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News from New Zealand

1. The joint DMTCS'99 and CATS'99 conference, which is a part of the Australasian

Computer Science Week (ACSW'99), will be held in Auckland on 18-21 January 1999. For

more information see http://www.cs.auckland.ac.nz/CDMTCS/docs/cats99cfp.html.

2. New CDMTCS Research Reports1:

76. C. Martin-Vide, G. P�aun, G. Rosenberg and A. Salomaa. X-Families: An Approach

to the Study of Families of Syntactically Similar Languages

77. P. Hertling. A Lower Bound for Range Enclosure in Interval Arithmetic (updated)

78. R. Laue. Halvings on Small Point Sets

79. P. Hertling and K. Weihrauch. Randomness Spaces

80. M.J. Dinneen, G. Pritchard and M.C. Wilson. Degree- and Time- Constrained Broad-

cast Networks

81. A. Arslanov. On Hypersimple Sets and Chaitin Complexity

3. Recent CDMTCS visitors: Prof. M. Amos (U. of Liverpool, UK), Prof. I. Antoniou

(Solvay Institute, Belgium), Prof. A. Ekert (Oxford, UK), Prof. H.J. Kimble (Caltech, USA),

Prof. A. Gibbons (U. of Liverpool, UK), Prof. K. Gustafson (U. of Colorado, USA), Prof.

T. Knight (MIT, USA), Prof. S. Lloyd (MIT, USA), Prof. H. Matsueda (Kochi U., Japan),

Prof. C. Moore (Santa Fe Institute, USA), Prof. Gh. P�aun (Institute of Mathematics,

Romania), Prof. J. Reif (Duke U. , USA), Prof. A. Salomaa (U. of Turku, Finland), Prof.

G. Sussman (MIT, USA).

4. The design of large interconnection newtworks and multi-processor con�gurations is

an area of great importance for computer science. I have invited my colleague Mike Dinneen

to survey some results obtained recently by an interdisciplinary group at the University

of Auckland: they show in a convincing way the importance of theory in developing new

paradigms of computation. Mike's contribution will be attached to this column.

C. Calude, Auckland

Email: cristian@cs.auckland.ac.nz

1At http://www.cs.auckland.ac.nz/CDMTCS/docs/pubs.html.



Group-Theoretic Methods for Designing Networks

Michael J. Dinneen

Email: mjd@cs.auckland.ac.nz

1 Introduction

This short note surveys the use of group theory in the design of large interconnection networks

and multi-processor con�gurations. Five local research sta� (P.R. Hafner, G. Pritchard,

M.C. Wilson, G. Zakeri and myself), with the assistance of a few graduate students, from

the University of Auckland2 have been working in this area. I want to mention two well-

studied design problems that we are working on (and have made substantial progress) in the

hope that other people may be interested.

Several fundamental design problems that deal with the topology of networks have

emerged [10, 11]. We observed that many of the \best-known" constructions for these design

problems are based on Cayley graphs, which is our main group-theoretic design tool.

A basic constraint in many network design problems is a bound on the maximum node

degree that is imposed by cost and fundamental engineering limitations. That is, network

nodes can have at most a �xed number of communication lines connected to other nodes.

At the same time, e�cient network communications are crucial for many applications.

We view multi-processor con�gurations and interconnection networks in terms of graph

theory where the vertices represent processors or nodes, and the edges represent connecting

wires or communication lines. Two basic design problems for which we have successfully

designed several best-known constructions are the following.

1. The Degree/Diameter Problem (e.g. [1, 8]). Provide constructions of the largest possible

networks satisfying bounds on maximum node degree and diameter. The diameter

measures the maximum communication delay between any two nodes in a network. If

each node can communicate simultaneously with all of its neighbors then the diameter

also gives the maximum time needed to 
ood a message throughout the network.

2. The Degree/Broadcast-Time Problem (e.g. [3]). Provide constructions of the largest

possible networks satisfying bounds on maximum node degree and broadcast time.

In these networks a node can communicate with only one of its neighbors at a time.

Under this restriction the broadcast time is the maximum time needed for any node

to disseminate (in a point-to-point fashion) a message throughout the network.

Generally a network's diameter is smaller than its broadcast time. This is intuitively

clear since communications are one to many (for diameter) verses one to one (for broadcast

time). Figure 1 shows the distinction between these two communication concepts in a simple

ring architecture.

2This research group has members from four di�erent departments within the University: Computer

Science, Mathematics, Engineering Science (Operations Research) and Statistics.
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Figure 1: A comparison between (a) diameter and (b) broadcast time.

2 The Cayley Graph Model

Our research uses Cayley graphs, de�ned below, for designing large networks that satisfy

various practical constraints, such as bounded degree and maximum communication time.

Let G be a �nite group, S a subset of G which generates G and does not contain the

identity. The Cayley graph of G with respect to S is the directed graph whose vertices are

the elements of G and whose edge set is E = f(x; y) j y = xs for some s 2 S and x; y 2 Gg.
If S is closed under inverses, i.e. S = S [ S�1, then (x; y) 2 E if and only if (y; x) 2 E. In

this case the edges can be considered as undirected. A few examples of Cayley graphs are

given in the following sections.

There are many advantages of using group theory in the design of connected systems.

For one thing, our approach yields networks with the nice property of node symmetry. This

allows message routing schemes to be node independent. For massive parallel-processors

symmetry is a valuable, natural and useful organizational tool for meeting the di�cult chal-

lenges of coordinating large number of computational units. Many of the developed (or

proposed) parallel processor architectures are node symmetric (also called vertex transitive).

In addition, most (!) node symmetric connected systems are (implicitly) based on Cayley

(group) graphs. The few exceptions can be represented as Cayley coset graphs [13]. Other

advantages of networks designed using algebraic structures may include: (1) line symmetry,

(2) hierarchical structure, and/or (3) high fault tolerance.

3 Degree/Diameter Examples

A very simple example of a Cayley graph is the graph <Z13; f1; 5; 8; 12g> shown in Figure 2.

Here Z13 is the cyclic group of integers modulo 13 (under addition). Somewhat surprisingly,

this graph is the largest-known vertex transitive graph with maximum degree 4 and diameter

2.
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Figure 2: A 4-regular Cayley graph of order 13 and diameter 2.

Note that it is rare to �nd \good" degree/diameter networks designed via commutative

groups. In general, these types of Cayley graphs do not yield graphs with low diameter.

This is because we desire a \fat" communication tree (i.e., for every two generators g1 and

g2 we prefer that the Cayley graph vertices g1 � g2 and g2 � g1 be di�erent). In fact, one

family of successful non-commutative (non-Abelian) groups (for the Cayley graph model) are

based on semi-direct products of cyclic groups. This idea was �rst presented in [4] and has

been applied by many others (e.g., see [14]) for �nding the largest-known (degree, diameter)

graphs.

Our second example is based on a very recent collaborative study with Los Alamos

National Laboratory (USA). Paul Hafner and myself (Auckland) are working with Vance

Faber and Dean Prichard (LANL) on the practicality of using a small dense Cayley graph

that was discovered in [15]. Los Alamos has recently obtained funding to build the network

shown in Figure 3. We note that this vertex-transitive (6,2) graph of order 32 has the same

number of vertices as the non-symmetric (6,2) graph that is listed in the current (degree,

diameter) record book [2].

It took us several days to �nd this nice circuit layout from the Cayley graph presenta-

tion. This drawing illustrates a 4-dimensional layout where pairs of (black/white) vertices

connected by generator f form the points of the standard 4-cube of order 16. The connec-

tions for the fourth dimension (generator d) and the �fth generator e are not shown; here

generator e simply connects antipodal points of the space. (E.g., (bc, ea) and (af , ea) are

edges.)

Before the LANL team begins the fabricating process for this network we need to un-

derstand some of the properties of this particular Cayley graph. Fortuneately the algebraic

structure does help (e.g. using a result of [12] con�rmed that the bisection bandwidth is 32.)



The following �gure presents the Cayley graph on the free group G<a; b; c; d; e; f> with re-

spect to these relations: a2; b2; c2; d2; e2; f 2; (af)2; (bf)2; (cf)2; (df)2; (ef)2; ababf; cbade; dbaec;

ebacd; acacf; ecadb.
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Figure 3: A twisted 4-cube, a (6,2) graph of order 32.

4 Broadcast Network Examples

Farley introduced the idea of broadcasting in networks [9]. He proposed the problem of

�nding networks such that one can successfully broadcast in time dlog(n)e, where n is the

number of nodes. This is a natural question since in any broadcasting protocol the number of

informed nodes can at most double at each time step. One de�nition of an optimal broadcast

network is one with the least number of edges such that broadcasting can be carried out in

time dlog(n)e from any originator.

Currently there are only two in�nite families of optimal broadcast graphs. These fam-

ilies can be expressed in terms of Cayley graphs. Each of these is also optimal for the

Degree/Broadacst Problem (i.e., the graphs are also the largest possible with respect to

maximum degree and broadcast time constraints).

The well-known hypercubes (e.g., see the graph on the left of Figure 4) was the �rst

known family. The hypercube Qn is represented as a Cayley graph using the Abelian group

(Z2)
n with generators fei j 1 � i � ng where ei = (

i�1
z }| {

0; : : : ; 0; 1;

n�i
z }| {

0; : : : ; 0).

A set of recently discovered dihedral Cayley graphs (see [3]) is another in�nite family of

optimal broadcast graphs of maximum degree � and broadcast time T = � + 1. Each of

these Cayley graphs is based on the dihedral groupD2��1�1 = ha; b j a2 = b2
�
�1 = (ab)2 = 1i,

with respect to generators fab2
i
�1 j 0 � i � � � 1g. One broadcast protocol is indicated

in Figure 4 for the (3,4) dihedral Cayley graph (which is the well-known Heawood graph)

by labeling the edges with the transmission times. Note that the dihedral group Dn can be

viewed as the group of rotations and 
ips of an n-gon. The edges in our dihedral Cayley

graphs are de�ned by the \
ip" (involution) generators.
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Figure 4: Examples of optimal (3; 3) and (3; 4) broadcast graphs.

For both of these families a broadcast protocol exists which is as simple as possible.

Speci�cally, there is an ordering s0 < s1 < : : : < s��1 of the set of generators S such that

at time step i, vertex x sends to vertex xsj, where 0 � j � � � 1 and j � i mod �. In

other words, at a given time step all transmissions are in a �xed \dimension", and these

dimensions cycle through the elements of S.

Recent work done at Auckland on the broadcast problem is presented in the papers

[5, 6, 7]. We are currently exploring how to e�ciently compute/estimate broadcast times of

arbitrary and speci�c families of graphs (the general broadcast problem is NP -complete).

One of our students, H. Wang, is studying the degree/broadcast time problem when restricted

to planar networks.
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