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Abstract. In this paper we study some computability theoretic properties of two notions of

randomness for �nite strings: randomness based on the blank-endmarker complexity measure

and Chaitin randomness based on the self-delimiting complexity measure. For example, we �nd

the position of RANDK and RANDC at the same level in the scale of immunity notions by

proving that both of them are not hyperimmune sets. Also we introduce a new notion of complex

in�nite sequences of �nite strings. We call them K-bounded sequences.
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1 Introduction

Our notation is standard, following that used by Calude [2], Chaitin [4] and Soare [13].

In particular, ! = f0; 1; : : :g is the set of natural numbers and fWege2! is a standard

enumeration of all computably enumerable (c. e.) sets, and f'ege2! is a G�odel numbering of

partial computable functions. Let f0; 1g� be the set of binary strings (also called programs).

We will use the letters �, �, 
, � to denote �nite strings. We let j�j denote the length of

� and let � denote the empty string.

A tt{condition is a pair < fx1; x2; : : : ; xng; � >, where x1; x2; : : : ; xn are natural numbers

and � is an n-ary Boolean function, n � 1. We assume an e�ective enumeration of all tt{

conditions and we will denote the tt{condition with index k by ttk.

LetB � !. We say thatB satis�es the tt{condition ttk and writeB j=tt ttk; if �((B(x1);

: : : ; B(xn)) = 1: If there exists a computable function f such that x 2 A , B j=tt ttf(x),

for all x, then we say that A is tt-reducible to B and write A �tt B. A set A is tt-complete

if A is c. e. and every c. e. set is tt-reducible to A.



We shall work with Turing machines operating on strings. The absolute program-size

complexity induced by a Turing machine ' (sometimes called blank-endmarker computer)

is de�ned by K'(�) = minfj�j j � 2 f0; 1g�; '(�; �) = �g. A Chaitin computer is a Turing

machine (operating on strings) which has a pre�x-free domain (see Calude [2]). For a

Chaitin computer C one associates the absolute self-delimiting program-size complexity, or

Chaitin complexity, HC(�) = minfj�j j � 2 f0; 1g�; C(�) = �g. The Invariance Theorem

states the existence of a Turing machine  (Chaitin computer U) such that for every

Turing machine ' (Chaitin computer C) there exists a constant const such that K (�) �

K'(�) + const (HU(�) � HC(�) + const) for all strings �.

For this paper we �x a universal Chaitin computer U and denote by H the induced

program-size complexity. Also, we �x a universal blank-endmarker computer  and denote

by K its induced program-size complexity.

A string � is Kolmogorov random (abbreviated, K-random), if

K(�) � maxfK(�) j j�j = j�jg = j�j+O(1):

A string � is Chaitin random (abbreviated, Ch-random), if

H(�) � maxfH(�) j j�j = j�jg = j�j+O(log(j�j)):

We will denote by RANDK and RANDC the sets of Kolmogorov and Chaitin random

strings, respectively. It is known that Chaitin's de�nition of randomness is more demanding

than Kolmogorov's one (see Calude [2]).

Our aim is to study the computability theoretic properties of RANDK and RANDC in

an attempt to estimate the computational di�erence between these two sets. It is known

(see Calude [2], p. 92) that both RANDK and RANDC are e�ectively immune sets.

Below we �nd the position of RANDK and RANDC at the same level in the scale of

immunity notions by proving that both of them are not hyperimmune sets. This concept

of a hyperimmune set turned out to have very interesting characterizations which were

later shown to have important applications in many areas of computability and complexity

theory. The characterization of hyperimmunity due to Medvedev and Uspensky (e. g. see

Odifreddi [10], p. 272) states that for a hyperimmune set A there is no computable function

f such that, for each n, an � f(n), where an is the number coding the n-th string of A in

an increasing order. Thus from the computability theoretic point of view both RANDK

and RANDC , being not hyperimmune, could be considered as not \meagre".

We would like to remark here that, nevertheless, we found some interesting di�erences

between these two notions of randomness in terms of other computability theoretic hierar-

chies (see [1]).

In the following section on hyperimmunity and K-bounded sequences we will study a

special kind of hyperimmune set and obtain results which justify the introduction of the

concept of complex in�nite sequences of �nite strings. We call them K-bounded sequences.

2 Hypersimple sets and program-size complexity

Chaitin in his abstract on the information-theoretical aspects of Post's construction of a

simple set (see Chaitin [5], p. 288) de�nes, for any integer n � 0, the following sets P (n)
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and Q(n) of �nite binary strings:

� 2 P (n) if and only if there is a program � with j�j > n+ j�j and � is the �rst string

computed by �.

� 2 Q(n) if and only if n +K(�) < j�j.

Theorem 1 (Chaitin [5]) There is a constant c such that for all n, P (n+c) is contained

in Q(n), and Q(n) is contained in P (n).

The set P (n) is a version of Post's original construction of a simple set and, in particular,

P (n) is an e�ectively simple, not a hypersimple set. Consequently, all Q(n), n � 0, are

e�ectively simple and not hypersimple sets also.

Notice that Q(0) = f�j � 2 f0; 1g�; K(�) < j�jg = RANDK . Therefore we can

conclude with the following results.

Corollary 2 The set of K-random strings is e�ectively immune, not a hyperimmune

co-c. e. set.

Note that the fact that RANDK is not hyperimmune follows also from a result with a

quite involved proof due to Kummer (see [8]), according to which the set of Kolmogorov

non random strings with respect to optimal numberings is tt-complete, and the result due

to Post (see [11]) that a hypersimple set is not tt-complete.

Theorem 3 The set of non K-random strings is wtt-complete.

Proof. It follows from the theorem (see Odifreddi [10], p. 338) that every e�ectively simple,

not hypersimple set is wtt-complete. 2

Theorem 4 (Kummer [8]) The set of non K-random strings can be tt-complete or non

tt-complete, depending on the acceptable numbering.

Proof. Lachlan has shown (see [9]) that Post's construction of a simple set can produce

both tt-complete and not tt-complete e�ectively simple sets depending on which acceptable

numbering of partial computable functions we are working with. Therefore we can now

transfer this property to the set of K-random strings. 2

In the following theorem we construct directly tt-complete supersets of Post's simple

sets. In particular, this construction e�ectively approximates a proper subset of the set of

K-random strings which is e�ectively immune, not hyperimmune and co-c. e.

Theorem 5 Any coin�nite nonhypersimple c. e. set is a subset of a tt-complete set.
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Proof. Let S be a coin�nite, not hypersimple c. e. set. Then there exists a disjoint strong

array fFngn2! such that Fn \ S 6= ; for all n.

We will construct the desired c. e. superset S� of S by meeting the following list of

requirements:

Re : n 2 We () S�
j=tt ttf(e;n);

that is, n 2 We if and only if the tt-condition with the index f(e; n) satis�es S� and f(e; n)

is the computable function to be constructed.

Obviously, if we construct S�
� S meeting all these requirements, then We �tt S

� for

any e and the theorem will be proved.

We �rst e�ectively split the strong array fFngn2! into the computable sequence of

strong arrays fF (e; n)g(e;n)2!�! de�ning for all e; n: F(e;n) = Fhe;ni, so that we will connect

the requirement Re to the array fF (e; n)gn2!. (Here he; ni = 1=2(e2 + 2en + n2 + 3e+ n)

denotes the standard pairing function from ! � ! onto !, e. g. see Soare [13], page 3.)

We de�ne (for �xed e and n) the value of the function f(e; n) as follows. Let F (e; n) =

fa1; a2; : : : ; akg. Then f(e; n) is the index of the tt{condition < fa1; a2; : : : ; akg; � >, where

� is the following Boolean function of k arguments:

�(x1; x2; : : : ; xk) = 1 if and only if x1 = 1 & x2 = 1 & : : : & xk = 1:

Now let S� be the following c. e. superset of S:

S� = S [ fF (e; n)gn2We:

If n 62 We, then by the construction, F (e; n)\S� 6= ;. It follows that �(S�(a1); S
�(a2); : : : ;

S�(ak)) = 0 and, therefore, the tt{condition ttf(e;n) is not satis�ed by S�. If n 2 We then

F (e; n) � S�, and

�(S�(a1); S
�(a2); : : : ; S

�(ak)) = 1:

Therefore, we have n 2 We if and only if the tt-condition ttf(e;n) satis�es S
�. 2

Corollary 6 There exists an e�ectively simple nonhypersimple tt-complete set.

Proof. Let S be the simple set constructed by Post (see Soare [13], page 78). It is known

that S is e�ectively simple and nonhypersimple. By theorems there is a tt-complete set

S�
� S. Obviously, any coin�nite c. e. superset of an e�ectively simple set is again e�ec-

tively simple. Therefore, S� is an e�ectively simple tt-complete set. Since tt-complete sets

cannot be hypersimple, the set S� is not hypersimple. 2

Proposition 7 The set RANDC is not hyperimmune.

Proof. Let fFngn2! be the following strong array: Fn = f�j j�j = ng, for every n � 0.

Obviously, the sequence fFngn2! is a computable sequence of pairwise disjoint �nite sets.

It is easy to see that for each n � 0 there is a string � such that j�j = n and � 2 RANDC .

Therefore, Fn \ RAND
C
6= ; for all n, and the set RANDC is not hyperimmune. 2
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Above we considered sets P (n) and Q(n) de�ned by Chaitin as sets which re
ect

information-theoretical aspects of Post's simple set. Generalizing his ideas to Dekker's

construction of hypersimple sets and to known constructions of e�ectively hypersimple

sets, we arrive at the following de�nition which we believe re
ects information-theoretical

aspects of these sets.

Below � denotes a Turing machine which is total and injective, i. e. it has the following

properties.

1) Every program computes some string, i. e. �(u) converges for all programs u;

2) Di�erent programs compute on � di�erent strings: if u 6= v then �(u) 6= �(v).

De�nition 8 Let

H� = f�j�(�) = �1 =) (9�)(j�j > j�j and �(�) = �1 and j�1j > j�1j)g:

Thus, H� is the set of all programs � such that if � computes a string �1 then there

exists a program � such that j�j > j�j and � computes a program �1 with j�1j > j�1j.

Obviously, this de�nition can be considered as a version of Dekker's original hypersim-

ple set (see [6]). The following theorem about H� holds true.

Theorem 9 For any Turing machine �, let A be the c. e. set of all strings which are

computed by �. If the set A is not computable then H� is hypersimple.

Proof. The proof has been motivated by the original proof of Dekker's theorem. Obviously,

the set H� is c. e. and, since � computes di�erent strings for di�erent programs, the set

f0; 1g� � H� is in�nite. Let f0; 1g� � H� = f�0 < �1 < : : :g. Then, by the de�nition of

H�, we have for any � that

� 2 A() � 2 f�0; �1; : : : ; �b�g:

Now, if f0; 1g� �H� is majorized by a computable function g, then it follows that

� 2 A() � 2 f�0; �1; : : : ; �g(�)g;

which means that A is computable. This is a contradiction. 2

Corollary 10 For any Turing c. e. degree a > 0 there exists a Turing machine � such

that H� is a hypersimple set of degree a.

Proof. It is easy to see that in Theorem 9 the set H� has the same Turing degree as the

set A. 2
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3 Hyperimmunity and K-bounded sequences

In this section we study a special kind of hyperimmune set. Basing on this notion we

introduce a new notion of complexity for in�nite sequences of �nite strings.

De�nition 11 A sequence fFngn2! of �nite sets is a disjoint strong (and singular)

array if there is a computable function f such that:

� Fn = Df(n) for all n;

� n 6= m) Df(n) 6= Df(m) for all n;m;

� (and jDf(n)j = 1 for all n).

In the early forties, Post introduced a hyperimmune set with computably enumerable

complement in order to solve Post's Problem (see Soare [13] or Post [11]) for tt-reducibility.

The intuition which led to the de�nition of a hyperimmune set was to strengthen the

notion of simple set, which solved Post's Problem for m-reducibility, but did not solve

Post's Problem for tt-reducibility. The idea was to consider in the de�nition of immune set

A in�nite c. e. sets as disjoint strong singular arrays (i. e. with members all are singular

sets) intersecting A and to weaken this condition by replacing singular sets to �nite, so

that each Fn contains some x 2 A but we cannot explicitly compute which x 2 Fn has this

property.

De�nition 12 A set A is hyperimmune if it is in�nite, and there is no disjoint strong

array with members all intersecting it, i. e. Fn \ A 6= ; for all n.

Later on, in the early �fties, the great Russian mathematician Kolmogorov presented to

the participants of the Moscow's seminar \Recursive Arithmetic" the problem (see Uspen-

sky [14]) of what nonmajorizable by computable functions sets are. Medvedev and Uspensky

had shown independently that those sets are exactly the hyperimmune ones in the original

sense of Post. Nowadays this beautiful characterization of hyperimmune sets by means

of nonexistence of any majorizing computable function is often adopted as a de�nition of

those sets (e. g. see Rogers [12]).

De�nition 13 If f and g are total functions, f majorizes g if f(n) � g(n) for all n,

and f dominates a partial function ' if f(n) � '(n) for all but �nitely many n such that

'(n) is de�ned.

De�nition 14 If A = fa0 < a1 < a2 : : :g is an in�nite set, the principal function of A

is pA, where pA = an.

De�nition 15 A function f majorizes (dominates) an in�nite set A if f majorizes (dom-

inates) pA.

Theorem 16 (Medvedev [7], Uspensky [15]) An in�nite set A is hyperimmune if and

only if no computable function f majorizes A.

6



The e�ectively hyperimmune set was de�ned as a natural e�ectivization of the de�nition

of the hyperimmune set (see Odifreddi [10], p. 277).

De�nition 17 An in�nite set A = fa0; a1; : : :g is e�ectively hyperimmune if and only if

there is a computable function f such that for any e,

'e total =) (9n � f(e))(an > 'e(n)):

Knowing an index e of a total computable fuction 'e, we e�ectively �nd the interval

f0; 1; : : : ; f(e)g such that the function 'e does not dominate A via a witness n from this

interval.

The notion of e�ectively hyperimmune set naturally suggests to study the following

notion of complexity for in�nite sequences of �nite strings.

Let U(e; x) be a universal Turing machine de�ned on ! � !, i. e. U(e; x) = 'e(x) for

every e and 'e is a Turing program with the G�odel number e. Let A = f�0; �1; �2; : : :g be

an in�nite sequence of binary strings.

De�nition 18 We will say that the in�nite sequence A of binary strings is 'e{bounded

for a �xed 'e if the following three conditions hold true:

a) (8i; j) (i < j =) K(�i) < K(�j)),

b) (8i � 0) (�i � �i+1);

(Here and below we write � � � if � � 
 = � for some 
 6= ;.)

c) (9n > 0) (8m > n) ('e(m) <1 and 'e(m) < K(�m)):

We can easily see that for any total computable function 'e there exist 'e{bounded

sequences. Indeed, let us �x an enumeration of all binary strings and de�ne the following

sequence.

�0 = ��f'e(0) < K(�)g, and for n � 0;

�n+1 = ��f�n � �&'e(n+ 1) < K(�)&K(�n) < K(�)g.

It is obvious that the sequence f�0; �1; : : :g is 'e{bounded.

De�nition 19 We say that a sequence A is K-bounded if it is '{bounded for every total

computable function '.

Again, it is easy to see, that there areK-bounded sequences. Indeed, letA = fa0; a1; : : :g

be an in�nite set which majorizes all partial computable functions. Now we de�ne the se-

quence f�0; �1; : : :g as follows:

�0 = ��fK(�) > a0g, and for n � 0;
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�n+1 = ��f�n � �&K(�) > an+1&K(�) < K(�n)g.

It is obvious that the sequence f�0; �1; : : :g is K-bounded.

In the following main theorem we prove that in the de�nition of theK-bounded sequence

we can change the condition

(9n > 0) (8m > n) ('e(m) <1 and 'e(m) < K(�m))

to a much weaker condition

(9f �T ;)(8e)(9y)('e total =) y � f(e)&K(�y) � 'e(y)):

Theorem 20 Let A be an in�nite sequence of binary strings

�0; �1; : : : such that the following properties hold true:

� for any i and j, i < j =) K(�i) < K(�j);

� for every i � 0, �i � �i+1;

� there is a computable function f such that for any e, if U(e; x) is total then for some

y � f(e), K(�y) > U(e; y).

Then A is a K-bounded sequence.

Remark 21 It follows from the Theorem that the set A is even e�ectively K-bounded in the

sense that for any 'e we can e�ectively compute the place n(e) (which obviously depends on

e) from where the 'e{boundicity of the sequence holds true: (8m > n(e)) ('e(m) <1 =)

'e(m) < K(�m)):

The previous example gives a K-bounded sequence with n(e) � e:

(8m > e) ('e(m) <1 =) 'e(m) < K(�m)):

Indeed, if for in�nitely many e,

(9m > e)('e(m) <1 =) 'e(m) � K(�m));

then A does not majorize the following partial computable function f : for all e, f(e) =

'e(e) if 'e(e) <1, and f(e) be unde�ned otherwise. This contradicts the choice of A.

Proof of Theorem 20. The proof will immediately follow from Theorem 23, which is

interesting on its own and based on the following Lemma 22.
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Lemma 22 Let g be an increasing computable function. Then there exists a increasing

computable function � such that for any x:

1. '�(x) is a non-decreasing computable function;

2. '�(x)(0) � g(�(x+1)) for all x � x0, where x0 is some �xed number. Further, there

exists a computable procedure which given this number x0 produces the index of g.

Proof of the Lemma. Let � be an increasing computable function such that �(0) = 1, and

'�(e)(n) = g('e'e(n))

Let for some b, � = 'b. Then,

'�(b)(n) = g('b'b(n)) = g��(n) = g(�)2(n);

'��(b)(n) = g'�(b)'�(b)(n) = gg(�)2g(�)2(n) � g(�)4(n);

And for any x > 0,

'�x(b)(n) � g(�2x(n)):

Let �(x) = �x(b), if x > 0, and �(0) = b.

Then we have

'�(x)(0) � g(�2x)(0) �

(for x � b + 1)

� g�x+b+1(0) � g�x+1�b(0) � g�x+1(b) = g(�(x+ 1)):

2

Theorem 23 Let A = fa0 < a1 < a2 : : :g be an e�ectively hyperimmune set and h be a

computable function such that

(8x)('x is total =) (9y � h(x))('x(y) < ay)):

Let f be an arbitrary increasing computable function. Then for some x0, which can be

computed from the index of f , and for any x > x0, we have ax > f(x).

Proof. Without loss of generality, we assume along, that given set A is e�ectively hyper-

immune with an increasing computable function h. Then by Lemma 22 we get for the

function g = fh the computable function � and the integer x0. For any n � h(�(x0)) there

exists x � x0 such that
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h(�(x)) � n < h(�(x+ 1)):

Since A is e�ectively hyperimmune, we have

(9t � h(�(x)))[at > '�(x)(t) � '�(x)(0)]:

So, we have for x � x0,

an � ah(�(x)) > '�(x)(0) � fh(�(x+ 1)) > f(n):

2

Thus, for any e�ectively hyperimmune set we can get a K-bounded sequence as in the

previous examples.
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