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Abstract

Martin-L�of de�ned in�nite random sequences over a �nite alphabet via randomness

tests which describe sets having measure zero in a constructive sense. In this paper

this concept is generalized to separable topological spaces with a measure, following a

suggestion of Zvonkin and Levin. After studying basic results and constructions for such

randomness spaces a general invariance result is proved which gives conditions under

which a function between randomness spaces preserves randomness. This corrects and

extends a result by Schnorr. Calude and J�urgensen proved that the randomness notion

for real numbers obtained by considering their b-ary representations is independent

from the base b. We use our invariance result to show that this notion is identical

with the notion which one obtains by viewing the real number space directly as a

randomness space. Furthermore, arithmetic properties of random real numbers are

derived, for example that every computable analytic function preserves randomness.

Finally, by considering the power set of the natural numbers with its natural topology

as a randomness space, we introduce a new notion of a random set of numbers. It

is di�erent from the usual one which is de�ned via randomness of the characteristic

function, but it can also be characterized in terms of random sequences. Surprisingly,

it turns out that there are in�nite co-r.e. random sets.

1 Introduction

Random in�nite binary sequences have �rst been introduced by von Mises [27]. His motiva-

tion was to lay a foundation for probability theory. He considered sequences as random and

called them \Kollektive" if the digits 0 and 1 appear with their expected limiting frequency

not only in the sequence but also in any subsequence which could be obtained by applying

certain \admissible place selection rules". His approach received a severe blow when Ville

[26] showed that there exists a Kollektiv which does not satisfy the law of the iterated

logarithm, which a random sequence should certainly satisfy.

�The �rst author was supported by the DFG Research Grant No. HE 2489/2-1.
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A second approach is Martin-L�of's [18] de�nition of random sequences via typicalness.

It is based on the idea that a sequence is typical or random, if it does not lie in any set which

is in a constructive sense of measure 0. This idea is formalized by considering randomness

tests, which are decreasing recursive sequences (Un)n of open sets Un whose measure tends

to 0 with a prescribed convergence rate. The constructive set of measure 0 then consists of

the intersection
T
n Un.

Another approach for de�ning random sequences is based on the idea to consider the

program-size complexity of its �nite pre�xes, de�ned via universal Turing machines. This

idea has been proposed independently by Kolmogorov [13] and Chaitin [8, 9] in di�erent

versions (see also Solomono� [23]) and further developed by Levin, Schnorr and others. It

leads to the same notion of random in�nite sequences as the second approach.

While the �rst and the third approach for de�ning randomness work naturally only for

sequences, Martin-L�of's approach can be extended to much more general spaces which al-

low the formulation of recursive sequences of open sets with fast decreasing measure. This

was suggested already by Zvonkin and Levin [31]. We follow this idea and provide rigorous

de�nitions of randomness spaces in Section 3. We prove the existence of a universal random-

ness test under rather weak conditions, and consider various basic properties of the resulting

randomness notion. It should be mentioned that this approach allows for example the in-

troduction of random real numbers without referring to random sequences. Furthermore

some examples of randomness spaces and random elements are given. In Section 4 we ask

under which conditions a function between randomness spaces preserves randomness. Our

main invariance result gives su�cient conditions and corrects and extends a corresponding

result by Schnorr [21]. In the following section we concentrate on the randomness space of

real numbers. The invariance result is used to show that the randomness notion introduced

directly on the real numbers is identical with the randomness notion for real numbers in-

troduced via randomness of the b-ary representation of a number. This also gives a new

proof of the result by Calude and J�urgensen [7] that randomness of a real number de�ned

via randomness of its b-ary representation does not depend on the base b. Furthermore

we consider real vectors and sequences. The second main result in this section states that

every computable analytic function preserves randomness. In the last section we consider

another randomness space: the power set of the natural numbers, endowed with its natural

topology as a complete partial order. This point of view leads to a new and interesting

notion of randomness for sets of natural numbers, which is di�erent from the usual one

de�ned via randomness of characteristic functions. The �rst main result of the section is

a characterization of randomness for sets in terms of usual random sequences. The second

main result is a theorem which implies that there are in�nite random co-r.e. sets.

2 Notation

The power set fA j A � Xg of all subsets of a set X is denoted by 2X . By f :� X ! Y

we mean a (partial or total) function f with domain dom f � X and range range f � Y .

The notation f : X ! Y indicates that the function is total, i.e. dom f = X. For x 2 X we

write f(x) # if x 2 dom f and f(x) " or f(x) =" if x 62 dom f . We denote the set of natural

numbers by IN = f0; 1; 2; : : :g. A partial recursive function is a function f :� IN ! IN

which is computable in the usual sense. It is also called total recursive if additionally
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dom f = IN. A sequence is a mapping p : IN ! X to some set X and usually written in

the form (pn)n2IN or just (pn)n. The in�nite product of X is the set of all sequences of

elements in X, denoted by X! := fp j p : IN ! Xg. For any k � 0 the �nite product

Xk := fw j w : f1; : : : ; kg ! Xg is the set of all vectors w = w(1)w(2) : : : w(k) over X of

length k. The empty word, the only element of X0, is denoted by ".

We use the standard bijection h; i : IN2 ! IN de�ned by hi; ji := 1
2(i + j)(i + j +

1) + j. Higher tupling functions are de�ned recursively by hni := n, hn1; n2; : : : ; nk+1i :=

hhn1; : : : nki; nk+1i. The inverses �ki are de�ned by h�k1n; : : : ; �
k
kni = n. We also use the

standard bijective numbering D : IN ! fE � IN j E is �niteg of the set of all �nite subset

of IN, de�ned by D�1(E) :=
P
f2i j i 2 Eg. A topology on a set X is a class � of subsets of

X which contains the empty set ; and the full set X as elements and which is closed under

�nite intersection and under arbitrary union (if � � � then
S
A2� A =

S
fA j A 2 �g 2 �).

The elements of a topology are called open sets. A base of a topology � is a subset � � �

such that any open set is the union of the elements in a subset of �. A subbase of a topology

� is a subset � � � such that any open set is the union of �nite intersections of elements of �.

The �-algebra generated by a class C of subsets of a set X is the smallest class B of subsets of

X which contains C, is closed under complement (if A 2 B then also X nA 2 B) and closed

under countable union (if (An)n is a sequence of elements in B then also
S1
n=0An 2 B). A

measure on a �-algebra B is a mapping � : B ! fx 2 IR j x � 0g [ f1g with �(;) = 0

and �(
S1
n=0An) =

P1
n=0 �(An) for any sequence (An)n2IN of pairwise disjoint sets in B. A

measure � on B is called �{�nite if there is a sequence (An)n of sets in B with �(An) <1

for each n whose union is the full space: X =
S1
n=0An. It is called �nite if �(X) <1 and

it is called a probability measure if �(X) = 1. For more details on topology and measure

the reader is referred to any standard textbook.

3 Randomness Spaces

Zvonkin and Levin [31], pp. 110{111, observed that Martin{L�of's [18] de�nition of ran-

domness tests and random elements can easily be generalized from the space of in�nite

sequences over a �nite alphabet to any separable topological space with a given numbering

of a base and with a measure. In this section we provide the necessary de�nitions and prove

elementary results including the existence of a universal randomness test on a randomness

space if its measure satis�es a weak e�ectivity condition. We construct �nite products of

randomness spaces with �{�nite measures and in�nite products of randomness spaces with

probability measures. We study randomness on these product spaces. Several examples of

randomness spaces and random elements are given.

De�nition 3.1 A randomness space is a triple (X;B; �), where X is a topological space,

B : IN ! 2X is a total numbering of a subbase of the topology of X, and � is a measure

de�ned on the �-algebra generated by the topology of X (Notation: Bi := B(i)).

Random points of a randomness space are de�ned via randomness tests. Before we

de�ne them we introduce the numbering B0 of a base, derived from a numbering B of a

subbase, and de�ne and discuss computable sequences of open sets.

De�nition 3.2 Let X be a topological space and (Un)n be a sequence of open subsets of

X.
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1. A sequence (Vn)n of open subsets of X is called U{computable, i� there is an r.e.

subset A � IN such that Vn =
S
hn;ii2A Ui for all n 2 IN.

2. We de�ne a sequence (U 0
n)n of open sets, called the sequence derived from U , by

U 0
i := U 0(i) :=

T
j2Di

Uj , for all i 2 IN.

3. We say that U satis�es the intersection property, i� there is an r.e. set A � IN with

Ui \ Uj =
[
fUk j hi; j; ki 2 Ag for all i; j:

The standard numbering D of the set of all �nite subsets of IN has been de�ned in

Section 2. We obtain especially U 0
0 =

T
j2D0

Uj =
T
j2; Uj = X for any sequence (Un)n

of open sets. If B is a total numbering of a subbase of the topology, then B0 is a total

numbering of a base. In general, we will deal mostly with B0{computable sequences of open

sets. In the following lemma we collect several useful facts about computable sequences of

open sets. We omit the proofs.

Lemma 3.3 Let X be a topological space and (Un)n, (Vn)n, and (Tn)n be sequences of open

subsets of X.

1. If (Un)n is V {computable and (Vn)n is T{computable, then (Un)n is T{computable.

2. (Un)n is U 0{computable.

3. U satis�es the intersection property, i� the sequence (U 0
n)n is U -computable.

4. U 0 satis�es the intersection property.

5. If V satis�es the intersection property, then the following statements are equivalent:

(a) (Un)n is V {computable.

(b) (Un)n is V 0{computable.

(c) (U 0
n)n is V {computable.

(d) (U 0
n)n is V 0{computable.

The next de�nition generalizes Martin{L�of's [18] de�nition of random sequences to

points from arbitrary randomness spaces.

De�nition 3.4 Let (X;B; �) be a randomness space.

1. A randomness test on X is a B0{computable sequence (Un)n of open sets with �(Un) �

2�n for all n 2 IN.

2. An element x 2 X is called non{random, i� x 2
T
n2IN Un for some randomness test

(Un)n on X. It is called random, i� it is not non{random.

In the following examples of randomness spaces the numberings B of subbases satisfy the

intersection property. By Lemma 3.3 in this case a sequence (Un)n of open subsets of X is

a randomness test i� it is B{computable and �(Un) � 2�n for all n.
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Examples 3.5 1. (see Calude, Hertling, J�urgensen, Weihrauch [4]) The simplest ex-

amples of randomness spaces are spaces (�; B; �) where � = fs0; : : : ; skg is a �nite,

non-empty set, the numbering B is given by Bi := fsig for i � k and Bi := X for

i > k, and the measure � is given by �(fsig) =
1

k+1
. Notice that this is a probability

measure. Every element of � is random because the measure of any non-empty open

set is at least 1
k+1 .

2. The original randomness spaces are the spaces (�!; B; �) of in�nite sequences over a

�nite alphabet � with at least two elements (Martin-L�of [18]). The numbering B of

a subbase (in fact a base) of the topology is given by Bi = �(i)�! = fp 2 �! j �(i)

is a pre�x of pg, where � : IN! �� is the length{lexicographical bijection between IN

and the set �� of �nite words over �. The measure � is the product measure of the

measure in the �rst example, i.e. given by �(w�!) = j�j�jwj for w 2 ��. A sequence

p 2 �! is called computable, i� there is a computable function f : IN �! IN such

that p(i) = sf(i) (where � = fs0; : : : ; skg). Let p be computable. We claim that

p is non-random. Indeed, the sequence (Un)n of sets Un := p(0) : : : p(n � 1)�! is a

randomness test with p 2
T
n Un because �(Un) = j�j�n � 2�n and Un =

S
hn;ii2ABi

where A is the recursive set A := fhn; ii j �(i) = p(0) : : : p(n� 1)g).

3. For the real numbers IR we consider the randomness space (IR; B; �), where � is the

usual Lebesgue measure and B is the numbering of a base of the real line topology

de�ned by Bhi;ji := fx 2 IR j jx � �ID(i)j < 2�jg. Here �ID : IN ! ID is the total

numbering of the dyadic numbers

ID := fx 2 IR j (9i; j; k 2 IN) x = (i� j) � 2�kg

de�ned by �IDhi; j; ki := (i � j)=2k . When we refer to random real numbers we mean

random elements of this randomness space. A real number x is computable, i� the

set Cx := fi j x 2 Big is r.e., see Weihrauch [28]. Let x 2 IR be computable.

De�ne A := fhn; ii j i 2 Cx; �(Bi) � 2�n�1g and Un =
S
hn;ii2ABi. Then (Un)n is a

randomness test with fxg =
T
n2IN Un. Therefore, every computable real number is

non{random.

4. For the unit interval [0; 1] we consider the randomness space ([0; 1]; ~B; ~�), where ~Bi :=

Bi \ [0; 1] and ~� denotes the restriction of the Lebesgue measure to the unit interval.

Later we shall prove that an element of the unit interval is a random element of the

randomness space ([0; 1]; ~B; ~�) if and only if it is a random element of the randomness

space (IR; B; �).

Our de�nitions of a randomness space and a randomness test can be specialized or

modi�ed in several ways by further conditions:

(B) B is a numbering of a base of the space X.

(IP) B has the intersection property.

(ZL) There exists an r.e. set A such that for all i, Bi =
S
fBk j hi; ki 2 A; k > ig.

(CB) (Un)n is B{computable (instead of B0{computable).

(D) Un+1 � Un for all n 2 IN.

(CZL) Un =
S
fBi j f(i) � ng for some total computable function f : IN �! IN.
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Condition (B), (IP) and (ZL) restrict the class of randomness spaces, and Conditions

(CB), (D), and (CZL) restrict the set of randomness tests and non{random elements. In our

case, Condition (D) does not restrict the set of non{random elements, i.e. we may assume

w.l.o.g. Un+1 � Un for all n 2 IN:

Proposition 3.6 If (Vn)n is a randomness test, then (Un)n with Un :=
T
i�n Vi is a ran-

domness test with Un+1 � Un for all n and
T1
n=0 Un =

T1
n=0 Vn.

Proof. We have to show only that the sequence (Un)n is B0{computable. If A is an r.e. set

with Vn =
S
hn;ii2AB

0
i, then

~A := fhn; ii j (9i0; i1; : : : ; in) hj; iji 2 A for j = 0; 1; : : : ; n, and

Di =
Sn
j=0Dijg is an r.e. set with Un =

S
hn;ii2 ~AB

0
i. 2

Obviously, (IP) implies (B). For modelling randomness, (CB) is not very meaningful

without (B). Under (IP + CB), (D) can be assumed without loss of generality. Zvonkin

and Levin [31] consider (B + ZL + CZL). It is clear that (CZL) implies (CB + D). Does

(B + ZL + CB + D) imply (CZL)? Zvonkin's and Levin's [31, p. 110{111] outline does

not consider this question. It does also not show in which way the somewhat technically

looking assumption (ZL) can be applied to show their invariance proposition 4.2 (c.f. our

Proposition 3.8).

In all of the examples of randomness spaces (X;B; �) considered in this paper the

numberings B of subbases satisfy the intersection property (IP). We remind the reader of

the fact that in this case a sequence (Un)n of open subsets of X is a randomness test i� it

is B{computable (this is condition (CB)) and �(Un) � 2�n for all n.

In the next section we shall consider randomness preserving mappings between ran-

domness spaces. Here we note that replacing a numbering of a subbase by an \equivalent"

numbering of a subbase does not a�ect the notion of randomness for points in the considered

space.

De�nition 3.7 Let X be a topological space and let (Bn)n and (Cn)n be two sequences

of open subsets of X. We say that B is b{reducible to C, i� the sequence (Bn)n is C 0{

computable. B and C are called b{equivalent, i� B is b{reducible to C and C is b{reducible

to B.

From Lemma 3.3 one deduces immediately the following

Proposition 3.8 Let (X;B; �) be a randomness space and C be a total numbering of a

subbase of the topology which is b{equivalent to B. Then a sequence of open subsets of X

is a randomness test on (X;B; �), i� it is a randomness test on (X;C; �). Consequently,

an element of X is random in (X;B; �), if and only if it is random in (X;C; �).

In their context (B + ZL + CZL), Zvonkin and Levin [31, Proposition 4.2] already state

(without proof) that equivalent basis numberings induce the same randomness concepts.

It is remarkable that the randomness space (�!; B; �) from Example 3.5.2 has a uni-

versal randomness test (Martin-L�of [18]), i.e. a randomness test (Un)n such that for each

randomness test (Vn)n there exists a constant c 2 IN with Vn+c � Un for all n. We generalize

the original de�nition as follows:
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De�nition 3.9 A randomness test (Un)n on a randomness space (X;B; �) is called uni-

versal, i� for any randomness test (Vn)n on (X;B; �) there is an increasing, computable

function r : IN! IN with Vr(n) � Un, for all n.

If (Un)n is a universal randomness test, then the set
T1
n=0 Un consists exactly of all non{

random elements of the space. Any randomness space whose measure satis�es a certain weak

e�ectivity condition possesses a universal randomness test.

De�nition 3.10 We call a measure � of a randomness space (X;B; �) weakly bounded, i�

there are an increasing computable function d : IN! IN and an r.e. set Z with

�(B0
i1
[ : : : [B0

ik
) � 2�d(n) =) hk; hi1; : : : ; iki; ni 2 Z =) �(B0

i1
[ : : : [B0

ik
) � 2�n

for all k; i1; : : : ; ik; n 2 IN.

Theorem 3.11 On every randomness space (X;B; �) with weakly bounded measure there

exists a universal randomness test.

Proof. First we produce an e�ective list of randomness tests on (X;B; �) wich contains all

randomness tests (Sn)n satisfying �(Sn) � 2�d(n) for all n. Then the universal test will be

constructed by a diagonal argument.

Let (Wk)k2IN be a standard numbering of all r.e. subsets of IN (compare Rogers [20],

Weihrauch [28]). For each k 2 IN let (Vk;n)n be the k-th computable sequence of open sets,

de�ned by Vk;n :=
S
fB0

i j hn; ii 2 Wkg. Since fhn; i; ki j hn; ii 2 Wkg is r.e., there is a

computable function f :� IN3 ! IN such that f(k; n; j) # for all j < i, if f(k; n; i) #, and

fi j hn; ii 2 Wkg = ff(k; n; l) j f(k; n; l) #g. Intuitively, f(k; n; :) enumerates Vk;n. We cut

the sequences (Vk;n)n o� in order to obtain randomness tests. The function g :� IN3 ! IN,

de�ned by

g(k; n; l) :=

(
f(k; n; l) if f(k; n; l) # and hl + 1; hf(k; n; 0); : : : ; f(k; n; l)i; ni 2 Z

" otherwise;

is computable, because Z is r.e. For each k 2 IN de�ne (Tk;n)n by

Tk;n :=
[
fB0

i j (9l) g(k; n; l) = ig :

Since by de�nition hl+1; hg(k; n; 0); : : : ; g(k; n; l)i; ni 2 Z if g(k; n; l) #, we obtain �(Tk;n) �

2�n. Since the function g is computable, the sequence (Tk;n)n is a randomness test for each

k. On the other hand, let (Sn)n be a randomness test such that �(Sn) � 2�d(n) for all n.

Then (Sn)n = (Vk;n)n for some k. By the assumption on Z we have g(k; n; l) = f(k; n; l) for

all n; l, hence (Tk;n)n = (Vk;n)n = (Sn)n. That means, such a test (Sn)n remains unchanged.

De�ne Un :=
S1
k=0 Tk;n+k+1 for all n. Then

�(Un) �
1X
k=0

�(Tk;n+k+1) �
1X
k=0

2�(n+k+1) = 2�n :

Furthermore,

Un =
[
fB0

i j (9k; l 2 IN) g(k; n + k + 1; l) = ig;
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hence (Un)n is B0{computable. Therefore, (Un)n is a randomness test. Let (Sn)n be an

arbitrary randomness test. Since �(Sd(n)) � 2�d(n), (Sd(n))n is a randomness test with

(Sd(n))n = (Vk;n)n = (Tk;n)n for some k. With r(n) := d(n+ k + 1) we obtain:

Sr(n) = Sd(n+k+1) = Tk;n+k+1 � Un :

We conclude that (Un)n is a universal randomness test. 2

If the numbering B satis�es the intersection property we can weaken the condition on

the measure � slightly. The following result can be proved by substituting B for B0 in the

last proof.

Proposition 3.12 Let (X;B; �) be a randomness space whose numbering B satis�es the

intersection property and whose measure � satis�es the following property: there are an

increasing computable function d : IN! IN and an r.e. set Z with

�(Bi1 [ : : : [Bik) � 2�d(n) =) hk; hi1; : : : ; iki; ni 2 Z =) �(Bi1 [ : : : [Bik) � 2�n

for all k; i1; : : : ; ik; n 2 IN. Then there exists a universal randomness test on X.

Zvonkin and Levin [31, Proposition 4.1] stated (without proof) that in the framework

(B + ZL + CZL) and under the assumption of an e�ectivity condition for �, which is

stronger than the above one there exists a universal randomness test. It is the following

condition: the function hk; hi1; : : : ; ikii 7! �(Bi1 [ : : : [ Bik) mapping natural numbers

to real numbers is a computable function in the usual sense, which means that the set

fhk; hi1; : : : ; iki;m; ni j �ID(m) < �(Bi1 [ : : : [ Bik) < �ID(n)g is r.e. Considerations in

Weihrauch [30] strongly suggest that (under Condition (B)) the property

\fhk; hi1; : : : ; iki;mi j �ID(m) < �(Bi1 [ : : : [Bik)g is r.e."

is the canonical computability axiom for randomness spaces in general (Zvonkin and Levin

[31], Li and Vitanyi [17], and others call measures with this property \semicomputable".)

Every measure satisfying the above Zvonkin/Levin{condition has this property and satis�es

the condition formulated in Proposition 3.12.

We can draw simple conclusions about the set of random elements. In a measure theo-

retical sense it is large, but topologically it is small if the space has a universal randomness

test and the set of non{random elements is a dense subset of X. A subset Y of a topological

space X is called dense in X if every open subset of X contains an element of Y . It is called

nowhere dense if its closure does not contain an open set. It is called meager if it is the

union of countably many nowhere dense sets.

Proposition 3.13 Let (X;B; �) be a randomness space.

1. The set of random elements in X has �-measure �(X).

2. The set of random elements is meager, if the space X has a universal randomness test

and its set of non{random elements is dense in X.
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Proof. (1) There are only countable many randomness tests on (X;B; �). Let

(U (0)
n )n; (U

(1)
n )n; (U

(2)
n )n; : : :

be a list of them. Each set
T
n2IN U

(k)
n has �-measure 0. Hence the union of these sets has

measure 0 as well. The set of random elements is the complement of their union and, thus,

has measure �(X).

(2) Assume that there is a universal randomness test (Un)n and that the set of non{

random elements is dense in X. Then each of the sets X nUn is closed and nowhere dense.

The set of random elements is the union
S
n2IN(X n Un). 2

Next, we construct �nite products of randomness spaces with �{�nite measures and

countable products of randomness spaces with probability measures.

Let (X(0); B(0); �(0)), (X(1); B(1); �(1)), : : : (X(n); B(n); �(n)), for some n 2 IN be a �nite

list of randomness spaces with �{�nite measures �(k). The product X(0)� : : :�X(n) bears

the product topology with the product numbering B(0) � : : :�B(n) of a subbase de�ned by

(B(0) � : : :�B(n))hi0; : : : ; ini := B
(0)
i0

� : : :�B
(n)
in

:

Let �(0) � : : : � �(n) be the usual product measure on X(0) � : : : �X(n). It is well{de�ned

and �{�nite since we assume that all measures �(k) are �{�nite. The randomness space

nY
k=0

(X(k); B(k); �(k)) := (X(0) � : : :�X(n); B(0) � : : : �B(n); �(0) � : : :� �(n))

is called the product randomness space of the spaces (X(0); B(0); �(0)), : : :, (X(n); B(n); �(n)).

We write (Xn; Bn; �n) for the product of n � 1 copies of a randomness space (X;B; �) with

�{�nite measure �.

Now let ((X(k); B(k); �(k)))k be a sequence of randomness spaces with probability mea-

sures, i.e. �(k)(X(k)) = 1 for all k 2 IN. The in�nite product
Q1
k=0X

(k) = fx : IN !S
k2INX

(k) j xk 2 X(k) for all kg of all sequences (xk)k2IN with xk 2 X(k) bears the well{

known product topology. A numbering
Q1
k=0B

(k) of a subbase of the topology is de�ned

by

(
1Y
k=0

B(k))hn; hi0; : : : ; inii :=
nY

k=0

B
(k)
ik

�
1Y

k=n+1

X(k)

= fx : IN!
[
k2IN

X(k) j xk 2 B
(k)
ik

for 0 � k � n and xk 2 X(k) for all kg

The in�nite product measure
Q1
k=0 �

(k) on
Q1
k=0X

(k) is well{de�ned and a probability

measure since all �(k) are assumed to be probability measures. The randomness space

1Y
k=0

(X(k); B(k); �(k)) := (
1Y
k=0

X(k);
1Y
k=0

B(k);
1Y
k=0

�(k))

is called the product randomness space of the spaces (X(k); B(k); �(k)). If all the spaces

(X(k); B(k); �(k)) are identical and equal to (X;B; �) we write (X!; B!; �!) for the in�nite

product.

9



Remark 3.14 The numberings B(0)� : : :�B(n) and
Q1
k=0B

(k) of subbases are numberings

of bases if the B(k) are numberings of bases. The numbering B(0) � : : :�B(n) satis�es the

intersection property if the B(k) are numberings of bases satisfying the intersection property.

The numbering
Q1
k=0B

(k) satis�es the intersection property if the B(k) uniformly satisfy

the intersection property, i.e. if there is an r.e. set A � IN with B
(k)
i \ B

(k)
j =

S
fB

(k)
l j

hk; i; j; li 2 Ag for all k; i; j 2 IN.

By the following theorem certain projections of random vectors are random vectors. In

particular, each component of a �nite or in�nite random vector is random.

Theorem 3.15 1. Let
Qn
k=0(X

(k); B(k); �(k)) be a product of randomness spaces with

�nite measures. Let (i0; : : : ; il) be a vector of pairwise di�erent indices ij with 0 �

ij � n. If (x0; : : : ; xn) is random in the above space, then (xi0 ; : : : ; xil) is random inQl
k=0(X

(ik); B(ik); �(ik)).

2. Let
Q1
k=0(X

(k); B(k); �(k)) be a product of randomness spaces with probability mea-

sures. Let (i0; : : : ; il) be a vector of pairwise di�erent indices. If (x0; x1; : : :) is random

in the above space, then (xi0 ; : : : ; xil) is random in
Ql
k=0(X

(ik); B(ik); �(ik)).

3. Let
Q1
k=0(X

(k); B(k); �(k)) be a product of randomness spaces with probability mea-

sures. Let r : IN �! IN be an injective computable function. If (x0; x1; : : :) is random

in the above space, then (xr(0); xr(1); : : :) is random in
Q1
k=0(X

(r(k)); B(r(k)); �(r(k))).

Proof. 1. We prove the assertion for the case l = n � 1. Iterated application gives the

general case. By symmetry we may w.l.o.g. assume (i0; : : : ; il) = (1; : : : ; n). De�ne a

projection f : X(0) � : : : � X(n) �! X(1) � : : : � X(n) by f(x0; : : : ; xn) := (x1; : : : ; xn).

We show that y is non{random if f(y) is non{random. Let (Vm)m be a randomness test

on
Qn
k=1(X

(k); B(k); �(k)). Let B := B(0) � : : : � B(n), C := B(1) � : : : � B(n), � :=

�(0) � : : : � �(n) and �0 := �(1) � : : : � �(n). By assumption, (Vm)m is C 0{computable, i.e.

Vm =
S
fC 0

j j hm; ji 2 Ag for some r.e. set A. Since f�1(Chi1; : : : ; ini) =
S
fBhi0; : : : ; ini j

i0 2 INg, (f�1Ci)i is B{computable. From this we conclude that (f�1C 0
j)j is B

0{computable

and �nally that (f�1(Vm))m is B0{computable. From f�1(Vm) = X(0) � Vm we obtain

�f�1(Vm) = �(0)(X(0)) � �0(Vm). Since �(0) is �nite, �(0)(X(0)) � 2N for some N 2 IN.

De�ne Wn := f�n(Vn+N ). Then (Wn)n is a randomness test such that f(y) 2
T
m2IN Vm

implies y 2
T
n2INWn.

2. The proof is similar to that of 1.

3. First notice that B withBhk;ii :=
Q1
j=0 Yj , where Yk := B

(k)
i and Yj := X(k) otherwise,

is a numbering of a subbase of
Q1
k=0X

(k) which is b{equivalent to
Q1
k=0B

(k). Accordingly,

C with Chk;ii :=
Q1
j=0 Yj, where Yk := B

(r(k))
i and Yj := X(r(k)) otherwise, is a numbering

of a subbase of
Q1
k=0X

(r(k)) which is b{equivalent to
Q1
k=0B

(r(k)).

By Proposition 3.8 we may consider the numberings B and C. De�ne a projection f :Q1
k=0X

(k) �!
Q1
k=0X

(r(k)) by f(x0; x1; : : :) := (xr(0); xr(1); : : :). Let � :=
Q1
k=0 �

(k) and

�0 :=
Q1
k=0 �

(r(k)). Let (Vm)m be a randomness test on (
Q1
k=0X

(r(k)); C;
Q1
k=0 �

(r(k))).

(Vm)m is C 0{computable. Because of f�1Chk;ii = Bhr(k);ii, the sequences (f�1C 0
j)j and

(f�1Vm)m are B0{computable. One checks that for every �nite set E � IN one has

�f�1(
S
i2E C

0
i) = �0(

S
i2E C

0
i). We conclude �f�1(Vm) = �0(Vm) for all m 2 IN. Therefore
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(f�1Vm)m is a randomness test. We conclude that the function f maps random elements

to random elements. 2

Examples 3.16 1. (see Calude, Hertling, J�urgensen, Weihrauch [4]) Let (�; B; �) be

the �nite randomness space of Example 3.5.1 and (�!; ~B; ~�) be the usual randomness

space of in�nite sequences over �, considered in Example 3.5.2. The topologies and

measures of the randomness spaces (�!; B!; �!) and (�!; ~B; ~�) coincide by de�nition

and the numberings B! and ~B are b{equivalent. In fact, they are equivalent in a

stronger sense; for details see Calude, Hertling, J�urgensen, Weihrauch [4]. By Propo-

sition 3.8 both spaces have the same random elements. In other words: the in�nite

product of the �nite randomness space (�; B; �) de�nes the usual randomness concept

for in�nite sequences in �! (Calude [3]).

2. The Lebesgue measure on IR is �{�nite. Hence, for any n � 1 the �nite product

(IRn; Bn; �n) of the randomness space (IR; B; �) is a randomness space again.

3. The in�nite product of the randomness space of Example 3.5.4 is a randomness

space on the set [0; 1]! of in�nite sequences of real numbers. It is well{de�ned since
~�([0; 1]) = 1.

We conclude this section with \concrete" examples of random elements of a randomness

space.

A sequence (qn)n of dyadic rationals is called computable, i� there is a total recursive

function f with qn = �ID(f(n)) for all n (for �ID compare Example 3.5.3). A real number x

is called left{computable (right{computable), i� there is a computable non{decreasing (non{

increasing) sequence (qn)n of dyadic rationals with limn!1 qn = x, see Weihrauch [28, Ch.

3.8].

Examples 3.17 1. Let � be a �nite alphabet. A subset D � �� is called pre�x{free

if no element of D is a proper pre�x of another element of D. We call a function

f :� �� ! �� self-delimiting if its domain is pre�x{free. A partial recursive self-

delimiting function f :� �� ! �� is called universal if for any partial recursive self-

delimiting function g :� �� ! �� there exists a constant c such that for all x 2 dom g

there is a y 2 dom f with jyj � jxj+ c and f(y) = g(x). Chaitin [9] proved that there

exist universal self-delimiting partial recursive functions. The halting probability of a

self-delimiting function f is de�ned by 
f :=
P

x2dom f 2
�jxj. Note that this is always

a well{de�ned left{computable number in the unit interval [0; 1]. Chaitin [9] proved

that the halting probability of a universal self-delimiting partial recursive function has

a random binary representation. By Theorem 5.1 the halting probability is a random

real number, i.e. a random element of the randomness space of Example 3.5.3 and of

the space of Example 3.5.4.

2. Let (Un)n be a universal randomness test on the space of real numbers (IR; B; �)

of Example 3.5.3. Then, for any k, the open set Uk contains all non{random real

numbers. This set is also the disjoint union of a countable set of open intervals. The

boundaries of these intervals lie outside of Uk, hence they are random real numbers.

The set Uk is recursively open in Ko's [12] terminology. Therefore, by [12, Theorem

2.34] the right{hand boundary of any of these intervals is a left{computable real
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number and the left{hand boundary of any of these intervals is a right{computable

real number. More on left{computable random numbers can be found in Calude,

Hertling, Khoussainov, Wang [6].

3. The construction of the last example can also be carried out on the space (�!; B; �)

of sequences (Example 3.5.2). For simplicity we consider � = f0; 1g. For a larger

alphabet the proof is essentially the same. For p; q 2 �! de�ne p < q :() p 6= q and

pi < qi where i := �n[pn 6= qn], and p � q : () p = q or p < q. For p; q 2 �! with

p � q the set [p; q] := fr 2 �! j p � r � qg is compact and called a closed interval.

Notice that for the ordered set (�!;�) the supremum supX exists for any subset

X � �!. Fix an arbitrary universal randomness test (Un)n on �!. Furthermore �x

a computable sequence p 2 �! with �([0!; p]) � 1=4. This sequence is an element

of U1 because U1 contains all non-random sequences. We claim that the sequence

r := supfq 2 �! j [p; q] � U1g is a random sequence. For the sake of a contradiction,

assume that r is non-random. Then it is an element of U1. The set U1 is open. Hence

there is a pre�x v of r with v�! � U1. Let w be the lexicographical successor of v with

jwj = jvj. It exists because �([0!; p]) � 1=4 and �(U1) � 1=2 imply that v 62 f1g�.

We obtain r < w0! and [p;w0! ] � U1, contradicting the de�nition of r. Hence, r is

random. We can approximate r by a non-decreasing computable sequence of words.

Let f be a total recursive function with U1 =
S
f�(f(i))�! j i 2 INg. Fix a pre�x v of

p with v�! � U1. For n 2 IN de�ne the word wn by

jwnj = max(fjvjg [
[
i�n

fj�f(i)jg) and

wn1
! = supfq 2 �! j [p; q] � v�! [

[
i�n

�f(i)�!g:

Then the sequence (wn)n is a computable sequence of words (that means that there

is a computable function g : IN! IN with wn = �(g(n)) for all n) such that for all n

either wn1
! < wn+11

! or there is a number l with wn+1 = wn1
l. By using the fact

that any interval [p; q] � U1is compact one shows that (wn1
!)n converges to r.

4 Randomness Preserving Transformations

The main result of this section is a theorem giving conditions under which a computable

function between randomness spaces preserves randomness. This corrects and extends a

result by Schnorr [21].

Let � and ~� be two �nite alphabets. A function g :� �� ! ~�� is called monotonic,

i� g(vw) 2 g(v)�� for all v; vw 2 dom g. And it is called unbounded on p 2 �!, i� for all

n 2 IN there is some pre�x v 2 dom f of p with jg(v)j � n. The function f :� �! ! ~�!

induced by a monotonic function g :� �� ! ~�� is de�ned by

1. dom f =
T
n2IN(g

�1(~�n ~��)�!) (i.e. p 2 dom f i� g is unbounded on p),

2. f(p) 2 g(v)�! for any p 2 dom f and for any pre�x v 2 dom g of p.

It is clear that f is well-de�ned by these conditions. A function f :� �! ! ~�! is called a

computable functional, i� there is a computable, monotonic function g :� �� ! ~�� which

induces f .

12



Schnorr claimed in [21, Satz 6.5]: if f :� f0; 1g! ! f0; 1g! is a computable functional

satisfying (9 constant K) (8 measurable A � f0; 1g!) �(f�1(A)) � K�(A), and if x 2

dom f is random, then also f(x) is random. This, as well as Lemma 6.6 and Satz 6.7 in

[21], is not completely correct, as was also observed by Wang, see Hertling and Wang [11].

The following proposition gives a counterexample. Note that the function in the following

example satis�es the measure{theoretic condition above for any constant K since its domain

has measure zero.

Proposition 4.1 Consider the randomness space from Example 3.5.2 with � = f0; 1g.

There exist a random element r 2 f0; 1g! and a computable functional f :� f0; 1g! !

f0; 1g! with dom f = frg and f(r) = 0!.

Proof. Let (wn)n be a computable sequence of words wn 2 �� such that the sequence

(wn1
!)n is non{decreasing and the limit r = supfwn1

! j n 2 INg in �! is random, see

Example 3.17.3. We de�ne a monotonic computable function g :� �� ! �� by

g(v) :=

(
0jvj if v is a pre�x of wm for some m � jvj

" otherwise:

The function f induced by g has the desired properties. 2

In fact, one needs an additional condition on the domain of de�nition of f . For example

it would be su�cient to demand that the domain dom f has measure 1. A more general

condition will be formulated in Theorem 4.7 below.

We wish to consider transformations from one randomness space to another one. For

such transformations we need a computability notion. A direct and natural de�nition can

be obtained by demanding that the transformation is continuous in an e�ective way.

De�nition 4.2 Let (X;B) and (Y;C) be two topological spaces with total numberings B

and C of subbases. We call a function f :� X ! Y computable, i� there is a B0{computable

sequence (Un)n of open subsets of X with f�1(Cn) = Un \ dom f , for all n.

We observe that this de�nition generalizes the notion of a computable functional if one

does not care about the precise domain of de�nition. We omit the proof of the following

proposition.

Proposition 4.3 Let � and ~� be two �nite alphabets and B and C the corresponding

numberings of bases considered in Example 3.5.2. A function f :� �! ! ~�! is computable

if and only if there is a computable functional g :� �! ! ~�! with f(p) = g(p) for all

p 2 dom f .

For the special case of T0{spaces De�nition 4.2 is equivalent to the de�nition of com-

putable functions via standard representations by Kreitz and Weihrauch [14, 28, 30]. The

idea is the same as the classical de�nition of relative computability via numberings. If X

and Y are two sets and  :� �! ! X and � :� ~�! ! Y are representations, that is,

surjective mappings, then a function f :� X ! Y is called (; �){computable, i� there is

a computable functional g :� �! ! ~�! with f(p) = �g(p) for all p 2 dom f. If (X;B)

is a T0{space (in this case every element of X can be identi�ed by the set of its subbase

neighbourhoods), then one de�nes the standard representation �B :� f0; 1g! ! X by

�B(p) = x () fi 2 IN j x 2 Big = fi 2 IN j 10i+111 is a subword of pg:
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Theorem 4.4 Let (X;B) and (Y;C) be two T0{spaces with total numberings B and C

of subbases. Then a function f :� X ! Y is computable if and only if it is (�B ; �C){

computable.

Proof. First we assume that f is computable. We wish to construct a computable functional

g :� f0; 1g! ! f0; 1g! with f�B(p) = �Cg(p) for all p 2 dom f�B. Therefore we have to

construct a computable function h :� f0; 1g� ! f0; 1g� which induces g. Let A � IN be

an r.e. set with f�1(Cn) = dom f \
S
hn;ii2AB

0
i. If A is empty the function f has empty

domain and is obviously also (�B ; �C){computable. So we assume that A is nonempty.

Let (hnk; iki)k be a recursive enumeration of A. For a �nite word w 2 f0; 1g� we de�ne

En(w) := fj j 10j+111 is a subword of wg and a �nite set of numbers S(w) by

S(w) := fnk j k � jwj & Dik � En(w)g n
[
fS(v) j v is a strict pre�x of wg :

Let x(w) be a �nite word which encodes the set S(w): if S(w) = ;, we set x(w) := 1,

otherwise x(w) := 10m1+1110m2+111 : : : 10ml+111 where m1 < m2 < : : : < ml is the ordered

list of numbers in S(w). We de�ne the function h : f0; 1g� ! f0; 1g� by h(") := " and

h(vd) := h(v)x(vd) for v 2 f0; 1g� and d 2 f0; 1g. We claim that this function h has

the desired properties. It is computable, total and monotonic. The induced computable

functional g : f0; 1g! ! f0; 1g! is also total because jh(v)j � jvj for all words v. Assume

that p 2 dom f�B and j 2 IN. We have to show that

f�B(p) 2 Cj () 10j+111 is a subword of g(p) :

If f�B(p) 2 Cj , then there is a k with nk = j and �B(p) 2 B0
ik
. Since the sequence p

\enumerates" all numbers l with �B(p) 2 Bl there is a smallest pre�x w of p with Dik �

En(w) and jwj � k. Hence, the number nk is an element of S(w) or of S(v) for a strict pre�x

v of w. The de�nition of h tells us that h(w) contains the subword 10nk+111 = 10j+111 (it

is either contained in x(w) or in x(v) for some strict pre�x v of w). Hence, g(p) contains

this word as a subword. If on the other hand 10j+111 is a subword of g(p), then it is also

a subword of h(w) for some su�ciently large pre�x w of p. By de�nition of h this implies

that there is a k with nk = j and Dik � En(w). But Dik � En(w) implies �B(p) 2 B0
ik
. By

the de�nition of A respectively of hnk; iki and with nk = j we conclude �B(p) 2 f�1(Cj),

hence f�B(p) 2 Cj. This �nishes the proof of the �rst half of the theorem.

For the proof of the converse direction we assume that f is (�B ; �C){computable. We

have to construct an r.e. set A � IN with f�1(Cn) = dom f \
S
hn;ii2AB

0
i for all n; i. Let

g :� f0; 1g! ! f0; 1g! be a computable functional with f�B(p) = �Cg(p) for all p 2 dom f ,

and let h :� f0; 1g� ! f0; 1g� be a computable function which induces g. We de�ne A by

A := fhn; ii j (9v 2 domh) Di = En(v) & n 2 En(h(v))g :

It is clear that A is r.e. Fix a number n. We have to show that f�1(Cn) = dom f \S
hn;ii2AB

0
i. First we show \�". Consider an element x 2 f�1(Cn). Then x 2 dom f .

Choose an arbitrary �B{name p for x and set q := g(p). The binary sequence q is a

�C{name for f(x) and must contain the subword 10n+111. Then there must be a pre�x

v 2 domh of p such that 10n+111 is a subword of h(v), that is, n 2 En(h(v)). Certainly,

x 2
T
j2En(v) Bj . Hence, if i is a number with Di = En(v), then x 2 B0

i. By de�nition

of A we also have hn; ii 2 A. This shows \�". For the proof of \�" consider a number
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hn; ii 2 A and an element x 2 B0
i \ dom f . There is a word v 2 domh with Di = En(v) and

n 2 En(h(v)). This word can be extended to a �B{name for x. The fact that h induces g

implies f(x) 2 Cn. That was the assertion. 2

For real number functions this computability notion derived from the numbering B from

Example 3.5.3 is also the usual computability notion considered for example by Grzegorczyk

[10], Lacombe [15], Pour-El and Richards [19], Weihrauch and Kreitz [14, 28, 30], Ko [12],

and others; for more references see [28, 30].

Besides computability we need two additional conditions for a function in order to ensure

that it preserves randomness: one saying that we can in some e�ective, measure-theoretical

sense control its domain and one saying that it may not map too large sets to too small

sets.

De�nition 4.5 Let (X;B; �) be a randomness space. A set D � X is called fast enclosable

if it is measurable and if there is a B0{computable sequence (Un)n of open sets with D � Un
and �(Un nD) � 2�n for all n.

De�nition 4.6 Let (X;B; �) and (Y;C; ~�) be two randomness spaces. A function f :�

X ! Y is called recursively measure{bounded if dom f is measurable and there is a total

recursive function r such that for all open sets V � Y :

~�(V ) � 2�r(n) ) �(f�1(V )) � 2�n :

In fact, it su�ces to require this only for all sets V =
S
j2Di

C 0
j (i 2 IN) where C 0 is

the derived numbering of C. Many functions f :� X ! Y we shall use are even measure

invariant, that is, �(f�1(V )) = ~�(V ) for all open V � Y . After these preparations we can

formulate our theorem on randomness preserving transformations.

Theorem 4.7 Let (X;B; �) and (Y;C; ~�) be randomness spaces. Let f :� X ! Y be a

computable, recursively measure{bounded function with a fast enclosable domain. If x 2

dom f is a random element of X, then f(x) is a random element of Y .

Informally: a computable, recursively measure{bounded function with a fast enclosable

domain preserves randomness.

Proof. It is su�cient to prove the following: if (Vn)n is a randomness test on (Y;C; ~�) then

there is a randomness test (Un)n on (X;B; �) with

\
n2IN

Un � f�1
 \
n2IN

Vn

!
: (1)

Let (Vn)n be a randomness test on (Y;C; ~�), let AV � IN be an r.e. set which shows that

(Vn)n is C 0{computable, i.e. Vn =
S
hn;ji2AV

C 0
j , for all n. Let (Tn)n be a B0{computable

sequence of open subsets of X with f�1(Cn) = dom f \ Tn. Then f�1(C 0
n) = dom f \ T 0

n

for each n. The sequence (T 0
n)n is also B0{computable by Lemma 3.3. Let AT 0 � IN be an

r.e. set which shows that (T 0
n)n is B0{computable. The sequence (Rn)n with

Rn :=
[

hn;ji2AV

T 0
j =

[
fB0

i j (9j)hn; ji 2 AV and hj; ii 2 AT 0g
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is B0{computable and satis�es f�1(Vn) = Rn \ dom f . Now let r : IN ! IN be a total

recursive function with �(f�1( ~U)) � 2�n for all open subsets ~U � Y with ~�( ~U) � 2�r(n),

and let (Sn)n be a B0{computable sequence of open subsets of X which encloses dom f in

the sense dom f � Sn and �(Sn ndom f) � 2�n for all n. We claim that the sequence (Un)n
with

Un := Sn+1 \Rr(n+1)

has the desired properties. It is a sequence of open sets. It is B0{computable since both the

sequence (Sn+1)n and the sequence (Rr(n+1))n are B0{computable and the intersection of

two B0{computable sequences is B0{computable again (proof straightforward). It satis�es

f�1(Vr(n+1)) = Un \ dom f for all n (2)

because of f�1(Vm) = Rm \dom f , for all m, and dom f � Sl, for all l. From (2) we obtain

for all n:

�(Un) = �(Un \ dom f) + �(Un \ (X n dom f))

� �(f�1(Vr(n+1))) + �(Sn+1 n dom f)

� 2�(n+1) + 2�(n+1) = 2�n :

Finally, (2) implies (1). This ends the proof. 2

In our counterexample in Proposition 4.1 the set dom(f) = frg, r random, cannot be

fast enclosable. We remark that for in�nite sequences Levin [16] has obtained a randomness

preservation result of a di�erent kind. It can roughly be described by saying that certain

operators A transform a �{random sequence into an A(�){random sequence where � belongs

to a certain class of measures and A(�) is the measure induced by � and A.

In the rest of this section we assume that � is an arbitrary �nite alphabet with at

least two elements. As an application we show that randomness of a vector or a se-

quence of elements of �! can be expressed directly over the randomness space �!. For

p; q; p(1); : : : ; p(k) 2 �! we de�ne hpi := p, hp; qi := p(0)q(0)p(1)q(1)p(2)q(2) : : :, and re-

cursively hp(1); : : : ; p(k)i := hhp(1); : : : p(k�1)i; p(k)i. For a sequence (p(k))k of sequences we

de�ne hp(0); p(1); : : :i(hi; ji) := p(i)(j) for all i; j.

Corollary 4.8 1. Let k � 1. A vector (p(1); : : : ; p(k)) 2 (�!)k is random, i� the sequence

hp(1); : : : ; p(k)i 2 �! is random.

2. A sequence (p(k))k 2 (�!)! of sequences is random, i� the sequence hp(0); p(1); : : :i 2

�! is random.

Proof. (1) The mapping h; i : (�!)k ! �! is a computable measure invariant homeomor-

phism and its inverse is computable as well. The assertion follows from Theorem 4.7.

(2) Also the mapping h; i : (�!)! ! �! is a computable measure invariant homeomor-

phism and its inverse is computable as well. Again the assertion follows from Theorem 4.7.

2

We �nish this section by two well{known examples of randomness preserving transfor-

mations: given a sequence one chooses a subsequence and rearranges it by applying an
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injective total recursive function to its coe�cients or by choosing only components with

indices at which an \independently random" sequence has 1's. The �rst result seems to be

folklore. It is stated for example in Book, Lutz, Martin [1], Lemma 3.4.

Corollary 4.9 Let r : IN ! IN be a total recursive injective function. If a sequence p =

p(0)p(1)p(2) : : : 2 �! is random, then also the sequence p(r(0))p(r(1))p(r(2)) : : : is random.

Proof. This is a special case of Theorem 3.15.3. 2

The second result is due to van Lambalgen [25, Theorem 5.8]. For considerations which

can be used for a proof see [24].

Corollary 4.10 (van Lambalgen [25]) Let (p; q) 2 (�!)2 be a random pair of sequences.

De�ne a new sequence by erasing out of p all the components p(i) with q(i) = 0. The new

sequence is random also.

Proof. First, we observe that the new sequence is well{de�ned since q contains in�nitely

many 1's. Therefore notice that the randomness of (p; q) implies that q is random by

Theorem 3.15 and, hence, contains in�nitely many 1's. The \new" sequence is de�ned more

formally to be the sequence F (p; q) where the function

F : �! � fq 2 �! j q contains in�nitely many 1'sg ! �!

is de�ned by

F (p; q)(i) := p(position of the (i+ 1){th 1 in q) :

The function F :� (�!)2 ! �! is computable. Its domain is fast enclosable because

it has �2{measure 1 (it is the product of two sets with �{measure 1). Using Fubini's

Theorem one shows that F is measure invariant: it is su�cient to show for w 2 �� that

�2(F�1(w�!)) = j�j�jwj. This follows from
R
�! �F�1(w�!)(p; q)d�(p) = j�j�jwj for any

q 2 �! containing in�nitely many 1's and from Fubini's Theorem. Now Theorem 4.7 gives

the assertion. 2

5 Random Real Numbers

Randomness of real numbers is usually introduced via the the b-ary representations. Calude

and J�urgensen [7, 2] proved that this leads to a notion independent from the base b. In

this section we show that this notion coincides with the direct de�nition of randomness on

the real numbers given in Example 3.5. This is done also for vectors and in�nite sequences

of reals. Furthermore we show that computable analytic functions preserve randomness.

Hence all the common arithmetic functions preserve randomness. We conclude the section

with several simple observations on the arithmetic of random real numbers.

Fix a natural number b � 2. The b-ary representation of the real numbers in the unit

interval is based on the alphabet �b := f0; 1; : : : ; b� 1g and de�ned by

�b : �
!
b ! [0; 1]; �b(p(0)p(1)p(2) : : :) :=

1X
n=0

p(i)b�(i+1) :
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A sequence p 2 �!
b with �b(p) = x is also called expansion of x to base b. It is unique for all

real numbers in [0; 1] except for those rationals corresponding to sequences ending on 0's

or on an in�nite repetition of the digit b� 1. This de�nition can directly be extended to a

representation �kb of vectors in [0; 1]k by

�kb : �
!
b ! [0; 1]k; �bhp

(1); : : : ; p(k)i := (�b(p
(1)); : : : �b(p

(k))) ;

which we call the b-ary representation of vectors in [0; 1]k. In the following theorem we

consider the randomness spaces (IR; B; �) and ([0; 1]; ~B; ~�) introduced in Example 3.5 and

their products according to the end of Section 3. The theorem is a slightly more general

formulation of a result contained in Weihrauch [29]. For a vector (x1; : : : ; xn) of reals the

fractional part of (x1; : : : ; xn) is the unique real vector (y1; : : : ; yn) 2 [0; 1)n such that the

di�erence (x1 � y1; : : : ; xn � yn) is a vector of integers.

Theorem 5.1 Let n � 1, b � 2. For a vector (x1; : : : ; xn) 2 IRn the following conditions

are equivalent.

1. It is a random element of the space (IRn; Bn; �n).

2. Its fractional part is a random element of the space (IRn; Bn; �n).

3. Its fractional part is a random element of the space ([0; 1]n; ~Bn; ~�n).

4. Its fractional part has a random �nb -name.

Proof. We prove \(1) () (2)", \(2) () (3)", and \(3) () (4)".

Let (z1; : : : ; zn) 2 ZZn be an integer vector. The translation T : (IRn; Bn) ! (IRn; Bn)

with T (y1; : : : ; yn) := (y1 + z1; : : : ; yn + zn) is a total, computable, measure invariant map-

ping. Hence, by Theorem 4.7, if (y1; : : : ; yn) 2 IRn is random (in (IRn; Bn; �n)), also

(y1 + z1; : : : ; yn + zn) is random. The equivalence \(1) () (2)" follows.

The mapping f :� (IRn; Bn) ! ([0; 1]n; ~Bn) with dom f = [0; 1]n and f(x) = x for

all x 2 dom f is computable, measure invariant, and its domain is a fast enclosable sub-

set of (IRn; Bn; �n). This, together with Theorem 4.7 proves \(2) ) (3)". The inverse

mapping f�1 : ([0; 1]n; ~Bn) ! (IRn; Bn) is computable, total and measure bounded since
~�n((f�1)�1(A)) � �n(A) for all measurable A � IRn. Using Theorem 4.7 we conclude

\(3)) (2)".

The mapping �nb itself is computable, total, and measure invariant. Hence, Theorem

4.7 yields \(4) ) (3)". On the other hand, let now f :� [0; 1]n ! �!
b be the mapping

which maps each n-vector of irrationals in the unit interval to its (unique!) �nb -name, i.e.

�nb (f(x)) = x for all x 2 dom f := [0; 1]n\(IRnQ)n. This mapping is also computable. Since

its domain has measure 1 it is fast enclosable. And the function f preserves the measure:
~�n(f�1(A)) = �n(A) for all measurable A � �!. By Theorem 4.7 f preserves randomness.

If x 2 [0; 1]n is random, then it is a vector of random numbers by Theorem 3.15, hence

a vector of irrationals, hence in the domain of f , and f(x) is random in �!
b . This proves

\(3)) (4)". 2

From the equivalence of 3. and 4. in Theorem 5.1 we obtain:

Theorem 5.2 (Calude and J�urgensen [7]) For integers b; c � 2 a real number x 2 [0; 1]

has a random �b{name, i� it has a random �c{name.
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We generalize the equivalence of 3. and 4. in Theorem 5.1 to in�nite sequences of real

numbers in the unit interval. We de�ne the b-ary representation �!b : �! ! [0; 1]! of such

sequences by �!b hp
(0); p(1); p(2); : : :i := (�b(p

(0)); �b(p
(1)); �b(p

(2)); : : :) for p(0); p(1); p(2); : : : 2

�!.

Theorem 5.3 Let b � 2. A sequence (xn)n of real numbers in [0; 1]! is a random element

of ([0; 1]! ; ~B!; �!) if and only if it has a random �!b -name.

The proof is identical with the proof of the last equivalence in Theorem 5.1.

Before we turn our attention to the real numbers let us collect a few facts about random

in�nite sequences of real numbers in [0; 1]! . A sequence (xn)n 2 [0; 1]! of real numbers is

called uniformly distributed if for any pair a; b of real numbers with 0 � a � b � 1 the limit

limn!1
1
n
jfi < n j xi 2 [a; b]gj exists and is equal to b� a.

Theorem 5.4 Every random sequence of reals in [0; 1]! is uniformly distributed.

Proof. This follows immediately from Theorem 5.3 and from Theorem 3.6 of Calude,

Hertling, Khoussainov [5] which states that any sequence of reals in [0; 1]! with a random

�!b -name, b � 2 arbitrary, is uniformly distributed. 2

In Proposition 3.15 we observed that a sequence of reals in [0; 1] is already non{random

if one of its components is non{random or a vector formed out of distinct components is

non{random. Is there a non{random sequence of reals such that all of its components are

random? This is true.

Theorem 5.5 There is a non{random sequence (xn)n of reals in [0; 1]! such that for any

n 2 IN and any tuple (i0; : : : ; in) of pairwise di�erent indices (i.e. ik 6= il for 0 � k < l � n)

the vector (xi0 ; : : : ; xin) is random.

Proof. Let (yn)n be an arbitrary random sequence of reals in [0; 1]! . Then by Theorem 3.15

each vector (yj0 ; : : : ; yjn) for some tuple (j0; : : : ; jn) of pairwise di�erent indices is random.

De�ne a sequence (xn)n of reals in [0; 1]! by x0 := y0 and xn+1 := the �rst number in the

sequence (yn)n which is smaller than 1
2
xn. This sequence is well{de�ned since the sequence

(yn)n is uniformly distributed. It is non{random since it converges fast to zero (take for

example the randomness test (Un)n on [0; 1]! de�ned by Un := f(zm)m 2 [0; 1]! j zn <

2�ng). Each vector of the form (xi0 ; : : : ; xin) for any n 2 IN and any tuple (i0; : : : ; in) of

pairwise di�erent indices is random since it is identical with a vector of the form (yj0 ; : : : ; yjn)

for some tuple (j0; : : : ; jn) of pairwise di�erent indices. 2

We turn our attention to arithmetic properties of random numbers and vectors. We

have already remarked that a computable real number cannot be random. It is well known

that a computable real function preserves computability, that is, it maps computable real

numbers to computable real numbers. Which real number functions preserve randomness?

We give a su�cient condition which seems to cover all the functions commonly in use.

Theorem 5.6 Let n � 1 and f :� IRn ! IR be a computable, continuously di�erentiable

function with an open domain such that all zeros of its derivative f 0 are non{random ele-

ments of IRn. If x 2 dom f is random, then also f(x) is random.
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Proof. Let z 2 dom f be random. Then f 0(z) 6= 0 by assumption. There is a k 2 f1; : : : ; ng

such that the partial derivative @f
@xk

(z) 6= 0 is non-zero. By symmetry we can assume k = n

w.l.o.g. Since the derivative f 0 is continuous and the domain of f is open there is an

open rectangle D with the following properties: (1) z 2 D � dom f , (2) D has rational

endpoints, (3) the sidelength of D in any coordinate is at most 1, (4) for all y 2 D we

have j @f
@xn

(y)j � c := 1
2
j @f
@xn

(z)j. We claim that the restricted function g := f jD satis�es all

assumptions of Theorem 4.7. This, of course, implies that f(z) is random.

It is clear that g is computable and that its domain D is fast enclosable. The only point

which has to be proved is that g is recursively measure{bounded. This is a consequence

of the fact that the absolute value of the derivative is bounded from below by a positive

constant on D. We claim that it satis�es

�n(g�1(U)) �
2

c
�(U) (3)

for any open subset U � IR. In fact, by taking the sign of @f
@xn

(z) into account one can show

that it satis�es even �n(g�1(U)) � 1
c
�(U) for any open U � IR. Since any open U � IR can

be written as a disjoint countable union of open intervals (the connected components of U)

it is su�cient to prove the claim (3) for open intervals U = (a; b). Fix real numbers a < b.

Fix a vector (x1; : : : ; xn�1) 2 IRn�1 such that there is an x 2 IR with (x1; : : : ; xn�1; x) 2 D

and consider the function h :� IR ! IR with h(x) := g(x1; : : : ; xn�1; x). Note that the

domain of h is an open interval. We claim that

�(h�1((a; b)) �
2

c
(b� a) : (4)

If h�1((a; b)) is empty this is clearly true. Assume that h�1((a; b)) is not empty and �x a

real y with h(y) 2 (a; b). We shall show

h�1((a; b)) � (y �
1

c
(b� a); y +

1

c
(b� a)) (5)

This implies (4). Let x 2 h�1((a; b)). By the Intermediate Value Theorem there is a real

number � lying in [y; x] if y � x respectively in [x; y] if x � y with the property

h(y)� h(x) = h0(�) � (y � x) :

The point (x1; : : : ; xn�1; �) lies in D, hence jh0(�)j � c by our fourth assumption on D. We

conclude jh(y) � h(x)j � cjy � xj. Together with jh(y)� h(x)j � b� a we obtain

b� a � cjy � xj

and this proves our claim (5), and hence also (4). The inequality (4) is used in the following

application of Fubini's Theorem where

D0 := fx = (x1; : : : ; xn�1) 2 IRn�1 j (9x 2 IR) (x1; : : : ; xn�1; x) 2 Dg

is the projection of D on the �rst n� 1 components:

�n(g�1((a; b))) =

Z
D

�g�1((a;b))(x1; : : : ; xn)d�(x1; : : : ; xn)

20



=

Z
D0

�Z
IR
�g�1((a;b))(x1; : : : ; xn)d�(xn)

�
d�n�1(x1; : : : ; xn�1)

�

Z
D0

2

c
(b� a)d�n�1(x1; : : : ; xn�1)

�
2

c
(b� a) :

In the last step we used the assumption that the sidelength of D and hence also of D0 in

each coordinate of IRn is at most one. This proves our claim (3) and ends the proof of

Theorem 5.6. 2

Let n � 1 and U � IRn be an open set. A function f : U ! IR is analytic if for any point

z 2 U there is a neighbourhood V � U of z such that in this neighbourhood f(x) can be

written as an absolutely convergent power series
P1

k2INn ak(x� z)k where yk = yk11 � : : : � yknn
for y = (y1; : : : ; yn) 2 IRn and k = (k1; : : : ; kn) 2 INn.

Theorem 5.7 Let U � IR be open and f : U ! IR be an analytic function which is

computable on any compact subset of its domain. If x 2 dom f is random, then also f(x)

is random.

Proof. If f is an analytic function which is computable on any compact subset of its

domain U , then its partial derivatives @f
@xk

(for k 2 f1; : : : ; ng) are also analytic functions

and computable on any compact subset of U (their computability can be proved by following

the proof of Theorem 2, p. 53 of Pour-El and Richards [19]). Fix a rational compact rectangle

K in the domain of f and consider the restriction of f to this set. The set of zeros of f 0 has

measure 0. For each m 2 IN (uniformly in m) we can compute a �nite union of balls Bn
i in

IRn which cover the set of zeros of f 0 in K and are contained in fx 2 U j jf 0(x)j � 2�mg.

Hence, since the measure of fx 2 U j jf 0(x)j � 2�mg tends to zero for m tending to in�nity,

we can construct a randomness test wich contains all zeros of f 0 in K. Thus, all zeros of

f 0 in K, and therefore all zeros of f 0 are non{random. The assertion follows now from

Theorem 5.6. 2

We conclude that all the common arithmetic functions like addition, subtraction, multi-

plication, division, taking square roots or higher roots, exp, log, sin, cos, and so on preserve

randomness. If for example (x; y) is a random pair of real numbers, then the sum x+ y is

random as well. But it is important to note that it is insu�cient to assume just that both

components x and y are random. For example if x is random, then also �x is random (by

Theorem 5.6), but the sum x+(�x) = 0 is not random. Hence, addition does not transform

random numbers into random numbers. Is the set of non{random numbers closed under

addition? No, for we can take a random binary sequence p(0)p(1)p(2) : : : 2 f0; 1g! . The

numbers x := �2(p(0)0p(2)0p(4)0 : : :) and y := �2(0p(1)0p(3)0p(5) : : :) are non{random, but

their sum x+ y = �2(p(0)p(1)p(2) : : :) is random.

We end this section with a simple topological observation.

Proposition 5.8 For n � 2 the set of non{random points in IRn is connected.

Proof. Fix a non{random point x in IRn. We choose a sequence of rational points (qm)m
(that means: all components of qm are rational) in IRn converging to x, starting with q0 = 0.
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By connecting each point qm via a straight line with qm+1 we obtain a path leading from 0

to x. This path contains only non{random points since a straight line segment in IRn with

rational endpoints contains only non{random points. Thus, the set of non{random points

in IRn is connected. 2

6 Random Sets

Usually a set A � IN of natural numbers is called random if and only if its characteristic

function is a random sequence. In this section we consider a di�erent notion of a random set

which is induced by viewing the power set of IN as a randomness space, based on its standard

topology. The �rst main result gives a characterization of the resulting randomness notion

in terms of randomness for sequences. The second main result is the construction of an

in�nite co-r.e. random set. Also several simple properties of random sets are observed. In

this section we always use � for the binary alphabet: � = f0; 1g. Sets of natural numbers

are denoted by literals A;B;C; : : : while subsets of the power set 2IN = fA j A � INg of IN

and subsets of �! are denoted by U; V;W;X; Y; Z.

Which sets of natural numbers should be called random? One possibility to introduce

randomness on 2IN is to identify it with the usual randomness space (�!; B; �) of Example

3.5.2 via the mapping � : 2IN ! �! which maps a set A � IN to its characteristic function

�A (with �A(n) = 1 if n 2 A, �A(n) = 0 if n 62 A). This mapping is a bijection. Then a set

of numbers is random if and only if its characteristic function is random. But the induced

topology ��, that is, the topology on 2IN induced by the base f��1(w�!) j w 2 ��g is not

the standard topology on 2IN. The standard topology on 2IN is usually considered to be the

topology induced by the base fOE j E � IN �niteg where OE := fA � IN j E � Ag for

�nite subsets E of IN. Let us call this topology � .

Lemma 6.1 1. The topology � is a strict subset of the topology ��.

2. The �-algebra generated by � is identical with the �-algebra generated by ��.

Proof. (1) For any �nite set E � IN we de�ne a �nite set WE of words by

WE := fw = w(1) : : : w(1 + maxE) 2 �1+maxE j (8i 2 E) w(1 + i) = 1g :

One observes OE =
S
f��1(w�!) j w 2 WEg. This shows � � ��. The set �

�1(0�!) is an

element of �� n � .

(2) For any set F � IN the set CF := fA � IN j A \ F = ;g is a �{closed set (that

means: 2IN nCF is an element of �) since Cfng = 2IN nOfng for all n and CF =
T
n2F Cfng =

2IN n
S
n2F Ofng. If for a word w = w(1) : : : w(jwj) 2 �� we set E := fi < jwj j w(i+1) = 1g

and F := fi < jwj j w(i+ 1) = 0g, then ��1(w�!) = OE \CF . Hence, every basic ��-open

set is the intersection of a � -open and a �{closed set. The assertion follows. 2

The topologies � and �� are not the same. But their �-algebras are the same. Hence,

we can transfer the measure on �! via ��1 to 2IN. We de�ne a measure � by

�(X) := �(�(X))
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for every set X � 2IN in the �-algebra generated by � (where the � on the right{hand side

of the equation denotes the usual product measure on �!, considered in Example 3.5.2).

Notice that �(OE) = 2�jEj for any �nite set E � IN. Remember that D : IN! fE � IN j E

�niteg is a standard numbering of the set of �nite subsets of IN. Using the numbering O of

basic � -open sets de�ned by Oi := ODi
we obtain a randomness space

(2IN; O; �) :

De�nition 6.2 A set A � IN is called random i� it is a random element of the randomness

space (2IN; O; �).

Which properties does this randomness space have? What are its random elements?

It is clear that the randomness space satis�es the intersection property. Hence, when-

ever one has a randomness test (Un)n, one can assume that the sequence (Un)n is a non{

increasing sequence of sets, compare Proposition 3.6. The measure � is weakly bounded.

This immediately implies by Theorem 3.11 that the space has a universal randomness test.

Before we characterize randomness of sets in terms of randomness of sequences we make

two simple observations.

Proposition 6.3 1. Every �nite set E � IN is random.

2. Every subset of a random set A � IN is random also.

Proof. (1) Every open set U � 2IN which contains a �nite set E � IN as an element

contains the open set OE as a subset. Hence �(U) � �(OE) = 2�jEj. Thus, there can be

no randomness test (Un)n on 2IN with E 2
T
n2IN Un.

(2) We prove the contraposition:

if A � IN is non{random and A � B, then also B is non{random:

Any open set U that contains A as an element also contains B as an element. Hence, if

A 2
T
n Un for some randomness test (Un)n, then also B 2

T
n Un for any B � A. 2

Especially the �rst assertion might seem counterintuitive at �rst. But since the �nite

sets, considered as �nite elements in the complete partial order 2IN, are in some sense very

\rough" objects not having any property which is valid only for objects in an open set of very

small measure, it makes sense to call them random. In contrast to the randomness space

�! where one considers positive and negative information about a set, here we consider

only positive information about sets, i.e. information telling us which numbers are in the

set. This also gives an intuitive explanation for the second assertion.

The following characterization is the �rst main result of the section.

Theorem 6.4 A set A � IN is random if and only if there is a set B � A such that �B is

random.

One can express this also negatively:

A � IN is non{random () (8B � A) �B is non{random:
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Proof. First we prove that \A non{random" implies \�B non{random for all B � A". By

Proposition 6.3.2 it is su�cient to prove

A non{random) �A non{random

for any A � IN. Fix a non{random set A � IN and a randomness test (Un)n on 2IN with

A 2
T
n Un. We claim that the sequence (Vn)n of subsets of �! de�ned by

Vn := �(Un)

is a randomness test on �! with �A 2
T
n Vn. The last part of the claim is clear. The sets

Vn are open since � � ��. We have �(Vn) = �(Un) � 2�n since � is measure invariant by

the de�nition of the measure � on 2IN. It is left to prove that there is an r.e. set C � IN

with Vn =
S
f�(i)�! j hn; ii 2 Cg where � : IN ! �� denotes the standard numbering of

��. This follows since there is an r.e. set ~C with Un =
S
fODi

j hn; ii 2 ~Cg and, given an

index i of a �nite set Di one can compute �-indices for the �nitely many words in the set

WDi
considered in the proof of Lemma 6.1, and Vn =

S
fWDi

�! j hn; ii 2 ~Cg. This ends

the proof of the �rst implication.

Now we are going to prove that \�B non{random for all B � A" implies \A non{

random". Fix a universal randomness test (Vn)n on �!. For each n we de�ne Un to be the

�{interior of ��1(Vn):

Un :=
[
fOE j E �nite and �(OE) � Vng :

We claim that the sequence (Un)n is a randomness test on 2IN. The sets Un satisfy �(Un) =

�(�(Un)) � �(Vn) � 2�n because � preserves the measure and �(Un) � Vn. Let G � IN be

an r.e. set with Vn =
S
hn;ji2G �(j)�

!, for all n. We de�ne an r.e. set H � IN by

H := fhn; ii j (9j1; : : : jl 2 IN) hn; jki 2 G for k = 1; : : : ; l, and WDi
�! �

l[
k=1

�(jk)�
!g:

Since every set �(Oi) =WDi
�! is compact, we obtain hn; ii 2 H () �(Oi) � Vn, for any

n and i. This shows Un =
S
hn;ii2H Oi, for all n. We have proved that (Un)n is a randomness

test on 2IN.

Now let A � IN be a set such that �B is non{random for all B � A. This implies

�B 2 Vn for all B � A and all n since (Vn)n is assumed to be a universal randomness test.

By the lemma following immediately after the proof we conclude that A 2 Un for all n,

hence A 2
T
n Un. This means that A is non{random and proves our assertion. 2

Lemma 6.5 Let V � �! be an open set and A � IN be a set such that �B 2 V for all

B � A. Then there is a �nite set E � A with �(OE) � V .

Note that E � A is equivalent to A 2 OE . The statement of the lemma can also be

expressed more elegantly: if a set A � IN and all sets B � A are elements of a ��-open

subset U � 2IN, then they are already in the � -interior of U .

Proof. We assume that the assertion is false. Set En := A \ f0; : : : ; ng for each n. Then

for each n there is a sequence qn 2 �(OEn) n V . The set �! n V is compact. Thus, the
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sequence (qn)n has an accumulation point p in �! n V . We can �x a strictly increasing

function g : IN! IN such that the �rst n+ 1 digits of qg(n) and of p are identical, for each

n. We know qg(n) 2 �(OEg(n)
) � �(OEn) since g(n) � n (g is strictly increasing!) implies

Eg(n) � En. Hence, if i 2 En, then qg(n)(i) = 1, and thus also p(i) = 1. This means

p 2 �(OEn), or in other words, En � ��1(p). This, being true for all n, implies A � ��1(p).

But the assumption of the lemma was that such a sequence p must lie in V . Contradiction.

Hence, there is a �nite set E � A with �(OE) � V . 2

Remark 6.6 In the second part of the proof of Theorem 6.4 we started with a randomness

test (Vn)n on �! and proved that the sequence (Un)n consisting of the � -interiors Un of the

sets ��1(Vn) is a randomness test. Actually, (Un)n is even a universal randomness test on

2IN if (Vn)n is a universal randomness test on �!. To see this, use the observation in the

�rst part of the proof, namely the observation that (�( ~Un))n is a randomness test on �! if

( ~Un)n is a randomness test on 2IN.

Note that especially randomness of p 2 �! implies randomness of ��1(p). The converse

is not true: take a random sequence p = p(0)p(1)p(2)p(3) : : : 2 �!. Then the sequence

q = p(0)0p(2)0 : : : is not random, but the set ��1(q) � ��1(p) is random by Proposition

6.3.2 or Theorem 6.4.

Every �nite set is random. How simple can in�nite random sets be in terms of the

arithmetical hierarchy? We know that there are random sequences p 2 �! such that ��1(p)

is in �2 (for example the sequences constructed in Example 3.17.3). Thus, there are in�nite

random sets in �2. But the set �
�1(p) associated with a random sequence p can of course

not be in �1 or �1. Are there in�nite random sets even in �1 or �1? A set is called immune

if it is in�nite and contains no in�nite r.e. subset.

Theorem 6.7 1. Every random set is either �nite or immune.

2. There is an in�nite random co-r.e. set.

Hence, there are no in�nite random sets in �1, but there are in�nite random sets in �1.

The proof of the �rst part of the theorem is straightforward. The second part is based on

the following theorem which will be proved at the end of the section.

Theorem 6.8 Let A � IN be r.e. and U :=
S
fODi

j i 2 Ag have measure �(U) < 1. There

exists an in�nite co-r.e. set B 62 U .

Proof of Theorem 6.7. 1. Assume that a set A � IN contains an in�nite r.e. set B. Fix an

injective total recursive function f with range f = B. Set En := ff(0); : : : ; f(n� 1)g for all

n. The sequence (OEn)n is a randomness test on 2IN with A 2
T
nOEn .

2. Let (Un)n be a universal randomness test on 2IN. By Theorem 6.8 there exists an

in�nite co-r.e. subset of IN which is not an element of U1. This set must be random. 2

We deduce a corollary about random sequences. A set A � IN is called simple, i� it is

r.e. and its complement is immune.

Corollary 6.9 There exist a simple set A � IN and a random sequence p 2 �! with

��1(p) � A.
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Proof. By Theorem 6.7.2 there exists an in�nite random co{r.e. set B � IN. Its complement

A := IN n B is simple by Theorem 6.7.1. By Theorem 6.4 there exists a random sequence

q 2 �! with B � ��1(q). The sequence p 2 �! with p(i) := 1� q(i) is random as well and

satis�es ��1(p) � A. 2

Especially in view of Theorem 6.7.2 and the proof of Theorem 6.8 the notion of a random

set seems to deserve attention in its own right. Also its connection with random sequences

needs to be explored more thoroughly. For example, is there a non{random sequence p 2 �!

such that both ��1(p) and INn��1(p) are random? Another topic for which the randomness

space (2IN; O; �) might be very useful and serve as a standard example besides the space

of (�nite or) in�nite sequences is the problem to introduce and study randomness more

generally on complete partial orders.

We conclude this section with the proof of Theorem 6.8.

Proof of Theorem 6.8. We shall construct an r.e. co-in�nite set C � IN with

C \Di 6= ;

for all i 2 A. Its complement proves the assertion. We use a \movable marker" style

construction, compare Soare [22].

Let a : IN ! IN be a total recursive injective function with range a = A. We shall

de�ne an non{decreasing sequence (Cn)n of subsets of IN and de�ne in the end C :=
S
nCn.

Furthermore we will de�ne an non{decreasing sequence (Ln)n of subsets of A. They contain

the indices in A which are in a certain sense \relevant" for the construction. We proceed

in stages n, for n 2 IN. The sets Cn and Ln will be de�ned at stage n. Furthermore, at the

end of stage n we will have a �nite list f
(n)
0 ; : : : ; f

(n)
n of n+ 1 pairwise di�erent\forbidden"

elements (marked). If at stage n the \forbidding" condition of one number f
(n�1)
k of the

numbers f
(n�1)
0 ; : : : ; f

(n�1)
n�1 from the previous stage is overruled, then all f

(n�1)
l with k �

l < n will be added to the set Cn�1. They will be replaced by new forbidden elements f
(n)
j

(these markers will be moved); the others are kept. In any case, a new one, the number

f
(n)
n , is de�ned. They will be de�ned in such a way that at the end of each stage n we

have Cn \ ff
(n)
0 ; : : : ; f

(n)
n g = ;. It is crucial that each f

(:)
n will be changed only at �nitely

many stages, i.e. for each n there exists a number N such that f
(k)
n = f

(N)
n for all k � N .

This guarantees that C is co-in�nite. It will be clear from the construction that C is r.e.

The crucial point in the construction is the condition when a \forbidding" condition is

overruled. The idea is that this is the case when the measure of the union of the sets ODi

is large enough where the union is taken over those indices i which have been listed so far,

which are \relevant", and which have the property that the forbidden element is contained

in Di. Here is the construction. We start with C�1 = ; and L�1 = ;.

Stage n:

We can assume that Cn�1, Ln�1 and ff
(n�1)
0 ; : : : ; f

(n�1)
n�1 g are de�ned. If Da(n) \Cn�1 6= ;,

then we do the following:

1. We set Ln := Ln�1.

2. We set Cn := Cn�1.
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3. We de�ne f
(n)
j := f

(n�1)
j for j 2 f0; : : : ; n� 1g and f

(n)
n := min(IN nG) where

G :=
[
fDa(j) j j � ng [ ff

(n�1)
0 ; : : : ; f

(n�1)
n�1 g :

If Da(n) \ Cn�1 = ;, then we do the following:

1. We set Ln := Ln�1 [ fa(n)g.

2. For every l 2 IN we de�ne

S(l; n) := �(
[
fODj

j l 2 Dj and j 2 Lng) :

The set

Fn := fm j 0 � m < n and f (n�1)m 2 Da(n) and S(f (n�1)m ; n) > 2�m�2g

can be considered as the set of indices of forbidden elements in Da(n) whose forbidding

condition is overruled. We set

mFn :=

(
minFn if Fn is nonempty

n otherwise

and

Cn := Cn�1 [ (Da(n) n ff
(n�1)
0 ; : : : ; f

(n�1)
n�1 g) [ ff (n�1)m j mFn � m < ng :

3. We do not change the forbidden elements f
(n�1)
m with m < mFn , i.e. for m < mFn we

de�ne f
(n)
m := f

(n�1)
m . But we de�ne the numbers f

(n)
mFn

; : : : ; f
(n)
n (in this order) to be

the smallest pairwise di�erent numbers in IN n G where G is the same set as in the

�rst case.

This ends the description of stage n of the algorithm. Remember that �nally we de�ne

C :=
S
nCn. The algorithm is complete.

It is clear that the algorithm is well-de�ned. We only remark that the set G de�ned

above is always �nite. We have to show that the set C satis�es all the required conditions:

1. C is r.e.,

2. C \Di 6= ; for all i 2 A,

3. IN n C is in�nite.

The �rst claim is clear.

For the second claim we show by induction that at the end of stage n we have Cn\Da(i) 6=

; for all i � n. Remember that (Cn)n is a non{decreasing sequence of sets. Using induction,

it is su�cient to show that at the end of stage n we have Cn \Da(n) 6= ;. In the �rst case

of the two cases considered in the description of stage n, in the case Da(n) \ Cn�1 6= ;,

this and Cn = Cn�1 give the assertion. In the second case, in the case Da(n) \ Cn�1 = ;,

we must show that the set (Da(n) n ff
(n�1)
0 ; : : : ; f

(n�1)
n�1 g) [ ff

(n�1)
m j mFn � m < ng,
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contains an element from Da(n). This is clear if Da(n) 6� ff
(n�1)
0 ; : : : ; f

(n�1)
n�1 g. Assume that

Da(n) � ff
(n�1)
0 ; : : : ; f

(n�1)
n�1 g. The set Da(n) is nonempty because of �(U) < 1. De�ne

k := jDa(n)j � 1. Then Da(n) must contain a forbidden element f
(n�1)
m with m � k. On

the other hand, for all l 2 Da(n), S(l; n) � �(ODa(n)
) = 2�(k+1). Especially S(f

(n�1)
m ; n) �

2�(k+1) � 2�(m+1) > 2�m�2. This shows that ff
(n�1)
l j mFn � l < ng contains an element

from Da(n) if Da(n) � ff
(n�1)
0 ; : : : ; f

(n�1)
n�1 g. We have proved the second claim.

Finally, we have to prove that IN n C is in�nite. We observe that by construction

Cn \ ff
(n)
0 ; : : : ; f

(n)
n g = ; at the end of stage n. The assertion follows from the following

claim:

for each n, there is a number N � n such that f
(k)
n = f

(N)
n for all k � N . (6)

This means that the number f
(:)
n will be changed only at �nitely many stages. The rest

of the proof of the theorem consists of the proof of claim (6). In the proof we shall use

L :=
S
n Ln. Furthermore, for a subsetM � IN we abbreviate �(

S
fODi

j i 2Mg) by �(M).

Assume that (6) is false. Let n be the smallest natural number such that f
(:)
n is changed

at in�nitely many stages. Let f
(1)
0 ; : : : ; f

(1)
n�1 be the �nal values of f

(:)
0 ; : : : ; f

(:)
n�1, i.e. f

(1)
j :=

limk!1 f
(k)
j for 0 � j < n. Note that by construction for each k and each m � k we have

S(f
(k)
m ; k) � 2�m�2 at the end of stage k. We conclude that for 0 � j < n

lim
k!1

S(f
(1)
j ; k) � 2�j�2 : (7)

For each subset E � ff
(1)
0 ; : : : ; f

(1)
n�1g and each m 2 IN we de�ne

LE := fj 2 L j Dj \ ff
(1)
0 ; : : : ; f

(1)
n�1g = Eg;

LEm := fj 2 Lm j Dj \ ff
(1)
0 ; : : : ; f

(1)
n�1g = Eg

Let N0 2 IN be so large such that for all E � ff
(1)
0 ; : : : ; f

(1)
n�1g

�(LE)� �(LEN0
) � 2�(2n+2) � (1� 2jEj � �(LE)) : (8)

There is such an N0 because for E = ; we have

�(L;) � �(L) � �(A) < 1

(because of L; � L � A), and because for E 6= ; there is an f
(1)
j 2 E with j � jEj � 1,

hence

�(LE) = �(
[
fODi

j i 2 LEg)

� �(
[
ODi

j i 2 L and f
(1)
j 2 Dig)

= lim
k!1

S(f
(1)
j ; k)

� 2�j�2

� 2�jEj�1
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where we have used (7). We can also assume that N0 is so large such that f
(N0)
k = f

(1)
k for

all k 2 f0; : : : ; n� 1g. Set

N1 := max(ff
(1)
0 ; : : : ; f

(1)
n�1g [

[
fDa(i) j i � N0g) :

Let N2 > N0 be so large such that

C \ f0; 1; : : : ; N1g = CN2
\ f0; 1; : : : ; N1g :

This means that numbers � N1 are added to the set C only at stages � N2. We claim that

for j 2 L n LN2
we have

Dj \ f0; 1; : : : ; N1g � ff
(1)
0 ; : : : ; f

(1)
n�1g: (9)

To see this, �x a j 2 LnLN2
. Note that by de�nition of N2 no number in Dj\f0; 1; : : : ; N1g

can be added to C at any stage later than N2. This is especially true for the stage nj where

nj > N2 is the (unique) number with a(nj) = j. Therefore we have Dj \ f0; 1; : : : ; N1g �

ff
(nj�1)
0 ; : : : ; f

(nj�1)
nj�1

g. We have f
(nj�1)

k = f
(1)
k for 0 � k < n, but all numbers f

(nj�1)

k with

k � n will be added to C at some stage � nj (because of our assumption that f
(:)
n | and

hence also f
(:)
k for each k � n | will be changed in�nitely often). Therefore we conclude

that (9) is true.

For a moment �x a set E � ff
(1)
0 ; : : : ; f

(1)
n�1g and consider the probability space which

consists out of 1) the set OE as the underlying space, 2) the restriction to OE of the �{

algebra generated by � , 3) the probability measure �E de�ned by �E(U) := 2jEj � �(U) for

all elements U � OE of this �{algebra. For j 2 LEN0
we have E � Dj � f0; 1; : : : ; N1g. On

the other hand, from (9) we conclude that for j 2 LE nLEN2
we have Dj\f0; 1; : : : ; N1g = E.

These two facts imply that in the mentioned probability space the two events

OE n
[
fODj

j j 2 LEN0
g

and

OE n
[
fODj

j j 2 LE n LEN2
g

are independent. This means

1� 2jEj � �(LEN0
[ (LE n LEN2

)) = (1� 2jEj � �(LEN0
)) � (1� 2jEj � �(LE n LEN2

)) :

A short computation yields the �rst equality in the following estimation, and (8) gives the

last estimate.

�(LE n LEN2
) =

�(LEN0
[ (LE n LEN2

))� �(LEN0
)

1� 2jEj � �(LEN0
)

�
�(LE)� �(LEN0

)

1� 2jEj � �(LE)

� 2�2n�2 :
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Using this inequality for all E � ff
(1)
0 ; : : : ; f

(1)
n�1g we obtain

�(L n LN2
) �

X
E�ff

(1)

0
;:::;f

(1)

n�1
g

�(LE n LEN2
)

�
X

E�ff
(1)

0
;:::;f

(1)

n�1
g

2�2n�2

= 2�n�2 :

Finally set N3 := max(
S
fDa(i) j i � N2g). For all m > N3 and stages k 2 IN we have

S(m; k) � �(L n LN2
) � 2�n�2 :

Hence, as soon as the number f
(:)
n has been set to be larger than N3, it will never again

be changed. This contradicts the assumption that f
(:)
n will be changed in�nitely often. We

have proved the claim (6). This ends the proof of the theorem. 2
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