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Abstract

Including the range of a rational function over an interval is an im-

portant problem in numerical computation. A direct interval arithmetic

evaluation of a formula for the function yields in general a superset with

an error linear in the width of the interval. Special formulas like the cen-

tered forms yield a better approximation with a quadratic error. Alefeld

posed the question whether in general there exists a formula whose inter-

val arithmetic evaluation gives an approximation of better than quadratic

order. In this paper we show that the answer to this question is negative

if in the interval arithmetic evaluation of a formula only the basic four

interval operations +;�; �; = are used.

Keywords : Interval arithmetic, range enclosure, approximation of quadratic
order, centered form.

1 Introduction

In numerical computations one often wishes to compute the interval f(I) for a
given continuous or rational function f and a given closed interval I such that
f is de�ned at all points in I . Since in general the exact computation can be
di�cult or very costly one is often content with \including the range" of f over
I by computing an interval J which contains f(I) and such that the di�erence
set J nf(I) is small. This is a central theme in interval arithmetic, which started
with the book [9] by Moore. For interval arithmetic in general see also Moore
[10], Alefeld and Herzberger [4], and for range enclosure see also Hansen [7],
Krawczyk and Nickel [8], Cornelius and Lohner [6], Ratschek and Rokne [12],
Neumaier [11], Alefeld [3, 2] and many more. Interval arithmetic provides the
following approach to this problem (precise de�nitions of all notions used in
the introduction will be given in Section 2). If F (x1; : : : ; xm) is an arithmetical
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expression in the variables x1; : : : ; xm, furthermore using some or all of the
symbols +;�; �; =, the brackets (, ), and symbols for real constants, then F

de�nes a rational function FIR on the reals in the obvious way. It de�nes also
a function FIIIR mapping intervals to intervals when +;�; �; = are interpreted
as functions on intervals. It is important that the interval FIIIR(I) contains
the interval FIR(I) if FIIIR(I) is de�ned. But for most expressions F the interval
FIIIR(I) is much larger than FIR(I): usually the error is linear in the width of the
interval I . However, locally one can do better: given a rational function f and
a point z at which f is de�ned, one can always �nd an arithmetical expression
F such that for any small enough interval I containing z the interval FIIIR(I)
contains f(I) and such that the error is at most quadratic in the width of I .
These are the so{called \centered forms" and similar forms like the \mean value
form", compare Moore [9], Alefeld and Herzberger [4]. Is it possible to achieve
in this way an approximation with an error of smaller than quadratic order?
That means, is it possible to �nd in general an arithmetical expression F such
that its interval evaluation FIIIR with input I yields an interval FIIIR(I) which
approximates f(I) better than quadratically in the width of I? This question
was posed explicitly by Alefeld [2, page 63]. It is the purpose of this paper to
give a negative answer to this question. Of course, it is well known that in a
restricted sense one can give a positive answer to this question in special cases,
using so{called \higher order centered forms" (Cornelius, Lohner [6], Alefeld,
Lohner [5], Alefeld [3]). We shall discuss this in Section 5.

We give a short overview over the paper. In the following section we in-
troduce some notation and provide precise de�nitions from interval arithmetic
as well as fundamental results as far as they are important for this paper. In
Section 3 we formulate the main result and simpler versions of it. Section 4
consists of the proof of the main result. We conclude the paper with remarks
about higher order forms and about further, related problems.

2 Prerequisites from Interval Arithmetic

In this section we introduce some notation and fundamental notions and results
from interval arithmetic. General references are Moore [9, 10] and Alefeld and
Herzberger [4].

By IR we denote the set of real numbers. For two real numbers a; b with
a � b we denote by (a; b) := fx 2 IR j a < x < bg the open interval with bounds
a and b and by

[a; b] := fx 2 IR j a � x � bg

the closed interval with bounds a and b. When we write simply \interval" we
always mean a closed interval. The set of all closed intervals is denoted by IIIR.
We embed the set IR of real numbers into the set IIIR by identifying the real
number x with the interval [x; x]. For a positive integer m the set of m{vectors
of real numbers (of m{vectors of closed intervals) is denoted by IRm (by IIIRm).
In the following we shall always identify a vector I = (I1; : : : ; Im) 2 IIIRm of

2



intervals with the direct product I1� : : :�Im � IRm. In this sense, for D � IRm

we de�ne
IIIRm(D) := fI 2 IIIRm j I � Dg :

If D � IRm and f : D ! IR is a continuous function de�ned on D (where D

is endowed with the subspace topology) with real values, then for an arbitrary
interval vector I 2 IIIRm(D) the set f(I) := ff(x) j x 2 Ig is a closed interval,
because the continuous image of a nonempty, connected, compact set is again
a nonempty, connected, compact set, and the nonempty, connected, compact
subsets of IR are exactly the closed intervals. Therefore the induced function

f : IIIRm(D) ! IIIR is well de�ned (called \united extension" by Moore [9]).
We write it also as f . In this way for example the basic arithmetic operations
addition +, subtraction �, multiplication � (all de�ned on IR2) and division =

(de�ned on IR� (IR n f0g)) induce corresponding operations on closed intervals.
Notice that the quotient [a; b]=[c; d] of two intervals [a; b] and [c; d] is de�ned if
and only if 0 62 [c; d].

Often for a given continuous or rational function f and an interval I (or an
interval vector I) such that f is de�ned at all points in I one wishes to compute
the interval f(I). Since in general the exact computation can be di�cult or
expensive one is often content with computing an interval J which contains
f(I) and such that the di�erence set J n f(I) is small. This \smallness" is
measured by the Hausdor� distance between J and f(I). For intervals the
Hausdor� distance dH : IIIR2 ! IR is given by

dH([a; b]; [c; d]) = maxfja� cj; jb� djg :

The Hausdor� distance (with respect to the maximum distance on IRm) between
interval vectors (remember that we identify (I1; : : : ; Im) with I1 � : : : � Im) is
given by

dH(([a1; b1]; : : : ; [am; bm]); ([c1; d1]; : : : ; [cm; dm])) = max
1�i�m

dH([ai; bi]; [ci; di]) :

Notice that these equations de�ne indeed a metric on the sets IIIR and IIIRm.
Therefore we also have the notion of continuity for functions on the spaces of
intervals or interval vectors. If a function f : D � IRm ! IR is continuous, then
also the induced function f : IIIRm(D)! IIIR is continuous (compare Moore [9,
Theorem 4.1]).

Rational functions are de�ned via arithmetical expressions. These are de-
�ned recursively. We assume that we have an in�nite set V = fx1; x2; x3; : : :g

of symbols for variables. Furthermore we use the real numbers IR, the symbols
f+;�; �; =g and the brackets f(; )g. Arithmetical expressions are de�ned recur-
sively as words over the union of these alphabets by the following conditions:

1. Each real number and each symbol for a variable is an arithmetical ex-
pression.

2. It t1 and t2 are arithmetical expressions, then also (t1 + t2) and (t1 � t2)
and (t1 � t2) and (t1=t2) are arithmetical expressions.
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3. No other words are arithmetical expressions.

If F is an arithmetical expression containing exactly the variables x1; : : : ; xm (in
the future we shall indicate this by saying \let F (x1; : : : ; xm) be an arithmetical
expression"), then F de�nes in an obvious way a rational function FIR : D �

IRm ! IR where also the domainD of FIR is determined by F . This function FIR
is obtained by associating with each of the symbols +;�; �; = the corresponding
real number function and by evaluating F recursively. In the same way F de�nes
also a function FIIIR :� IIIRm ! IIIR mapping interval vectors to intervals: one
associates with each real number c the interval [c; c] and with each of the symbols
+;�; �; = the corresponding function on intervals. One checks easily that FIR is
the restriction of FIIIR to IRm. But notice that it may happen that FIR is de�ned
at each point in an interval I while FIIIR(I) is not de�ned.

Example 2.1 Let the arithmetical expression F (x) be de�ned by

F (x) := (1=((x+ 2) + (1=x))) :

Then the rational function FIR is de�ned on IRnf�1; 0g and can also be written
as FIR(x) = x=(x+1)2 for x 62 f�1; 0g. It is de�ned at each point in the interval
[�3=4;�1=2], but FIIIR([�3=4;�1=2] is not de�ned:

FIIIR([�3=4;�1=2]) = (1=(([�3=4;�1=2] + 2) + (1=[�3=4;�1=2])))

= (1=([5=4; 3=2] + [�2;�4=3]))

= (1=[�3=4; 1=6])

= unde�ned :

However, if FIIIR(I) is de�ned, then FIR is de�ned at all points in I . The
following fundamental facts are already contained in Moore [9].

Proposition 2.2 Let F (x1; : : : ; xm) be an arithmetical expression and I 2

IIIRm such that FIIIR(I) is de�ned.

1. For J � I also FIIIR(J) is de�ned and FIIIR(J) � FIIIR(I).

2. FIR(I) � FIIIR(I).

The interval FIIIR(I) is an approximation to the interval FIR(I). How good is
this approximation? This is usually measured by the Hausdor� distance between
the two intervals and by comparing this distance with the width of the interval
I . The width w([a; b]) of an interval vector [a; b] = ([a1; b1]; : : : ; [am; bm]) 2 IIIRm

is de�ned by
w([a; b]) := maxfbi � ai j i 2 f1; : : : ;mgg :

For the width of the interval FIIIR(I) compared with I one obtains the following
result, see Moore [10, Lemma 4.1].

Proposition 2.3 Let F (x1; : : : ; xm) be an arithmetical expression and J 2

IIIRm such that FIIIR(J) is de�ned. Then there exists a constant c > 0 such

that for all I 2 IIIRm(J)

w(FIIIR(I)) � c � w(I) :
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The proof is based on the fact that the real operations addition, subtraction,
multiplication, and division are Lipschitz continuous on every compact subset
of their domain. For a related, stronger result on Lipschitz continuity of FIIIR
see Neumaier [11, Theorem 2.1.1].

Corollary 2.4 Let F (x1; : : : ; xm) be an arithmetical expression and J 2 IIIRm

such that FIIIR(J) is de�ned. Then there exists a constant c > 0 such that for

all I 2 IIIRm(J)
dH (FIIIR(I); FIR(I)) � c � w(I) :

Proof. Let I � J be an interval vector. Using FIR(I) � FIIIR(I) (Proposition
2.2.2) and a constant c as in Proposition 2.3 one obtains dH(FIIIR(I); FIR(I)) �
w(FIIIR(I)) � c � w(I). 2

In general, this trivial linear error bound for the inclusion FIR(I) � FIIIR(I)
(trivial in view of Proposition 2.3: the width itself of the computed interval
FIIIR(I) is linear in the width of I) is realistic for a direct interval arithmetic
evaluation of an arithmetical expression. Is it possible to �nd better approxi-
mations? Locally this is possible via the so{called centered forms, introduced
by Moore [9], and since then extensively treated; for a presentation of the de-
velopment up to 1984 see Ratschek and Rokne [12]. We formulate a version
for dimension one. The \quadratic order property" in the following proposition
was conjectured by Moore [9] and �rst proved by Hansen [7]. A proof of the
following result can be obtained by using Proposition 2.3 and following Alefeld,
Herzberger [4, pp. 36, 37].

Proposition 2.5 Let D � IR open, f : D ! IR be a rational function, z 2 D a

point, and H(x) an arithmetical expression such that the arithmetical expression

F (x) := (f(z) + ((x � z) �H(x)))

satis�es FIR(y) = f(y) for all real numbers y 2 D. For any interval J � D

containing z such that FIIIR(J) is de�ned (such an interval J exists!) there

exists a constant c > 0 such that for all I 2 IIIR(J) with z 2 I we have

dH(FIIIR(I); f(I)) � c � w(I)2 :

Informally speaking, at least locally, at an arbitrary point, there always exists
an arithmetical expression which leads to a range enclosure with a quadratic
error for intervals containing this point. In fact, it is not necessary to take an
arithmetical formulaH such that the combined formula F (as in the proposition)
has the property FIR(y) = f(y) for all y 2 D, i.e. such that the combined
formula F gives exactly the rational function. Instead, one can also take simpler
expressions H , for example an expression given by the mean value theorem
(Moore [9], Alefeld, Herzberger [4]).

Above we have formulated a version of the result about the centered form
where we have �xed a point z. One can also choose the \center" of the centered
form in dependence of the given interval I (it does not have to be the midpoint of
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the interval). This leads to a class of arithmetical expressions with an additional
parameter or to a more general notion of an arithmetical expression. Here we
are more interested in another question: is it possible to approximate in this
way the range of a function with an error of smaller than quadratic order? This
is indeed possible in special cases. In fact, sometimes the interval arithmetic
evaluation of an arithmetical expression leads even to the exact range of the
function over an interval; compare Alefeld [1] and Stahl [13]. Other special
cases are given by the higher order centered forms by Cornelius and Lohner
[6], Alefeld, Lohner [5], Alefeld [3], and others, which, however, require more
general kinds of arithmetical expressions. We shall come back to this in Section
5. In the following two sections we shall formulate and prove a result which
gives a negative answer to the above question when we interpret it strictly by
using arithmetical expressions and their interval arithmetic evaluations as they
have been introduced so far.

3 The Main Result

The following theorem is the technical main result of the paper.

Theorem 3.1 Let n > 0, D � IR open, f : D ! IR a 2n times continuously

di�erentiable function, and z 2 D a point with f (i)(z) = 0 for 1 � i � 2n� 1
and f (2n)(z) 6= 0. If F (x) is an arithmetical expression in one variable x and

~c > 0 a constant such that the interval FIIIR([z � ~c; z + ~c]) is de�ned and for all

� 2 [0; ~c)
f([z � �; z + �]) � FIIIR([z � �; z + �]) ;

then for every " 2 (0; 1) there exists a positive number c" < ~c such that for all

� 2 [0; c")

dH(FIIIR([z � �; z + �]); f([z � �; z + �])) �
jf (2n)(z)j

(2n)!
� (1� ") � �2n :

The proof will be given in the following section. The most important case
is the case n = 1. By taking n = 1 and " = 1=2 one obtains the following
simpli�ed version.

Corollary 3.2 Let D � IR be open, f : D ! IR be twice continuously dif-

ferentiable, and z 2 D a point with f 0(z) = 0 and f 00(z) 6= 0. If F (x) is an

arithmetical expression and ~c > 0 a constant such that for all � 2 (0; ~c) the

interval FIIIR([z � �; z + �]) is de�ned and contains f([z � �; z + �]), then there

exists a c > 0 such that for all � 2 [0; c)

dH (FIIIR([z � �; z + �]); f([z � �; z + �])) �
jf 00(z)j

4
� �2 :

This shows that one cannot in general achieve an approximation with an error
of smaller than quadratic order if one approximates the range of a function f
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by interval arithmetic evaluation of an arithmetical expression and if there are
points z with f 0(z) = 0 and f 00(z) 6= 0.

One can apply this even to the square function, which maps each real number
x to its square x2: there does not exist an arithmetical expression F whose
interval arithmetic evaluation FIIIR(I) (in the sense of Section 2) gives a better
than quadratic approximation to I2 = fx2 j x 2 Ig for all small intervals I with
center 0.

By using Proposition 2.2.2 we obtain the following corollary.

Corollary 3.3 Let F (x) be an arithmetical expression and z 2 IR be a point

such that FIR(z) is de�ned, F 0
IR(z) = 0, and F 00

IR(z) 6= 0. Then there is a c > 0
such that for all � 2 (0; c) we have

dH(FIIIR([z � �; z + �]); FIR([z � �; z + �])) �
jF 00

IR(z)j

4
� �2 :

Notice that if FIR(z) is de�ned, then for small enough � > 0 also FIIIR([z �
�; z + �]) is de�ned. This corollary gives explicitly a negative answer to the
question posed by Alefeld [2, page 63]. In Section 5 we will shortly explain how
by using an extension of the notion of an arithmetical expression one can give
a positive answer in special cases.

We have formulated these negative results only for dimension one. It is clear
that one can apply them also to multivariate functions by considering the partial
derivatives in one direction.

4 Proof of the Main Result

This section contains the proof of Theorem 3.1. We shall use the following
notation: for two functions f :� IR! IR and g :� IR! IR we write

f(�) 2 o(g(�)) :() there exists a c > 0 such that f and g are de�ned
at each point in (0; c), and g(�) 6= 0 for all � 2 (0; c),
and limx&0 f(x)=g(x) = 0 :

Before we give the detailed proof of Theorem 3.1 we sketch the idea for the
case n = 1. The basic observation is that interval addition is a \symmetric"
operation in the following sense: If I1 and I2 are intervals with centers z1 and
z2, then I1+ I2 is an interval with center z1+ z2. The corresponding statement
is true for subtraction. For multiplication (and division) it is not exactly true
but at least in a restricted sense: if for i 2 f1; 2g the interval Ii either has center
zi = 0 or is a \small" interval \far away" from 0 with center zi, then I1 � I2 is an
interval whose center is \close" to z1 � z2. Altogether one might say that all four
operations +;�; �; = on intervals are approximately symmetric. By induction
this is true also for the interval arithmetic evaluation FIIIR of an arithmetical
expression F . On the other hand, if the function FIR satis�es F 0

IR(z) = 0 and
F 00
IR(z) > 0 at a point z, then close to z its graph looks like a parabola, and
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hence with c := 1
2
F 00
IR(z)

FIR([z � �; z + �]) = [FIR(z); FIR(z) + c � �2 + o(�2)]

for � > 0 small enough. Now FIR([z � �; z + �]) � FIIIR([z � �; z + �]) and the
property of FIIIR of being \approximately symmetric" as explained above imply

FIIIR([z � �; z + �]) � [FIR(z)� c � �2 + o(�2); FIR(z) + c � �2 + o(�2)] :

We conclude

dH(FIIIR([z � �; z + �]); FIR([z � �; z + �])) � c � �2 + o(�2) :

This ends the sketch of the proof for Theorem 3.1 for the case n = 1.
We come to the detailed proof.

De�nition 4.1 Let x0 2 IR and (x1; : : : ; xm) 2 IRm.

1. A strict almost symmetrical class of intervals with center x0 is a function
S : [0; 1)! IIIR with the following properties: there exist positive numbers
c; e and functions s(l); s(r) : [0; 1) ! IR with s(l)(�) 2 o(�e) and s(r)(�) 2
o(�e) such that

S(�) = [x0 � c � �e + s(l)(�); x0 + c � �e + s(r)(�)]

for all � 2 [0; 1).

2. An almost symmetrical class of intervals with center x0 is a function S :
[0; 1) ! IIIR which is either a strict almost symmetrical class of intervals
with center x0 or has constant value S(�) = [x0; x0] for all � 2 [0; 1).

3. A (strict) almost symmetrical class of interval vectors with center x =
(x1; : : : ; xm) is a function S = (S1; : : : ; Sm) : [0; 1)! IIIRm such that each
component Si : [0; 1)! IIIR for 1 � i � m is a (strict) almost symmetrical
class of intervals with center xi.

Lemma 4.2 Let D � IRm open and f : D ! IR be a continuously di�erentiable

function. Let z = (z1; : : : ; zm) 2 D be a point with ( @f
@x1

(z); : : : ; @f

@xm
(z)) 6=

(0; : : : ; 0). If S : [0; 1) ! IIIRm(D) is a strict almost symmetrical class of

interval vectors with center z, then the function T : [0; 1)! IIIR with

T (�) := f(S(�))

is a strict almost symmetrical class of intervals with center f(z).

Proof. Let S : [0; 1) ! IIIRm be a strict almost symmetrical class of interval

vectors with center z, and let ci; ei be positive numbers and s
(l)

i ; s
(r)

i be functions
such that they describe the components Si of S as in De�nition 4.1. We de�ne
a subset M of the index set f1; : : : ;mg by

M := fi 2 f1; : : : ;mg j @f

@xi
(z) 6= 0 and

ei = minfej j j 2 f1; : : : ;mg and @f
@xj

(z) 6= 0gg :
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We set e := ei for an arbitrary i 2 M (all numbers ei for i 2 M are identical).
Since we have for y = (y1; : : : ; ym) 2 D

f(y) = f(z) +

mX
i=1

@f

@xi
(z) � (yi � zi) + o(max

i
jyi � zij) ;

we conclude that there are functions t(l); t(r) : [0; 1) ! IR with t(l)(�) 2 o(�e)
and t(r)(�) 2 o(�e) and

f(S(�)) = f([z1 � c1 � �
e1 + s

(l)

1 (�); z1 + c1 � �
e1 + s

(r)

1 (�)]; : : : ;

[zm � cm � �
em + s(l)m (�); zm + cm � �em + s(r)m (�)])

= [f(z)�
X
i2M

j
@f

@xi
(z)j � ci � �

e + t(l)(�);

f(z) +
X
i2M

j
@f

@xi
(z)j � ci � �

e + t(r)(�)]

for all � 2 [0; 1). That proves the assertion. 2

The key for the proof of Theorem 3.1 is the following proposition.

Proposition 4.3 Let op 2 f+;�; �; =g be one of the basic four real arithmetic

operations. If S = (S1; S2) : [0; 1) ! IIIR2 is an almost symmetrical class of

interval vectors with some center z = (z1; z2) 2 IR2 (in the case op = = we

assume additionally that 0 62 S2(�) for all � 2 [0; 1)), then the function T :
[0; 1) ! IIIR with T (�) := op(S(�)) is an almost symmetrical class of intervals

with center op(z).

Proof. We treat the four operations separately.
\op = +": If both components of S = (S1; S2) are constant functions, i.e.

Si(�) = [yi; yi], then also T is a constant function with T (�) = [y1 + y2; y1 + y2]
for all � 2 [0; 1).
If only the �rst component S1 is constant with value y 2 IR, then we can apply
Lemma 4.2 to the function +y : IR! IR with +y(x) := y+x which has nonzero
derivative: (+y)

0(z2) = 1 for all z2 2 IR.
The same can be done if only the second component S2 is constant.
If both components of S are nonconstant, then we can apply Lemma 4.2 di-
rectly to the addition function + : IR2 ! IR, which has nonzero derivative:
( @+
@x1

; @+
@x2

)(z) = (1; 1) for arbitrary z 2 IR2.
\op = �": Subtraction can be treated in exactly the same way as addition.
\op = �": If both components of S = (S1; S2) are constant functions, i.e.

Si(�) = [yi; yi], then also T is a constant function with T (�) = [y1 � y2; y1 � y2]
for all � 2 [0; 1).
If only the �rst component S1 is constant with value y 2 IR n f0g , then we can
apply Lemma 4.2 to the function �y : IR ! IR with �y(x) := y � x which has
nonzero derivative y everywhere.
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If the �rst component S1 is constant with value 0, then T is the constant function
with T (�) = [0; 0] for all � 2 [0; 1).
Analogously the case that only the second component S2 is constant is treated.
Let us assume that both components of S are nonconstant. If the center z =
(z1; z2) of S is nonzero, then the multiplication function � : IR2 ! IR has nonzero
derivative in the point z: ( @�

@x1
; @�
@x2

)(z) = (z2; z1), and we can apply Lemma 4.2.
Finally, if z = (0; 0), then we obtain

T (�) = S1(�) � S2(�)

= [�c1 � �
e1 + o(�e1); c1 � �

e1 + o(�e1 )] � [�c2 � �
e2 + o(�e2 ); c2 � �

e2 + o(�e2 )]

= [�c1c2�
e1+e2 + o(�e1+e2); c1c2�

e1+e2 + o(�e1+e2)]

where c1; c2; e1; e2 are positive numbers determined by S. This proves the as-
sertion in the case of the multiplication �.

\op = =": The division can be treated in a way similar to the multiplication.
In fact, not all cases which had to be treated in the multiplication can occur
because division by zero is not allowed: the center z2 of the second component
S2 of the almost symmetrical class S of interval vectors can never be 0.
This ends the proof of Proposition 4.3. 2

Corollary 4.4 Let F (x1; : : : ; xm) be an arithmetical expression and S : [0; 1)!
IIIRm be an almost symmetrical class of interval vectors with some center z 2

IRm such that FIIIR(S(�)) is de�ned for all � 2 [0; 1). Then the function T :
[0; 1)! IIIR de�ned by

T (�) := FIIIR(S(�))

is an almost symmetrical class of intervals with center FIR(z).

Proof. This follows from Proposition 4.3 and by induction over the structure
of the arithmetical expression F . 2

Corollary 4.4 is the last step towards the proof of Theorem 3.1.

Proof of Theorem 3.1. Let n, D, f , z, F , and ~c be as in Theorem 3.1. We
assume without loss of generality that f (2n)(z) > 0. Our assumptions imply
that for numbers x close to z

f(x) = f(z) +
f (2n)(z)

(2n)!
� (x� z)2n + o(jx � zj2n) :

Hence, we can �x a (su�ciently small) positive constant c0 < ~c such that there
is a function s : [0; c0)! IR with s(�) 2 o(�2n) and such that for � 2 [0; c0)

f([z � �; z + �]) = [f(z); f(z) +
f (2n)(z)

(2n)!
� �2n + s(�)] : (1)

From (1) and the assumptions in Theorem 3.1 we conclude

FIIIR([z � �; z + �]) � [f(z); f(z) +
f (2n)(z)

(2n)!
� �2n + s(�)] (2)
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for all � 2 [0; c0). Applying Corollary 4.4 to the almost symmetrical class of
intervals S : [0; 1)! IIIR with S(�) := [z� c0�; z+ c0�] tells us that the function
T : [0; 1) ! IIIR with T (�) := FIIIR([z � c0�; z + c0�]) is an almost symmetrical
class of intervals with center FIR(z) = f(z). From (2) we conclude that there is
a function t : [0; c0)! IR with t(�) 2 o(�2n) such that for all � 2 [0; c0)

FIIIR([z � �; z + �]) �

[f(z)�
f (2n)(z)

(2n)!
� �2n � s(�) + t(�); f(z) +

f (2n)(z)

(2n)!
� �2n + s(�)] :

Hence, if for " 2 (0; 1) we choose a positive c" < c0 small enough, then for all
� 2 [0; c")

FIIIR([z� �; z+ �]) � [f(z)�
f (2n)(z)

(2n)!
� (1� ") � �2n; f(z)+

f (2n)(z)

(2n)!
� (1� ") � �2n] :

Using (1) we conclude that for all � 2 [0; c")

dH(FIIIR([z � �; z + �]); f([z � �; z + �])) �
f (2n)(z)

(2n)!
� (1� ") � �2n :

That was to be shown. 2

5 Final Remarks

If a function f on the reals is monotonic, e.g. nondecreasing, then the compu-
tation of the range of f over an interval is trivial: f([a; b]) = [f(a); f(b)] in case
f is nondecreasing. If f is su�ciently often di�erentiable, then the only points
at which f is locally not monotonic are the points z such that the minimal
positive integer i with f (i)(z) 6= 0 is even. It is striking that these are just
the points which cause the problems in the interval arithmetic evaluation of an
arithmetical expression for f as explained in Theorem 3.1.

Cornelius and Lohner [6], Alefeld and Lohner [5, 3], and others have shown
that in special cases there exist so{called \higher order centered forms" which
give better than quadratic approximation. Why does this not contradict our
main result? The answer is that for these higher order centered forms one
does not consider only arithmetical expressions F and the interval arithmetic
evaluation FIIIR as de�ned in Section 2. Instead of allowing only the basic
four interval operations induced by the real operations +;�; �; =, one uses also
interval functions induced by more complicated functions like xk for some k �
2 (compare Alefeld and Lohner [5, 3]) or of even more complicated rational
functions (compare Cornelius and Lohner [6]). For example the real function
x 7! x2 induces the interval function

[a; b] 7! square([a; b]) := fx2 j x 2 [a; b]g

=

�
[minfa2; b2g;maxfa2; b2g] if 0 62 [a; b]
[0;maxfa2; b2g] if 0 2 [a; b] :

11



We might extend the de�nition of an arithmetical expression by saying that also
t2 is an arithmetical expression if t is an arithmetical expression. If H(x) is an
arithmetical expression as de�ned in Section 2 and z is a point at which HIR is
de�ned, then for an arbitrary c 2 IR the extended arithmetical expression

F (x) = (c+ ((x� z)2 �H(x)))

de�nes a rational function FIR with F 0
IR(z) = 0 and F 00

IR(z) = 2 �H(z). In that
case, there exists a constant c > 0 such that the extended interval arithmetic
evaluation yields a superset

dFIIIR(I) = (c+ (square(I � z) �H(I)))

of FIR(I) with

dH(dFIIIR(I); FIR(I)) � c � w(I)3

for all su�ciently small intervals I containing z, compare Alefeld and Lohner
[5, 3].

The last remark leads to another problem: to characterize which \basic"
interval operations are necessary and su�cient such that the interval arith-
metic evaluation of extended arithmetical expressions containing these opera-
tions yields the exact range for certain rational functions over intervals, | at
least locally. Certainly, our main result can be generalized to certain larger
classes of interval operations. More generally, one can analyze the following
question not only for the class of interval operations f+;�; �; =g but also for
larger classes: how well can one approximate the range of a given rational
function over an interval by interval arithmetic evaluation of appropriate arith-
metical expressions by using basic interval arithmetic operations from a given
class? Which classes of basic interval operations are useful?
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