
CDMTCS

Research

Report

Series

X-Families: An Approach to

the Study of Families of

Syntactically Similar

Languages

Carlos Mart�in-Vide

Rovira i Virgili University

Gheorghe P�aun

Institute of Mathematics of

the Romanian Academy

Grzegorz Rozenberg

Leiden University

Arto Salomaa

Academy of Finland and Turku University

CDMTCS-076

January 1998

Centre for Discrete Mathematics and

Theoretical Computer Science

X-Families:

An Approach to the Study of Families

of Syntactically Similar Languages

Carlos MART�IN-VIDE
Research Group on Mathematical Linguistics and Language Engineering

Rovira i Virgili University
Pl. Imperial T�arraco 1, 43005 Tarragona, Spain

Gheorghe P�AUN
Institute of Mathematics of the Romanian Academy

PO Box 1 { 764, 70700 Bucure�sti, Romania

Grzegorz ROZENBERG
Department of Computer Science, Leiden University

PO Box 9512, 2300 Leiden, The Netherlands

Arto SALOMAA
Academy of Finland and Turku University

Department of Mathematics
20014 Turku, Finland

Abstract. All classes of grammars investigated in formal language the-

ory generate a language by starting from �nite sets of axioms and itera-

tively applying certain production rules which transform \correct" strings
into \correct" strings. If the set of rules is �xed and the axiom set is vary-
ing over the family of �nite languages, then to any grammar we associate

a family of languages. When using grammars of certain type X, we call

this family an X-family. The aim of this paper is to propose the investi-
gation of such families of languages. We only formulate here some of the

basic problems and we start the study of M-families, those obtained when
using Marcus contextual grammars as starting point. Several properties

of M-families are given, examples and counterexamples are produced,
and some decidability results are proven.

1

1 Introduction: X-Families

The formal language theory deals mainly with the syntax of individual languages.

Not so many tools are developed for studying the syntax of families of languages, or,

otherwise stated, to study families of languages with certain syntactic similarities.

In linguistics, this problem is a central one; dialects, stages in the development of a

language, languages which form well-de�ned families are topics much investigated.

A theoretical attempt to deal with this problem is that of grammar forms, intro-

duced in [1]; see details in [11], [14]. The basic idea was to interpret the symbols of

a usual Chomsky grammar by means of a morphism and to consider the family of

languages generated by sets of rules obtained by such interpretations. In this way,

we obtain a family associated with the starting grammar. The area was ourishing

for a while, but the applications turned out not to be signi�cant. Maybe two of

the explanations are that the notion of an interpretation is too general and that the
obtained families are \too similar" to Chomsky families. In particular, the regular,
linear, and context-free languages form grammatical families in the sense of gram-
mar form theory. This should be contrasted with the fact that the natural languages

does not �t easily the Chomsky hierarchy. In terms of [3] (page 4), \It is entirely
possible, for example, that a realistic theory of natural languages would de�ne a
class of languages which is incommensurate with the Chomsky types, e.g., a few
regular languages, a few non-regular context-free languages, a few non-context-free
context-sensitive languages, and so on."

A simple idea of dealing with families of syntactically similar languages (such as

the dialects of a natural language) is the following one. All grammars, of all types
investigated in formal language theory, contain three basic components: an alphabet,
a set of starting strings (axioms), and a set of production rules. One starts from
the axioms and one produces a language by iteratively using the production rules.
For instance, in the case of Chomsky grammars, we have only one axiom, which is a

symbol, and the productions are rewriting rules. In L systems and in pure grammars
one usually deals with a string axiom, but in Marcus contextual grammars and in
H systems one uses a �nite set of axioms (and context adjoining rules in the case
of contextual grammars and splicing rules in H systems). We refer for details to

the corresponding chapters in [13], as well as to the monographs [8], [10]. Also

for Chomsky grammars, L systems and pure grammars we can start from a �nite
set of axioms and the basic properties of the obtained grammars and associated

languages remain the same. (Actually, L systems with �nite sets of axioms were
already considered.)

Now, consider a generative mechanism of a type X and let us remove its axiom

set. We say that we obtain a scheme of type X, in short, an X-scheme. Take such a
scheme �. We can associate with it an in�nite class of devices of type X by adding
to � any �nite set of axioms over the alphabet of �. In this way, we obtain a family

of languages associated with �, those generated by these generative mechanisms

corresponding to �. We say that this is an X-family. By the de�nition, the syntactic

2

similarity of the languages in a given X-family is obvious: the productions used for

generating these languages are the same (modulo their applicability to the particular

set of axioms).

Such families can be considered for Chomsky grammars, Marcus contextual

grammars, pure grammars, L systems, H systems. We identify them as X-families

with X equal to C, M, P, L, H, respectively.

We want to point out that, as regards L schemes, quite much work has already

been done along these lines, [12]. Briey, an XL scheme (for instance, 0L, D0L,

ET0L scheme) is an XL system without the axiom. We recall here the following

interesting result, [12], concerning growth type combinations of D0L schemes.

D0L growth functions are customarily classi�ed using numbers as follows. Ex-

ponential functions are of type 3. Functions becoming ultimately 0 are of type 0.

(Thus, the corresponding D0L sequence becomes the empty word at some stage).

Functions not of type 0 and bounded from above by a constant are of type 1. All re-
maining growth functions are of type 2. (This class consists of polynomially bounded

functions that are not bounded by a constant.) The growth type combination of a
D0L scheme S is the subset of f0; 1; 2; 3g, consisting of all numbers i such that S
provided with some (nonempty) axiom yields a D0L system of growth type i.

The result we are referring to lists all possible growth type combinations. They
are:

f0g; f1g; f3g; f0; 1g; f0; 3g; f1; 3g; f1; 2g;

f0; 1; 2g; f0; 1; 3g; f1; 2; 3g; f0; 1; 2; 3g:

In other words, in a D0L scheme the growth type 2 never occurs without type 1;
this is the only restriction concerning the growth type combination.

Of course, the growth type combination of an L scheme gives an information
about the family of languages associated to that scheme, but it does not \describe"

the family. So, further investigations remain to be done (for instance, concerning
problems as those mentioned in the next section).

2 Basic Problems

In the way sketched above we obtain many X-families of languages. When studying

them, speci�c problems will occur, but there are several classes of problems which

can be formulated for all these families (and which are of a basic interest, in view
of the motivation we have started with). We mention here some of these problems.

Given an X-scheme �, we denote by FX(�) the X-family associated with �.

1. (Family Equivalence Problem) Given two X-schemes �1 and �2, can we decide
algorithmically whether or not the equality FX(�1) = FX(�2) holds ?

2. (Family Inclusion Problem) Given two X-schemes �1 and �2, can we decide

algorithmically whether or not the inclusion FX(�1) � FX(�2) holds ? (Of

3

course, the positive answer to the second problem implies the positive answer

to the �rst problem.)

3. (Language Equivalence and Inclusion Problems) Given an X-scheme � and two

languages L1; L2 2 FX(�), are the relations L1 = L2 and L1 � L2 decidable ?

(Note that this is not the general decidability problem for languages generated

by grammars of type X: we do not consider arbitrary languages L1; L2, but

languages in the same X-family, hence syntactically similar. It is expected

that undecidable problems in the general case are decidable in this restricted

case, or, at least, easier to solve.)

4. (FamilyMembership Problem) Given a language L and an X-scheme �, decide

whether or not L 2 FX(�) (whether or not a set of axioms exists such that L

is generated by � supplemented with this set of axioms).

5. (Similarity Problem) Given two languages L1; L2, decide whether or not there
is an X-scheme � such that both languages L1; L2 are in FX(�). In the a�r-
mative case, construct e�ectively a scheme � such that L1; L2 2 FX(�).

6. (Closure Properties) What closure properties has an X-family ? Again, one
can expect results which are di�erent from the results known for families of
languages generated by grammars of type X.

7. (Comparison Problems) Compare the X-families with previously considered
families in language theory, such as families in the Chomsky hierarchy, in the

hierarchies of Marcus contextual languages, of pure and L languages, of lan-
guages generated by H systems. Families de�ned by descriptional complexity
parameters are also good candidates (especially because when considering an
X-scheme, we �x the set of productions, hence all associated languages will
have the production-complexity bounded by the complexity of the scheme).

Several other problems can be considered (characterizations of X-families, op-
erations with families and their e�ect on the property of being an X-family, etc).

Some suggestions will appear also from the sections below, where we consider as a

case-study the M-families, associated to Marcus contextual grammars.

3 Contextual Grammars

The contextual grammars, introduced by [4], are a class of generative mechanisms

which produce families of languages which are \incommensurate" with the families
in the Chomsky hierarchy. Such a grammar consists of a given set of strings (ax-

ioms, well-formed starting phrases) and a set of contexts associated with certain

strings, called selectors. When a string selector is present in a larger string, then the
associated context can be adjoined to the selector occurrence, producing a larger

4

string. In this way, starting from the axioms and iteratively adjoining contexts we

get a language. The mathematical theory of contextual grammars is well developed:

see [8]. Up to now, this theory has dealt only with the generation of individual

languages, as in \classic" formal language theory. However, because the contextual

grammars have as an intrinsic feature the use of a �nite set of axioms, they are able

to generate in a very natural way families of syntactically similar languages.

We briey investigate here such families of languages (M-families), mainly for

illustrating the problems mentioned in the previous section. For instance, we �nd

that no previously considered family of languages (neither in the Chomsky area nor

in the contextual area) is an M-family. This shows that this notion of similarity is a

new one, indeed, which cannot be reduced to other notions of similarity. Moreover,

we �nd that certain properties of M-families (closure and decidability) are di�erent

from the properties of families of contextual languages studied before. This supports

again the conclusion drawn before.

First, some general notations.
For an alphabet V we denote by V � the set of all strings over V ; the empty string

is denoted by � and V ��f�g (the set of all non-empty strings over V) is denoted by
V +. Any subset of V � is called a language (over V). The length of x 2 V � is denoted

by jxj and its mirror image (reversal) is denoted by mi(x). By FIN, REG, LIN,

CF, CS, RE we denote the families of �nite, regular, linear, context-free, context-
sensitive, and recursively enumerable languages, respectively. For further elements
of formal language theory we refer to [13].

A contextual grammar is a construct G = (V;A; P), where V is an alphabet, A is
a �nite language over V , and P is a �nite set of triples (x; (u; v)) of strings over V .

The strings in A are called axioms, each triple (x; (u; v)) of P is called a production;
x is the selector and (u; v) is the context of the production (x; (u; v)).

For w; z 2 V � we write w =) z (with respect to G) if and only if w =
w1w2w3; z = w1uw2vw3, for some w1; w2; w3 2 V �, and (w2; (u; v)) 2 P . (The
context (u; v) is adjoined to the selector x found as a substring of w; the resulting

string is z.) We denote by =)� the reexive and transitive closure of the relation

=). The language generated by G is de�ned by

L(G) = fz 2 V �

j w =)� z;w 2 Ag:

Some remarks are here in order. In [4] the contexts are adjoined at the ends
of strings (such grammars are called external); the variant considered here, called

internal, is introduced in [9]. Moreover, we have de�ned here only grammars with
�nite sets of selector strings. In the literature one can �nd also contextual gramm-

mars with regular selection (the productions are of the form (R; (u; v)), where R is
a regular language and (u; v) is a context), and even with arbitrary selection.

We denote by ICC the family of languages generated by (internal) contextual

grammars as above (with �nite selection). Proofs and references concerning the
following results can be found in [8]:

5

Theorem 1. (i)REG � ICC � CS: (ii) ICC is incomparable with LIN and CF.

(iii) ICC contains non-semilinear languages. (iv) The family ICC is an anti-AFL,

that is, it is closed under none of the six AFL operations: union, concatenation,

Kleene closure, morphisms, inverse morphisms, intersection with regular languages.

Further results concerning the languages in ICC will be mentioned in the fol-

lowing sections, when necessary. We conclude this section with an example which

will be useful below: for the grammar

G = (fa; b; cg; facb; bcag; P);

with P containing the productions

(c; (a; a)); (c; (b; b));

(acb; (a; �)); (acb; (b; �)); (acb; (�; a)); (acb; (�; b));

(bca; (a; �)); (bca; (b; �)); (bca; (�; a)); (bca; (�; b));

we obtain
L(G) = fxcy j x; y 2 fa; bg+; x 6= mi(y)g:

The reader might check this equality.

4 M-Families of Languages

A pair � = (V; P), where V is an alphabet and P is a �nite set of contextual
productions (x; (u; v)) over V , such that there is at least one production with uv 6= �,
is called a contextual scheme, or an M-scheme. For a �nite language A � V �,

we de�ne the language L(�;A) = L(G�;A), where G�;A is the contextual grammar
(V;A; P). Thus, with an M-scheme � we associate the family of languages

FM(�) = fL(�;A) j A 2 FINg:

A family of languages L is called an M-family if there is an M-scheme � such
that L = FM(�).

Therefore, the languages in an M-family are generated by contextual grammars

which have the same productions, but di�erent axioms. The set of productions

are related to the syntactic structure of languages, that is why we do not allow

M-schemes with a trivial set of productions, empty or containing only the context

(�; �). No syntax is then provided by the scheme, the axiom sets remain unchanged.
Of course, changing the set of axioms it is possible that the set of applicable

productions changes, too. We shall further discuss this problem in a subsequent
section.

By the de�nition, we have FM(�) � ICC for all �.

6

We consider here one example. Take the M-scheme � = (fa; b; cg; P), where

P is the same as in the example at the end of the previous section. Here are some

languages in FM(�):

L(�; facb; bcag) = fxcy j x; y 2 fa; bg+; x 6= mi(y)g;

L(�; fcg) = fxc mi(x) j x 2 fa; bg+g;

L(�; fc; acb; bcag) = fxcy j x; y 2 fa; bg+g [fcg;

L(�; fckg) = (L(�; fcg))k; k � 1:

The syntactic similarity of these languages (and of other which can be obtained

in this way, for various axiom sets) is obvious. It is worth noting that the family

FM (�) is in�nite (see the last languages, di�erent from each other for di�erent values

of k) and that in constructing the language L(�; c) the productions with the selectors

acb and bca are never used. This can be easily seen in this example, but it is not a
simple matter in the general case: there is no algorithm which can tell us whether

or not for a given set of axioms all productions are applicable in generating the
corresponding language (Section 6 below deals with this question).

5 Closure Properties

We have mentioned in Theorem 1 (iv) the poor closure properties of the family ICC.
The M-families contain similar languages, hence we may expect di�erences from this
point of view. This is true only for union:

Theorem 2. Each M-family is closed under union.

Proof. Clearly, for all � = (V; P) and for all A1; A2 � V �, we have

L(�;A1) [L(�;A2) = L(�;A1 [A2);

hence FM(�) is closed under union. 2

This simple result has several consequences of interest: ICC is not an M-family;

no family of contextual languages which is not closed under union is an M-family;
if two contextual languages L1; L2 are such that L1 [L2 =2 ICC, then there is no

M-scheme � such that L1; L2 2 FM(�) (the two languages cannot be members of
the same M-family, there is no way to �nd a syntactic similarity between them in

terms of M-schemes).

Trivially, the M-families of languages are not necessarily closed to the unary (or

to external) operations mentioned in Theorem 1 (iv): Kleene closure, morphisms,

inverse morphisms, intersection with regular languages. For instance, if L 2 ICC

and h(L) =2 ICC, for some morphism h, then any M-family containing L is not

closed under morphisms (all M-families are included in ICC). The closure under
concatenation (and intersection) needs new proofs.

7

Theorem 3. There are M-families which are not closed under concatenation or

under intersection.

Proof. Consider the M-scheme

�1 = (fa; bg; f(ab; (a; b)); (ba; (�; a))):

The language L(�1; fabg) = fanbn j n � 1g is in FM(�1), but L(�1; fabg)L(�1; fabg)

not: if this language can be generated by �1 starting from a set A of axioms, this

set must contain strings of the form aibiajbj for some i; j � 1; to such a string

we can apply the production (ba; (�; a)) and in this way we obtain strings of the

form aibiaj+kbj for all k � 1. Such strings are not in L(�1; fabg)L(�1; fabg), a

contradiction.

For the intersection we consider the M-scheme

�2 = (fa; b; c; d; eg; P);

with P containing the following productions:

(adbdc; (�; c)); (adb; (a; b)); (d; (�; e));

(aebec; (a; �)); (bec; (b; c)); (e; (d; �)):

For the languages

L(�2; fadbdcg) = fanderbndescm j n;m � 1; r; s � 0g;

L(�2; faebecg) = fandrebmdsecm j n;m � 1; r; s � 0g;

we obtain

L(�2; fadbdcg) \ L(�2; faebecg) = fandebndecn j n � 0g:

This language is not even in the family ICC: no context can be removed from its
strings in such a way to obtain a string in the same language. 2

Note that in the proof above we have used again the freedom of choosing the

axioms, without care whether or not all productions are applicable for a set of axioms

or another one.

6 Undecidability of Axioms Matching

Given an M-scheme � = (V; P) and a �nite language A � V �, we say that A is a
matching set of axioms for � if for every production (x; (u; v)) 2 P there is a string
w 2 L(�;A) such that w = w1xw2. (That is, all productions from P are applicable

when starting from the axioms in A.)

As we have mentioned above, the axiom sets we have used were in many cases

non-matching. However, this is not an easy to check property, because it is of

8

a dynamic nature: we have to take into consideration all strings generated when

starting from a given set of axioms (not, say, only the axioms or any other speci�ed

�nite set of strings). This is formally con�rmed below:

Theorem 4. There is no algorithm which can decide whether or not a given set

of axioms is matching with respect to an arbitrary M-scheme.

Proof. Let us consider an instance of the Post Correspondence Problem (PCP)

over the alphabet fa; bg, that is, two n-tuples of non-empty strings over fa; bg,

x = (x1; : : : ; xn); y = (y1; : : : ; yn). We consider the following language

L0 = fcdmcxi1xi2 : : : xikcyi1yi2 : : : yik j k � 1; 1 � ij � n; for all 1 � j � n;

and m = 1; if xi1xi2 : : : xik = yi1yi2 : : : yik ; and m = 0; otherwiseg:

It is clear that L0 is a context-sensitive language. Consider a context-sensitive
grammar G = (N;T; S; P) generating the language L0; of course, T = fa; b; c; dg.

We construct the M-scheme � with the alphabet

V = N [T [ff; [;];`g;

and the following productions:

1. (u; ([;]v)), for each rule u! v in P ;

2. (�[u]; (`; �)), for all u! v 2 P and � 2 N [T ,

3. (� ` �; (`; �)), for all �; � 2 N [T ,

4. (�f; (`; �)), for all � 2 T ,

5. (fcdc; (f; f)):

Consider also the set of axioms fSfg and let us examine the work of � when
starting from Sf .

The productions of type 1 are meant to simulate the rewriting rules of P . When

simulating a rule u ! v, we pass from a string w1uw2 to a string w1[u]vw2; the

left member of the rule is bracketed with [and], and the right member of the
rule is adjoined to the right of the string [u]. The symbols in between [and]

are interpreted as \dead": if a further rule of P is simulated on dead symbols,
then all resulting symbols will be dead. This means that none of them can exit

the brackets [,]. Symbols which are not dead (we say that they are \alive") can
circulate to the right, by using rules in group 2 and in group 3. By rules in group

2, alive symbols can jump over blocks of the form [u]; we obtain derivation steps

of the form w1�[u]w2 =) w1 ` �[u]�w2. Also ` is considered a \killer": it kills
the symbol placed immediately to its right. The rules of type 3 can transport

alive symbols across pairs ` � (hence over dead symbols due to the presence of `):
w1� ` �w2 =) w1 ` � ` ��w2. Note that if a dead symbol in a block ` � is used

9

by the selector of a rule of type 3 and interpreted as alive, then we get a pair of

adjacent symbols `: w1 ` � ` �w2 =) w1 `` � ` ��w2. This will be a barrier, no

selector can use this sequence, hence symbols placed to the left of such a pair ``

cannot be transported to the right, across ``. This is important, on the one hand,

because it might block the simulation of the rules in P (only moving alive symbols

we can create substrings u for the rules in P), and because we want to collect all

terminal alive symbols produced to the left of f and to move them to the right of f ,

by means of rules of type 4. (The construction of � is based on a similar construction

used in [2], with a di�erent goal, for arbitrary type-0 Chomsky grammars. Thus,

details concerning the correctness of the construction can also be found in [2].)

Now, the rule of type 5 can be applied if and only if: (i) a derivation in G has

been correctly and completely simulated by the rules of types 1, 2, 3 (no nonterminal

symbol is alive, because the symbols cdmc have to be moved across f and they are

the last to do this, hence they have to cross the whole string in the left of f ; if this
string contains blocks ``, or alive nonterminals, or substrings of the form [u1[u2]u3],
then the operation is not possible), (ii) we havem = 1. This means that the string in
L0 corresponding to this derivation is of the form cdcxi1xi2 : : : xik = yi1yi2 : : : yik , for
some k � 1 and 1 � ij � n; 1 � j � k. This means that PCP (x; y) has a solution,

which is undecidable. Therefore, the appearance of the subword fcdc (hence the use
of the corresponding production of �) is not algorithmically predictable. Whether
or not Sf is a matching set of axioms for � is not decidable. 2

Because of this result, we will not impose that the axiom sets we use are matching
and we continue to work in the general, non-restricted case.

7 Non-M-Families

We have announced in the Introduction that no previously considered family of
languages is an M-family. We will make here a list of such non-M-families.

� ICC (we have already mentioned this, as a consequence of Theorem 2).

� No �nite family of languages can be an M-family, because of the following

fact: every M-family is in�nite. This can be easily seen: take the languages
Ai = V i, for i � 1; for every � we have L(�;Ai) 6= L(�;Aj) for i 6= j (if, for

instance, j > i, then V i 2 L(�;Ai)� L(�;Aj)).

� No family containing only �nite languages is an M-family, because of the fol-

lowing fact: every M-family contains an in�nite language. This is due to the
fact that we work with non-trivial M-schemes, having at least a non-null con-

text, and to the fact that if a production (x; (u; v)) can be used once, then

it can be used inde�nitely (the selector remains after adjoining the context).
Thus, the family FIN or any subfamily of it cannot be an M-family.

10

� Let us denote by ICCk the family of languages which can be generated by

contextual grammars with at most k productions, k � 1. No family ICCk;

k � 1, is an M-family, because these families are not closed under union. To

see this, let us consider the languages

L1 =
k[

i=1

(abia)+;

L2 = (abi+1a)+:

We have L1 2 ICCk (it is generated by the grammar G = (fa; bg; fabia j 1 �

i � kg; f(abia; (�; abia)) j 1 � i � kg)) and L2 2 ICC1, but L1 [L2 =2 ICCk,

which is easy to be seen.

� REG and any family including REG is not an M-family, because for every
M-family FM (�) there is k � 1 (the number of productions in �) such that
FM (�) � ICCk. On the other hand, for every k � 1, there are languages
L 2 REG such that L =2 ICCk.

� The family of one-letter regular languages is not an M-family. Assume the
contrary, and consider an M-scheme � = (fag; P) such that FM(�) = REG \

2a
�

. Let m = maxfjuvj j (x; (u; v)) 2 Pg. All languages in FM (�) have the
m-bounded growth property: for any string x in a language there is a string y
in the same language of the lenght di�ering by at most m from the length of
x. Such a property does not hold for the language L = (am+1)+, hence this

language cannot be in FM(�).

Although easy to prove, these assertions are signi�cant for our approach: the
property of being an M-family is not related to other properties of languages than
the syntactic similarity as de�ned by the M-schemes.

8 Decidabilty Results

As for operations with languages, it is expected that certain problems which can be

formulated for languages in the same M-family have di�erent answers than for the
general case, when we refer to arbitrary contextual languages.

This is indeed the case with the inclusion (and probably the equivalence) prob-

lem:

Theorem 5. (i) The inclusion is undecidable for languages in ICC, but (ii) it is

decidable for languages in any M-family.

Proof. (i) Let us consider again the contextual grammar G given at the end of

Section 2, as well as the grammar G0 = (fa; b; cg; fcg; P), with the productions

(c; (xi;mi(yi)); 1 � i � n;

11

where x = (x1; : : : ; xn); y = (y1; : : : ; yn) are two n-tuples of non-empty strings over

fa; bg. It is easy to see that L(G0) contains strings of the form wc mi(w) if and

only if the Post Correspondence Problem for x; y has a solution; if PCP (x; y) has

no solution, then all strings in L(G0) are of the form wcz with w 6= mi(z).

Remember that L(G) = fwcz j w; z 2 fa; bg+; w 6= mi(z)g. Therefore, L(G0) �

L(G) if and only if PCP (x; y) has no solution, which is not decidable.

(ii) Consider an M-scheme � = (V; P) and take two contextual grammars G1 =

(V;A1; P); G2 = (V;A2; P) derived from it. It is clear that, because G1; G2 have the

same productions, L(G1) � L(G2) if and only if A1 � L(G2). Because FM(�) �

ICC � CS, the membership is decidable for the language L(G2). The set A1 is

�nite, hence we can check algorithmically whether or not A1 � L(G2). 2

Corollary 1. The equivalence is decidable for languages in the same M-family.

Proof. The decidability of the inclusion implies the decidability of the
equivalence. 2

It is of interest to note that the decidability of the equivalence for arbitrary
languages in ICC is an open problem ([8]).

9 Further Problems

The inclusion problem investigated above is related to the following problem of a
more general interest.

Consider the following M-scheme:

� = (fa; bg; f(�; (�; �)) j � 2 fa; bgg):

As we have mentioned in Section 6, the family FM(�) is in�nite, but, on the other
hand, every language in this family is included in L(�; f�g) = fa; bg�. We say that
the M-familyFM(�) has an attractor (the language fa; bg�): a language in the family

which includes all languages in the family.
Such a property is not valid for the next M-scheme:

�0 = (fa; bg; f(ab; (ab))g):

All languages L(�0; f(ab)ig) = fanbn j n � 1gi are in FM (�0), but there is no lan-

guage in this family which includes all these languages. This suggests the following

questions:

1. Is the property of having an attractor decidable ? When an attractor exists,

can it be e�ectively constructed ?

In view of the fact that the union of two languages in an M-family is also in

the family, in general, that given two sets of axioms A1; A2 such that A1 � A2, the

language associated with A1 is included in that associated with A2, it is of interest

12

to consider a notion of the following type: for an M-family FM (�) we say that a

family L is a cover of FM(�) if (i) L � FM (�), (ii) for all two di�erent languages

L1; L2 2 L none of the inclusions L1 � L2; L2 � L1 holds, (iii) for every L1 2 FM (�)

there is L2 2 L such that L1 � L2, and (iv) L is maximal with these properties.

Of course, if FM(�) has an attractor L, then fLg is a cover for FM(�) and it is

the unique one.

2. Given an M-scheme �, is the cover of FM(�) unique ?

3. Can a cover of FM (�) (the unique one, if this is the case) be e�ectively con-

structed ?

4. What properties has a cover (in comparison with the properties of FM (�)) ?

5. Because the cover can contain only one language { the case of M-families
having an attractor { it follows that a cover of an M-family is not necessarily
an M-family. Are there M-families for which the covers are M-families, too ?

6. Returning to the matching sets of axioms, one may also ask what happens
when one considers only M-families de�ned by using matching sets of axioms.

This restricts the arguments in many of the proofs in the previous sections.

All the investigations above as well as the previous problems can be considered
for other variants of contextual grammars and associated schemes. For instance, we

can consider M-schemes with maximal (or minimal) use of selectors, as introduced
in [6]. In view of the relevance of these variants of contextual grammars for natural
language study (see, e.g., [5]), this case deserves a special attention. In general, the
usefulness of M-families (and of other X-families) for linguistics is a problem which
should be addressed.

Recently ([7]), a combination of Chomsky and Marcus grammars was proposed,
under the name of MC-grammars: take an alphabet (separated into a nonterminal
and a terminal alphabet), a �nite set of axioms, a �nite set of rewriting rules (as

in Chomsky grammars) and a �nite set of context adjoining rules (as in a Marcus
grammar). A language is generated by applying both types of rules, either nonde-

terministically chosen or in a prescribed sequence.
This idea can be extended also to X-families, leading to XY-families: �rst, con-

sider hybrid grammars, mixing productions of types X and Y for all possibilities X,
Y in the set fC, M, P, L, Hg, then consider XY-schemes (such grammars without

a set of axioms), and then de�ne the associated families of languages. (Such hybrid
grammars seem to be well suited for linguistic interpretations, taking into account

the two main components of natural languages, the syntactic and the semantic one,

and other similar two-level approaches to natural languages.)
All problems considered above can be formulated also for XY-families (a level

where, presumably, they are more di�cult than for X-families).

13

10 Conclusions

We have here only introduced the notion of an X- and XY-family, as an attempt to

study families of syntactically similar languages, we have formulated several basic

research topics for this area, and we have considered as a case-study the M-families.

(Of course, the problems investigated for M-families, such as the matching questions

for axioms, can be formulated for any type of X- and XY-family.)

We appreciate that this area of research is very fruitful, well motivated, and

connected with many known problems and results in formal language theory, but

also raises a wealth of new problems. In short, we believe that the study of X- and

XY-families deserves a more intensive research.

References

[1] A. B. Cremers, S. Ginsburg, Context-free grammar forms, J. Computer System

Sci., 11 (1975), 86 { 116.

[2] A. Ehrenfeucht, Gh. P�aun, G. Rozenberg, On representing recursively enumer-
able languages by internal contextual languages, Theoretical Computer Sci.,
182 (1997).

[3] A. Manaster Ramer, Uses and Misuses of Mathematics in Linguistics, X Con-
greso de Lenguajes Naturales y Lenguajes Formales, Sevilla, 1994 (unpublished
manuscript).

[4] S. Marcus, Contextual grammars, Rev. Roum. Math. Pures Appl., 14 (1969),
1525 { 1534.

[5] S. Marcus, C. Mart��n-Vide, Gh. P�aun, Contextual grammars as generative
models of natural languages, Computational Linguistics, to appear.

[6] C. Mart��n-Vide, A. Mateescu, J. Miquel-Verges, Gh. P�aun, Internal contextual

grammars: minimal, maximal, and scattered use of selectors, Proc. of the Fourth

Bar-Ilan Symp. on Foundations of AI, BISFAI '95 (M. Koppel, E. Shamir,

eds.), The AAAI Press, Menlo Park, Ca., 1996, 159 { 168.

[7] C. Mart��n-Vide, A. Mateescu, Gh. P�aun, Hybrid grammars; The Chomsky-
Marcus case, Bulletin of the EATCS, to appear.

[8] Gh. P�aun, Marcus Contextual Grammars, Kluwer Academic Publ., Dordrecht,

Boston, London, 1997.

[9] Gh. P�aun, X. M. Nguyen, On the inner contextual grammars, Rev. Roum.

Math. Pures Appl., 25 (1980), 641 { 651.

14

[10] Gh. P�aun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing

Paradigms, in preparation.

[11] Gh. P�aun, A. Salomaa, Families generated by grammars and L systems, chapter

12 in vol. 1 of [13], 811 { 861.

[12] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic

Press, New York, 1973.

[13] G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, 3 volumes,

Springer-Verlag, Berlin, Heidelberg, 1997.

[14] D. Wood, Grammar and L Forms: An Introduction, Lect. Notes Computer Sci.

91, Springer-Verlag, Berlin, 1980.

15

