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Breaking the Turing Barrier

C.S. Calude and M.J. Dinneen

Is there any limit to discrete computation, and more generally, to scienti�c knowl-

edge? This is one of the problems studied by the Centre for Discrete Mathematics and
Theoretical Computer Science of the University of Auckland.

The story started in 1936. As a result of an original analysis of mental activity,
A. Turing introduced (in [8]) the abstract model of a machine|now called the Turing
machine|to de�ne the concept of a �xed computational method or algorithm. He also
introduced the \universal" Turing machine, a single machine capable of performing any
instructions given to it.

Practically all conventional computers (e.g., PC's, Unix workstations, and main-
frames) are based on the idea of a computer that stores and executes a program from
internal memory (or from an external device). These are known as the J. von Neumann
architectures as opposed to machines that have \hard-wired" instructions. They are
a realization of Turing's universal machine where the instructions for a basic Turing
machine (e.g., a program) are read from an in�nite tape and executed. See Figure 1.

For over �fty years, the Turing machine model of computation has de�ned what it
means to \compute" something and essentially all theoretical results in computer science
rest on this model.
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Figure 1: Various types of Turing machines.



In recent years, researchers have looked at natural processes in the physical and bi-
ological world as motivation for constructing new models of computation holding out
the hope of breaking the \Turing barrier." But are there alternatives? The quantum
phenomenon of interference has led to one such model, as has the process of folding of
DNA strands in a living cell. In addition, re�nements to the Turing view of computing
have led to \super-Turing" models, that allow one to compute in ways that transcend
Turing's original scheme. Breaking Turing's barrier is double important: a) theoret-
ically, as unconventional models are explored with an eye toward understanding the
true limits of computation, thereby shedding light on the basic questions on the limits
to scienti�c knowledge, b) practically, as a method to speed-up computations beyond
classical capabilities.

Here is a possible scenario. Computers, in contrast to Turing machines, are physical
devices: whatever they can or cannot do is determined by the laws of physics. In
particular, Turing machines make no mention of time! A Turing machine operates with
a �nite list of primitive operations|read a square of the tape, write a single symbol
on a square of the tape, move one square to the right, and so forth|but it makes no
mention of the duration of each primitive operation (of course, we may assume that
each primitive operation requires a �xed duration, but this is not part of the original
model). It is only important whether or not the machine halts after a �nite number of
operations. Temporal considerations are not relevant for these mathematical models.
Things are di�erent for real computers where time does matter.

Well before Turing's model, H. Weyl, in 1927, has considered a hypothetical machine
that is capable of completing an in�nite sequence of distinct operations within a �nite

time1 say, by supplying the �rst result after 1/2 minute, the second after another 1/4
minute, the third 1/8 minute later, etc. In fact, this temporal patterning was described
earlier by B. Russell, in a famous lecture given in Boston, 1914. In a discussion of
Zeno's paradox of the race-course, Russell said \If half the course takes half a minute,
and the next quarter takes a quarter of a minute, and so on, the whole course will
take a minute". Is it physically possible to execute an in�nite number of operations
in a �nite amount of time? Science has not o�ered a de�nitive answer yet. Russell
(1935) has argued that for human beings this scenario is not logically impossible, but
it may be biologically impossible... (he said: \Might not a man's skill increase so
fast that he performed each operation in half the time required for its predecessor?").
What about computers? K. Svozil [7] suggests the answer depends upon the underlying
physical environment considered for computation. Classically, i.e., when computation
is performed within a classical universe and information is measured in bits, in�nite
sequences of operations cannot be operationally executed in a �nite time. However, if
one places the computation into a quantum mechanical universe, when classical bits are
replaced by coherent superpositions of two orthonormal quantum states, the so-called
quantum bits (qubits), in�nite sequences of computations can be performed. Stated

1See [10]; for some more references on accelerated machines see Copeland [3].
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di�erently, at the level of probability amplitudes, quantum theory allows a Zeno type
computation. There is a price to be paid: computation appears to occur entirely random.

Is there a realistic chance to perform quantum computations? Nonlinearity (to sup-
port quantum logic and ensure universality) and coherence (for the manipulation of
coherent quantum superpositions) are necessary and, in principle, su�cient conditions
for computation. Conventional devices under investigation for carrying out these op-
erations include ion traps, high �nesse cavities for manipulating light and atoms using
quantum electrodynamics, and molecular systems designed to compute using nuclear
magnetic resonance. The latter store quantum information in the states of quantum
systems such as photons, atoms, or nuclei, and realise quantum logic by semiclassical
potentials such as microwave or laser �elds. Unconventional ideas for quantum com-
putation include fermionic quantum computers, bosonic computers, and architectures
relying on anyons. See more in [1, 2].

Turing thought that a computer was capable in principle of doing anything the
human brain can do, and in 1950 he set forth a theory that remains a cornerstone of
arti�cial intelligence. The test proposed by Turing involved a computer communicating
with human judges via a teleprinter link: if the computer's responses to questions were
indistinguishable from those of a human being, Turing stated, the computer has to be
regarded as exhibiting intelligence. The Turing test provoked a lot of discussion. R.
Penrose has dedicated three books to this topic: [4, 5, 6]. In his last one, [6], he claims
that \appropriate physical action of the brain evokes awareness, but this physical action
cannot even be properly simulated computationally". The reference is made to classical
computation; unconventional paradigms may change dramatically this view.
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