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Abstract

How fast can one approximate a real by a computable sequence of rationals?
We show that the answer to this question depends very much on the information
content in the �nite pre�xes of the binary expansion of the real. Computable reals,
whose binary expansions have a very low information content, can be approximated
(very fast) with a computable convergence rate. Random reals, whose binary ex-
pansions contain very much information in their pre�xes, can be approximated only
very slowly by computable sequences of rationals (this is the case, for example, for
Chaitin's 
 numbers) if they can be computably approximated at all.

We show that one can computably approximate any computable real also very
slowly, with a convergence rate slower than any computable function. However, there
is still a large gap between computable reals and random reals: any computable se-
quence of rationals which converges (monotonically) to a random real converges
slower than any computable sequence of rationals which converges (monotonically)
to a computable real.

Keywords: Computable reals, random reals, approximations, program{size com-
plexity, information content.

1 Introduction

In this paper we analyze the possible rates of convergence of computable sequences of

rationals by using information{theoretic arguments. We show several results stating that

the maximal and the minimal convergence rate of converging, computable sequences of

rationals is closely related to the information content of the �nite pre�xes of the binary

expansions of their limits.

In practice, if one wishes to compute a real one computes a sequence of rationals

which converges to the real. To do this e�ciently is a problem of fundamental impor-

tance in many branches of mathematics and computer science, ranging from constructive

mathematics (see Bishop and Bridges [1]), computable analysis (see Weihrauch [16] and
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Ko [9]), information based complexity (see Traub, Wasilkowski, and Wo�zniakowski [15])

to numerical analysis in general. The most important class of reals in this context is

certainly the set of computable reals. In order to de�ne them we introduce the notions

of a computable sequence of rationals and of a computable convergence rate. We call

a sequence (ai)i�0 of rationals ai computable if there is a Turing machine which, given

a binary name for a nonnegative integer n, computes a name for the rational an, with

respect to a standard notation of rationals. A sequence (�i)i�0 of reals �i is said to

converge computably if it converges and there is a computable function g : N! N such

that j�i � limk!1 �kj � 2�j for all i; j with i � g(j). A real � is called computable

if there exists a computable sequence of rationals which converges computably to �.

For example, all algebraic numbers, �, the Euler number e, and all numbers commonly

used in numerical analysis are computable reals. Given a computable sequence (ai)i of

rationals which converges computably to a computable real �, and given a computable

function g : N! N as in the de�nition above, by computing ag(n) one obtains a rational

approximation of � with precision 2�n. By considering an appropriately chosen com-

putable subsequence of the sequence (ai)i one can speed up the convergence to a great

extent. The motivating question for our analysis is the following: can the convergence

be also very slow? To be more precise, is it possible that for a computable real � there

exists a computable sequence (ai)i of rationals which converges to �, but which does not

converge computably? In Section 3 we shall answer this question a�rmatively: for every

computable real � there exists a computable sequence of rationals which converges non-

computably to �. This answer poses the next question: is it possible to slow down the

convergence arbitrarily much? To this question we shall give several negative answers.

Here the program{size complexity, that is, the information content of the pre�xes of the

binary expansion of the limit will play an essential role.

The information content of a �nite binary string is measured by its program{size

complexity; this is a notion from algorithmic information theory, developed by Chaitin

[6, 7], Kolmogorov [10], Solomono� [12], Martin-L�of [11], and others (see Calude [2]).

Roughly speaking, the program{size complexity of a �nite string is the minimal length

of a program for a universal self{delimiting Turing machine such that it produces the

�nite string. An in�nite binary sequence is called random if the program{size complexity

of its pre�xes grows at least linearly with their length. Precise de�nitions will be given

in Section 2. A real number is called random, if its fractional part possesses a random

binary expansion.

In order to compare the information contents of reals and the convergence rates

of nondecreasing sequences of rationals Solovay [13] (see also Chaitin [7]) introduced a

relation between nondecreasing, converging sequences called domination. This relation

can be extended to arbitrary converging sequences as follows. Let (ai)i and (bi)i be

converging sequences of rationals, and let � = limi!1 ai, � = limi!1 bi. We say that

(ai)i dominates (bi)i if there exists a constant c > 0 such that for all i

c � j�� aij � j� � bij :

Informally, if (ai)i dominates (bi)i, then (bi)i converges modulo a multiplicative constant

at least as fast as (ai)i. For further investigations about the domination relation between

nondecreasing computable sequences of rationals and especially about the role Chaitin's


 numbers play in this context, the reader is referred to Calude, Hertling, Khoussainov,

Wang [3, 4]. The following negative statements will be proven in Section 3: No com-

putable sequence of rationals which converges to a computable (nonrandom) real can
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dominate a computable sequence of rationals which converges to a noncomputable (ran-

dom) real.

Since it is arguable whether it is justi�ed to say that (bi)i converges slower than (ai)i
when (ai)i does not dominate (bi)i (see Section 3 for a discussion), we shall also consider

a stricter type of convergence, which we shall call monotonic convergence. Informally, a

sequence (ai)i converges monotonically if it has the following property: if for some index

i the number ai is already quite close to the limit �, then all the following numbers

aj for j > i cannot be too far away from � either. In Section 4 we shall see that for

monotonically convergent sequences we can prove in a much sharper sense that every

computable sequence which converges monotonically to a random real converges slower

than every computable sequence of rationals which converges monotonically to a com-

putable real. Both the second result above (comparing nonrandom reals and random

reals) and this result make essential use of a connection between approximability of a

real and the information content of the pre�xes of its binary expansion.

2 Prerequisites

In this section we introduce some general notation and basic notions from algorithmic

information theory. By N and R we denote the set of nonnegative integers and the set

of reals, respectively. If X and Y are sets, then f : X
o
! Y denotes a possibly partial

function de�ned on a subset of X. Let � = f0; 1g denote the binary alphabet; �� is the

set of (�nite) binary strings and �! is the set of in�nite binary sequences. The length

of a string x is denoted by jxj. For a sequence x = x0x1 � � � xn � � � 2 �! and an integer

n � 0, x(n) denotes the initial segment of length n+ 1 of x and xi denotes the ith digit

of x, i.e., x(n) = x0x1 � � � xn. Lower case letters c; d; e; k; l;m; n will denote nonnegative

integers, lower case letters a; b will denote rationals, and x; y; z strings. By x;y; � � � we

denote in�nite sequences from �!; �nally, we reserve �; �; 
 for reals.

We call a partial recursive function M : ��
o
! �� a self{delimiting Turing machine

if its program set dom (M) = fx 2 �� j M(x) is de�nedg is pre�x{free, i.e. a set of

strings with the property that no string in it is a proper pre�x of another string in it.

The program-size complexity of a string x 2 �� relative to M is HM (x) = minfjyj j y 2

��; M(y) = xg, where min ; = 1. It was shown by Chaitin [7] that there is a self-

delimiting Turing machine U that is universal in the sense that, for every self-delimiting

Turing machineM , there is a constant cM (depending upon U andM) with the following

property: if x 2 dom (M), then there is an ~x 2 dom (U) such that U(~x) = M(x) and

j~xj � jxj+ cM . Clearly, every universal machine produces every string. For two universal

machines U and V , we have HU (x) = HV (x) + O(1). In the following sections we shall

therefore �x one universal machine U and write simply H instead of HU and call H(x)

the program{size complexity of x.

Random sequences were originally de�ned by Martin-L�of [11] using constructive mea-

sure theory. In this paper we shall use the following complexity-theoretic characterization

(see Chaitin [7]): An in�nite sequence x is random if and only if there exists a constant

c > 0 such that H(x(n)) > n� c, for every integer n � 0.

We shall call a real number � random if its fractional part (that is, the real � 2 [0; 1)

such that ��� is an integer) possesses a random binary expansion. A prominent example

of a random real is Chaitin's 
 number, i.e. the halting probability of a universal self{

delimiting Turing machine U : 
U =
P

x2dom (U) 2
�jxj. A Chaitin 
 number can be
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approximated by a computable sequence of rationals, namely by the sequence of �nite

sums (
P

i�n 2
�jxij)n where (xi)i is a �xed recursive injective enumeration of all strings in

the program set dom (U). For more about Chaitin 
 numbers see Chaitin [7, 8], Solovay

[13], Calude, Hertling, Khoussainov, Wang [3, 4], Calude and Nies [5].

3 Arbitrary Approximations

In this section we consider computable, converging sequences of rationals. We compare

the possible rates of convergence for di�erent classes of approximable numbers.

In the introduction we have de�ned computable reals as those reals which can be

approximated by a computable sequence of rationals which converges computably. It is

well-known that there are reals which can be approximated by a computable converging

sequence of rationals, but not with a computable convergence rate. For example, if h is

an injective, total recursive function which enumerates an r.e. set of nonnegative integers

which is not recursive, then the sum
P1

k=0 2
�h(k) is the limit of the computable sequence

of partial sums (
Pn

k=0 2
�h(k))n, but it is not a computable real (Specker's construction

[14]). A very interesting special class of numbers of this form are the Chaitin 
 numbers

introduced in Section 2.

How fast can one approximate reals? First we look at computable reals. They can

be approximated by a computable sequence of rationals which converges computably.

By selecting computably an appropriate subsequence one can achieve almost arbitrarily

fast convergence. But does every computable sequence of rationals which converges to a

computable real converge computably? We show that this is not the case.

Theorem 3.1. For every computable real � there is a computable sequence (an)n of

rationals which converges to �, but which does not converge computably.

Proof. Let (an)n be a computable sequence of rationals which converges to � com-

putably, and let g be a total recursive function giving the convergence rate, i.e. jam��j �

2�n for all m � g(n), for all n. Furthermore let K � N be a nonrecursive r.e. set, and

let h be an injective, total recursive function enumerating K, i.e. h(N) = K. We de�ne

a sequence (bn)n of rationals by

bn = an + 2�h(n) ;

for all n 2 N. We prove three claims about the sequence (bn)n: 1. it is computable, 2.

it converges to �, 3. it does not converge computably.

The �rst claim is clear because (an)n is a computable sequence of rationals and h a

total recursive function. For the second claim we have to show that limn!1 2�h(n) = 0

because limn!1 an = � by assumption. Thus, the second claim is equivalent to

(8n) (9m) (8i � m) h(i) � n :

This follows from our assumption that h is injective and enumerates K: for each n there

is a numberm such that K\f0; 1; : : : ; n�1g � fh(0); h(1); : : : ; h(m�1)g. The injectivity

of h implies h(i) � n for all i � m. Finally we have to show the third claim. Assume

that (bn)n converges computably. Then there is a total recursive function f such that

for all n

(8m � f(n)) j�� bmj � 2�n :
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Fix a number n and let m � maxfg(n + 2); f(n+ 2)g. By using the triangle inequality

we obtain:

2�h(m)
� j2�h(m)

� (�� am)j+ j�� amj

= jbm � �j+ jam � �j

� 2�(n+2) + 2�(n+2) = 2�(n+1) :

We conclude h(m) � n+ 1. Hence, for any number n:

n 2 K () (9m < maxff(n+ 2); g(n + 2)g) n = h(m) :

This contradicts the assumption that K is not recursive. Hence, the sequence (bn)n does

not converge computably. This ends the proof of the theorem. 2

The last theorem states that we can approximate every computable real noncom-

putably, that is, very slowly. Can we slow down the rate of convergence arbitrarily

much? In this section we shall give a negative answer which is based on the domination

relation introduced in Section 1. We note that the negation of the domination relation

(\(ai)i does not dominate (bi)i") can be formulated in the following two equivalent ways:

1. for every c > 0 there exists an i such that j� � bij > c � j�� aij.

2. for every c > 0 there exist in�nitely many i such that j� � bij > c � j�� aij.

If this is the case then one might say that in some sense the sequence (bi)i converges

slower than the sequence (ai)i. But this formulation must be taken with care, since the

inequality j� � bij > c � j� � aij might be true only for a sparse set of indices where the

terms j�� aij are especially small. In fact, the terms supj�i j� � bjj and supj�i j�� ajj

(which also seem to express what one would usually understand under the convergence

rate) can be identical for all i even when neither (ai)i dominates (bi)i nor (bi)i dominates

(ai)i.

The following result states that no computable sequence (ai)i of rationals which con-

verges to a computable real can dominate a computable sequence of rationals converging

to a noncomputable real. Hence, although we can have slow computable approximation

of computable reals, we cannot slow it down arbitrarily.

Theorem 3.2. Let (an)n be a computable sequence of rationals converging to a com-

putable real �, and let (bn)n be a computable sequence of rationals converging to a non-

computable real �. Then, for every c > 0 there are in�nitely many i such that

j� � bij > c � j�� aij :

Proof. For the sake of a contradiction we assume that there are constants c; d 2 N such

that

j� � bij � 2c � j�� aij

for all i � d. Let (~ai)i be a computable sequence of rationals such that for all i

j�� ~aij � 2�i :
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We de�ne a computable function h : N! N by

h(i) = minfk j j~ak � akj � 2�i�c�1 and k � maxfi+ c+ 1; dgg :

This function is well{de�ned because the sequences (~ak)k and (ak)k tend to the same

limit. We calculate for all i:

j� � bh(i)j � 2c � j�� ah(i)j

� 2c � (j� � ~ah(i)j+ j~ah(i) � ah(i)j)

� 2c � (2�i�c�1 + 2�i�c�1)

= 2�i :

Hence, the computable sequence (bh(i))i converges computably. This contradicts the

assumption that its limit � is a noncomputable real. 2

We shall see that the last result is also true if we replace the computable real � by

a nonrandom real � and the noncomputable real � by a random real �. In fact, the

domination relation implies an estimate for the program{size complexity for the binary

expansions of the reals. The following result was shown by Solovay [13] for increasing

sequences of rationals, see also Calude, Hertling, Khoussainov, Wang [3, Theorem 4.5].

The proof can be carried over to arbitrary converging sequences.

Theorem 3.3. Let (ai)i and (bi)i be converging sequences with 0:x = limi!1 ai and

0:y = limi!1 bi. If (ai)i dominates (bi)i, then there is a constant c > 0 with H(y(n)) �

H(x(n)) + c for all n.

For the proof we use the following lemma. Its proof can be found in Calude, Hertling,

Khoussainov, Wang [3].

Lemma 3.4. For every positive integer c there exists a positive integer dc such that

for every n � 1 and for all strings x; y 2 �n with j0:x� 0:yj � c � 2�n we have

jH(y)�H(x)j � dc:

Proof of Theorem 3.3. For every n and large enough i we have j0:x � aij � 2�n�1 and

hence, j0:x(n) � aij � j0:x(n) � 0:xj + j0:x � aij � 2�n. Therefore, given x(n), we can

compute an index in such that j0:x(n) � ain j � 2�n: For this index in we have

j0:x� ain j � j0:x� 0:x(n)j+ j0:x(n) � ain j � 2�n�1 + 2�n = 3 � 2�n�1 :

Let c > 0 be a constant such that c � j0:x� aij � j0:y � bij for all i. Let zn be the string

consisting of the �rst n + 1 digits after the radix point of the binary expansion of bin
(containing in�nitely many 1's). Then

j0:y(n) � 0:znj � j0:y(n) � 0:yj + j0:y � bin j+ jbin � 0:znj

� 2�n�1 + c � j0:x � ain j+ 2�n�1

� 2�n�1 + c � 3 � 2�n�1 + 2�n�1

= (3c+ 2) � 2�n�1 :

Hence, by Lemma 3.4,

H(y(n)) � H(zn)+O(1) � H(x(n))+O(1): 2
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Theorem 3.5. Let (an)n be a computable sequence of rationals converging to a nonran-

dom real �, and let (bn)n be a computable sequence of rationals converging to a random

real �. Then, for every c > 0 there are in�nitely many i such that

j� � bij > c � j�� aij :

Proof. For the sake of a contradiction assume that the assertion is not true and that

(ai)i dominates (bi)i. Let � = 0:x and � = 0:y (we can assume without loss of generality

that � and � lie in the interval [0; 1)). Then, by Theorem 3.3, there is a constant c

such that H(y(n)) � H(x(n)) + c for all n. This implies that also x is random, i.e. � is

random, a contradiction. 2

4 Monotonic Approximations

In this section we analyze a restricted type of converging sequences: we consider se-

quences (ai)i with limit � which converge monotonically in the sense that if for some

index i the number ai is already quite close to the limit �, then all the following numbers

aj for j > i cannot be too far away from � either.

De�nition 4.1. We say that a sequence (ai)i of reals with limit � converges monoton-

ically if there exists a constant c > 0 such that for all i and all j � i

c � j�� aij � j�� ajj :

For example, any converging and monotonic, i.e. either nondecreasing or nonincreas-

ing sequence of reals converges monotonically: one can take the constant c = 1. For

example, the Chaitin 
 numbers can be approximated by computable sequences of ra-

tionals which converge monotonically.

It turns out that for sequences which converge monotonically the rate of convergence

is less variable. The following proposition contrasts with Theorem 3.1.

Proposition 4.2. Every computable sequence of rationals which converges monoton-

ically to a computable real converges computably.

Proof. Let (ai)i be a computable sequence of rationals which converges monotonically

to a computable real �. Let c � 0 be a constant such that for all i and all j � i

2c � j�� aij � j�� aj j :

Furthermore, let (bi)i be a computable sequence of rationals with j�� bij � 2�i for all i.

For any i there exists a number k with j�� akj � 2�i�2�c. For this k we have

jak � bi+2+cj � jak � �j+ j�� bi+2+cj � 2�i�2�c + 2�i�2�c = 2�i�1�c :

Hence, we can de�ne a computable function h : N! N by

h(i) = minfk j jak � bi+2+cj � 2�i�1�cg :

In view of the monotonicity of (ai)i we see for any i and any j � h(i)

j��ajj � 2c�j��ah(i)j � 2c �(j��bi+2+cj+jbi+2+c�ah(i)j) � 2c�(2�i�2�c+2�i�1�c) < 2�i :

Hence, the sequence (ai)i converges computably. 2
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In Section 3 we have considered arbitrary converging and computable sequences (ai)i
and (bi)i and have explicitly formulated two gaps with respect to the convergence rates,

one from computable to noncomputable numbers, and one from nonrandom to random

numbers. Both results were based on the inequality j� � bij > c � j� � aij holding for

in�nitely many i. While we had some doubts whether in this case one can really claim

that (bi)i converges slower than (ai)i, we shall see now that these doubts can be cast

aside if we consider only monotonically converging sequences: then we can replace the

quanti�er \for in�nitely many i" by the quanti�er \for almost all i". Certainly in this

case it is justi�ed to say that (bi)i converges slower than (ai)i.

Scholium 4.3. Let (ai)i be a computable sequence of rationals which converges mono-

tonically to a computable number �, and let (bi)i be a computable sequence of rationals

which converges monotonically to a random real �. Then for every c > 0 there exists a

d > 0 such that for all i � d

j� � bij > c � j�� aij : (1)

Lemma 3.4 and the program{size complexity are essential for the proof: Lemma 3.4 is

used in the proof of Lemma 4.4, which is crucial for the proof of Scholium 4.3.

Lemma 4.4. Let (bi)i be a computable sequence of rationals which converges to a

random real �. Then for every d > 0 and almost all i

j� � bij > 2d�i :

Proof. Let d > 0 be �xed. It is clear that we can without loss of generality assume that

� and all rationals bi lie in the interval (0; 1). Let 0:y be the binary expansion of �. For

every i, let zi 2 �i+1 be the string consisting of the �rst i+1 digits after the radix point

of the binary expansion of ci (containing in�nitely many 1's). Then

0 � ci � 0:zi � 2�i�1 :

Since the sequence (zi)i is a computable sequence of strings there exists a constant e1
such that for all i

H(zi) � 2 log i+ e1 : (2)

For the sake of a contradiction let us assume that there are in�nitely many i with

j� � bij � 2d�i. Then for all these i

j0:y(i) � 0:zij � j0:y(i) � 0:yj + j0:y � bij+ jbi � 0:zij

� 2�i�1 + 2d+1 � 2�i�1 + 2�i�1

= (2 + 2d+1) � 2�i�1 :

With Lemma 3.4 we conclude that there is a constant e2 such that H(y(i)) � H(zi)+ e2

for all these i. Using (2) we obtain

H(y(i)) � 2 log i+ e1 + e2

for in�nitely many i. This contradicts the randomness of y, i.e. the randomness of the

real �. 2
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Proof of Scholium 4.3. Let (ai)i and (bi)i be as in the scholium and �x a number c > 0.

We wish to show that (1) is true for almost all i.

First, we show that it is su�cient to prove this for c = 1. Indeed, since we can enlarge

c, we can assume that c is a rational. Then we can prove the assertion for the sequence

(cai)i instead of (ai)i with the constant c in (1) replaced by 1. The sequence (cai)i is also

a computable sequence of rationals and it converges monotonically to the computable

real c�.

Secondly, we show that we can restrict ourselves to the case that the sequence (ai)i
is of the form ai = 2�s(i) where s : N! N is a computable, nondecreasing, unbounded

function with s(0) = 0. Indeed, since we wish to show j� � bij > j�� aij only for almost

all i, we can forget �nitely many terms of both sequences (ai)i and (bi)i and assume

that j� � aij � 1 for all i. According to Proposition 4.2 the sequence (ai)i converges

computably to �. Hence, there is a computable function g : N! N with

j�� aij � 2�j

for all i; j with i � g(j). We can additionally assume that g is increasing and, because

of j� � aij � 1 for all i, also that g(0) = 0. We de�ne a computable, nondecreasing,

unbounded function s : N! N by s(0) = 0 and

s(i) = maxfj j g(j) � ig

for i > 0. Then we observe i � g(s(i)) and hence j� � aij � 2�s(i); for all i. Therefore,

it is su�cient to prove that

j� � bij > 2�s(i) (3)

holds true for almost all i.

Thus, from now on we assume that s : N ! N is a computable, nondecreasing,

unbounded function with s(0) = 0 and we wish to show that (3) is true for almost all i.

We de�ne a computable nondecreasing function f : N! N by f(i) = maxfj j s(j) � ig;

for all i. Then we have for all k � 0

f(s(k)) = maxfj j s(j) � s(k)g � k :

Finally we de�ne a computable sequence (~bi)i by ~bi = bf(i): Since the sequence (bi)i
converges monotonically there exists a constant d � 0 such that for all i; j with j � i

j� � bjj � 2d � j� � bij :

By Lemma 4.4 there exists a constant e1 such that j� � ~bj j > 2d�j for all j � e1. We

set e2 = f(e1) + 1. Then s(i) > e1 for all i � e2. Because of i � f(s(i)) for all i � 0 we

obtain for all i � e2

j� � bij � 2�d � j� � bf(s(i))j = 2�d � j� � ~bs(i)j > 2�d � 2d�s(i) = 2�s(i) :

This ends the proof of Scholium 4.3. 2

We conclude with some remarks on further interesting questions. The topic of this

paper, the relation between the possible rates of convergence of computable sequences

of rationals and the information contents of the pre�xes of the binary expansions of

their limits, should be analyzed further. The domination relation between sequences
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of rationals and the induced structure on the reals, induced by considering the limits,

should be investigated more. For nondecreasing sequences of reals �rst results along this

line can be found in Calude, Hertling, Khoussainov, Wang [3, 4]. Also, the properties of

the class of all reals which can be approximated by a computable sequence of rationals

converging monotonically, should be analyzed.
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