma 4.2. Since any member z of the set A,, can be calculated uniquely in
time 227 if we are given the polynomial-time algorithm D and the position of = in A,
expressed as an n—[2log elognloglog n| bit string. It follows that AnﬂRANDi,n =0,
for sufficiently large n. This means that the ensemble R = {RL , }nen is uniformly
unpredictable in polynomial-time. [ |

Theorem 4.4 The ensemble R, = {Rcnlnen is uniformly unpredictable in
polynomial-time.

Proof. The proof is similar to the proof of Theorem 4.3. [

Theorem 4.5 Every pseudorandom ensemble X = { X, }nen is uniformly unpre-
dictable in polynomial-time.

Proof. For the sake of contradiction, we assume that X is not uniformly un-
predictable in polynomial-time. That is, there is a polynomial-time algorithm
D :{0,1}* — {0,1} and a polynomial py(-) such that the following condition holds
for infinitely many n:

1
Z Prob(X, =x) > —,
x€A, po(n)

(4)

where {A;, }nen is defined in Lemma 4.2. Now we define a polynomial-time com-
putable function D’ by letting

iy ) 1, €A, for someneN,
Di(z) = { 0, otherwise.

By virtue of the definition of D', we have the following equality:
Prob(D'(X,) = 1) — Prob(D'(U,) = 1)

>ozen, Prob(X, =x) =3 a4 Prob(U, = z).
Hence, by Lemma 4.2 and (4), the following inequality holds for sufficiently large n:
1

|Prob(D'(X,) = 1) — Prob(D'(U,) =1)| > o e 2lognloglogn

=

0

(
1 1
(

77,) B n2logeloglogn

bo
S 1
~ 2pg(n)’
This contradicts with the fact that X and U are indistinguishable in polynomial-
time. |

Corollary 4.6 The uniform ensemble U = {U, }nen is uniformly unpredictable in
polynomial-time.



Proof. This follows from Theorem 4.5. |

Since the ensemble R, = {R. ., }ncnr is uniformly unpredictable in polynomial-
time (cf. Theorem 4.4) but not pseudorandom (cf. Theorem 3.2), the converse of
Theorem 4.5 is not true.

Corollary 4.7 Let G be a pseudorandom generator. Then the ensemble
{G(Un) nen s uniformly unpredictable in polynomial-time.

Proof. This follows from Theorem 4.5. |

Theorem 4.7 shows that given a pseudorandom generator G, and a truly random
input z, the output G(x) is unpredictable in polynomial-time with high probability,
though G(z) is not c-pseudorandom.

4.2 Cryptographic unpredictability

Definition 4.8 ([14]) An ensemble X = {X,}nen is called unpredictable in
polynomial-time if for every probabilistic polynomial-time algorithm D, every poly-
nomial p(-), and all sufficiently large n, the following condition is satisfied.

1 n 1
p(n)’
where nextp(x) returns the (i +1)-th bit of x if D on input x reads only i < |z| bits

of x, and returns a uniformly chosen bit otherwise (i.e., in case D read the entire
string x ).

Prob(D(X,,) = nextp(X,)) < 3

Theorem 4.9 ([14], [3]) An ensemble X = { X, }nen is pseudorandom if and only
if it is unpredictable in polynomial-time.

Corollary 4.10 Neither the ensemble R, = {Rcyn}ncn nor the ensemble RE =
{Rz,n}ne/\/ is unpredictable in polynomial-time.

Proof. This follows from Theorems 3.1, 3.2, and 4.9. [ |

5 Comments and open questions

In the view of Definition 4.1, an ensemble X = { X, },,enr is uniformly unpredictable
in polynomial-time if for every polynomial-time algorithm D : {0,1}* — {0,1} and
sufficiently large n, a string x € X, satisfies (1) with a probability of at least 1 — ﬁ.

If we replace the probability 1 — ﬁ with 1, then we obtain a stronger definition.

Definition 5.1 An ensemble X = {X,}n,en is called strongly unpredictable in
polynomial-time if for every polynomial-time algorithm D : {0,1}* — {0, 1}, there is
a constant ng such that for alln > ng and all strings x such that Prob(X,, = z) > 0,
condition (1) holds.

The proof of Theorem 4.3 shows that the ensemble R! = {Ri,n}ne N s strongly
unpredictable in polynomial-time. However, pseudorandom ensembles are not nec-
essarily strongly unpredictable in polynomial-time. For example, the uniform en-
semble U = {U, }nenr is not strongly unpredictable in polynomial-time. As another
example, we show that the ensemble {G(U,,)}nepr is not strongly unpredictable in
polynomial-time where G is the BBS [2] pseudorandom generator.



Example 1 Let both p and q be distinct primes congruent to 3 mod 4, N = pq, and
l(n) > n be a polynomial. For each number x < N and i < p(logN), let z_1 = x,
Tiy1 = 22 mod N and b; =parity(z;) where parity(y) denotes the least significant bit
ofy. Then the BBS [2] pseudorandom generator is defined as G(x) = bo . . . byiog N)-
It is clear that G(0) = 0...0. Whence {G(Uy,) }nen is not strongly unpredictable in
polynomaial-time.

However, the following question remains open.

Question 1. For a pseudorandom generator G, is the ensemble {G(Rcn)}nen
strongly unpredictable in polynomial-time?

If the answer to the above question is positive, then we get a characterization
of pseudorandom generators. That is, for a pseudorandom generator G and a truly
random input z € RAND,, the output G(z) satisfies the condition (1). This coin-
cides with our intuition that the i-th bit of a pseudorandom string should not be
predictable from its first ¢ — 1 bits. However, the answer to Question 1 may be neg-
ative; in this case we suggest the following alternative definitions for pseudorandom
generators.

Definition 5.2 (Suggested new definition 1). A pseudorandom generator is a
deterministic polynomial-time algorithm G satisfying the following three conditions:

1. There exists a function Il : N — N so that l(n) > n for alln € N, and
|G(s)| = 1(|s]) for all s € {0,1}*.

2. The ensemble {G(Uy) }nen s pseudorandom.

3. The ensemble {G(Ren) }nen is strongly unpredictable in polynomial-time.

Definition 5.3 (Suggested new definition 2). A pseudorandom generator is a
deterministic polynomial-time algorithm G satisfying the following two conditions:

1. There exists a function Il : N — N so that l(n) > n for alln € N, and
|G(s)| = 1(|s]) for all s € {0,1}*.

2. The ensemble {G(Rcp)}nen is strongly unpredictable in polynomial-time.

It is known that the ensemble { R,y }nen is strongly unpredictable in polynomial-
time, but not pseudorandom. As a conclusion, we give an ensemble which is both
pseudorandom random and strongly unpredictable in polynomial-time.

Theorem 5.4 Let Dy, Ds,... be a uniform enumeration (that is, D;(x) is com-
putable in time 2“'”‘“) of all polynomial-time algorithms, and AP be defined in
Lemma 4.2. Then the ensemble X = { Xy, }nen is both pseudorandom and strongly
unpredictable in polynomial-time, where X, is a random variable uniformly dis-
tributed over {0,1}™\ (U}i’lg log ] AD),
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