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Abstract. We deal here with the computational capacity of DNA when

splicing it, by means of restriction enzymes and ligases. We introduce a

new distributed structure of a computing system (we call it two-level H

system), with each component working by splicing (according to internal

splicing rules) and communicating, also by splicing, according to external

splicing rules. This architecture is proven to be computationally universal,
systems with three components characterize the recursively enumerable

languages. The possibility of designing universal DNA computers based
on splicing is inferred on this basis.

1. Introduction

This paper can be seen as a contribution to the fastly growing area of (mathemati-
cal foundations of) DNA computing. Speci�cally, we look for (1) universal computing
devices which (2) are as simple as possible. Universality is understood at two levels:
having the power of Turing machines (and of any other equivalent class of algorithms)

and, moreover, having the possibility to design \universal programmable computers",
devices with all components but one �xed and able to behave as any given particular
device after introducing its code in the non-�xed component. On the other hand, as
basic simplicity criteria we consider here at the same time the size of the machinery
and its homogeneity. Precisely, our aim is to have a model with an as small as possible

variety of elementary (types of) operations. This has both a mathematical and a prac-

tical motivation: a machinery making use of both biochemical-like operations (DNA
recombination, cross-overing, etc.) and language-theoretic operations (substitution,
insertion, checking context conditions, etc.) does not look, estetically and practically,

very attractive.

From both these point of view, the two-level H systems we introduce here are quite

successful: (1) we use only one operation, the splicing, in the sense of [12], and (2)

systems with only three components are (3) computationally universal, they reach
the full power of Turing machines. Moreover, the proof of these assertions directly

provides a universal two-evel H system: start the construction in the proof from a
universal Turing machine (in fact, a universal type-0 Chomsky grammar) and what

we get is a universal two-level H system.

As we have said, the fundamental operation used here is that of splicing, intro-
duced in [12] as a model of the recombinant behavior of DNA under the in
uence
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of restriction enzymes and ligases. Namely, we consider quadruples (u1; u2; u3; u4),

of strings over some given alphabet, where (u1; u2); (u3; u4) encode the sites where

enzymes can cut the DNA sequences; having these sites together in a quadru-

ple means that the substrings obtained after cuting the DNA sequence can be

pasted together, producing new strings. For instance, if x = x1u1u2x2 and y =

y1u3u4y2, �rst we obtain x1u1; u2x2; y1u3; u4y2, then we build any of the strings

x1u1u2x2; x1u1u4y2; y1u3u4y2; y1u3u2x2. The second and the last strings are (possi-

bly) new. We say that we have spliced x; y at the sites u1u2; u3u4, according to the

splicing rule (u1; u2; u3; u4).

The splicing operation has been investigated in a series of papers. We refer to

[13], [15] and especially to [20] for details and bibliographical information. We only

mention here the notion of extended H systems, [19], generative mechanisms based

on splicing and consisting of a set of string axioms over a given alphabet and a set of

splicing rules. Starting from the axioms and iteratively applying the rules we obtain
a language; squeezing out of it only the strings over a given terminal alphabet we get
the language generated by the system.

In view of the results in [7] and [22], such systems with �nite sets of axioms and
�nite sets of splicing rules can produce only regular languages (all of them, as it was

proved in [19]). If a regular set of rules is allowed (codifying a splicing rule as a string,
in a natural way, we can speak about the type of the splicing rules set in the Chomsky
hierarchy), then the extended H systems become computationally universal, [18].

However, this result is not of much practical interest, because one cannot manipu-
late regular sets of strings in a test tube. On the other hand, the real DNA language

is not regular, even context-free, see [4], [25], in spite of the fact that the real DNA
seems to be built by using �nitely many axioms and �nitely many splicing rules.

Several ideas how to overpass this contradiction, hence the regularity borderline,
were explored in [17], [10], [6], [26], [20]. In all cases, extended H systems with �nite
sets of axioms and of splicing rules become computationally universal, providing that
certain additional features are added to the system. In general, a regulation mecha-

nism on the splicing rule application is considered. In [17] one work with multisets

(sets with multiplicities associated to their elements and updated during the splicing
operation), in [10] one considers permitting or forbidding symbols associated to the
splicing rules (promoters and inhibitors), [26] uses circular strings. The fact that we

jump directly from regular languages to recursively enumerable languages is worth

emphasizing. An idea related to that of the present paper is proposed in [6]: to or-
ganize the process in a distributed way as suggested by the grammar system area,

[5]. Again universal devices are obtained, but the systems in [6] does not ful�l the
simplicity criterion mentioned above: the universal systems have a large number of

components and, moreover, they are not homogeneous. Besides splicing, in [6] one

essentially uses the operation of checking whether or not a string belongs to a regular
language of the form V �, where V is an alphabet. This is done for a unbounded num-

ber of times (not only for selecting the generated language), in order to control the
cooperation among tubes, in a way similar to the merge, separate, amplify operations
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of [2], [14].

The basic idea of the two-level H systems proposed here is to have two types of

strings in each tube, one active and several passive, as well as two types of splicing

rules, one set used internally, inside the tube, and the other one used externally,

among active strings in di�erent tubes. The external splicing have priority over the

internal one. This is enough in order to reach again the full power of Turing machines

by two-level H systems with three components only. It is an open problem whether

or not two tubes are enough. Moreover, the proof gives directly a way of obtaining

universal \programable" two-level H systems.

2. Basic de�nitions; the splicing operation

We use the following formal language notations: V � is the free monoid generated

by the alphabet V , � is the empty word, V ��f�g is denoted by V +, FIN, REG, RE
are the families of �nite, regular, and recursively enumerable languages, respectively.
For general formal language theory prerequisites we refer to [23]; for grammar systems
area we refer to [5].

A splicing rule (over an alphabet V ) is a string r = u1#u2$u3#u4, where ui 2
V �; 1 � i � 4, and #; $ are special symbols not in V . For such a rule r and the strings
x; y; w; z 2 V � we write

(x; y) `r (w; z) i� x = x1u1u2x2; y = y1u3u4y2;

w = x1u1u4y2; z = y1u3u2x2;

for some x1; x2; y1; y2 2 V �:

We say that we have spliced x; y at the sites u1u2; u3u4, respectively, obtaining
the strings w; z; x; y are called the terms of the splicing. When understood from the
context, we omit r from `r.

A splicing scheme (or an H scheme) is a pair � = (V;R), where V is an alphabet

and R is a set of splicing rules (over V ). For a language L � V �, we de�ne

�(L) = fw 2 V �
j (x; y) `r (w; z) or (x; y) `r (z;w); for some x; y 2 L; r 2 Rg:

(By de�nition, �(L) = ; if L = ; or R = ;.) Then, we de�ne

��(L) =
[
i�0

�i(L);

for

�0(L) = L;

�i+1(L) = �i(L) [ �(�i(L)); i � 0:

Therefore, ��(L) is the smallest language containing L and closed under the splic-

ing operation.
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An extended H system is a quadruple


 = (V; T;A;R);

where V is an alphabet, T � V (the terminal alphabet), A � V � (the set of axioms),

and R � V �#V �$V �#V �. The pair � = (V;R) is called the underlying H scheme of


. The language generated by 
 is de�ned by

L(
) = ��(A) \ T �:

An H system 
 = (V; T;A;R) is said to be of type F1; F2, for two families of

languages F1; F2, if A 2 F1; R 2 F2. We denote by EH(F1; F2) the family of languages

generated by extended H systems of type (F1; F2).

An H system 
 = (V; V;A;R) is said to be non-extended; the family of languages
generated by non-extended H systems of type (F1; F2) is denoted by H(F1; F2). Ob-
viously, H(F1; F2) � EH(F1; F2).

The splicing operation is introduced in [12] for �nite sets of rules; the case of
arbitrarily large sets of splicing rules is considered in [16]; the extended H systems
were introduced in [19].

In [7], [22] it is proved that

H(FIN;FIN) � REG:

(The inclusion is, in fact, proper.) Using this relation, in [19] it is proved that

EH(FIN;FIN) = REG:

Moreover, in [18] it is proved that the extended H systems with �nite sets of axioms
and regular sets of splicing rules are computationally complete, that is

EH(FIN;REG) = RE:

Therefore, such systems are as powerful as the Turing machines (and any other class
of equivalent algorithms). However, from practical points of view, it is not realistic to

deal with in�nite { even regular { sets of rules. We have mentioned in the introduction

several ways to handle this di�culty, in general by using �nitely many rules controlled
by an additional mechanism. One possibility is to organize the process in a distributed

way, as usual in grammar systems theory, [5].
We propose here a new structure of a distributed H system, using no other ingre-

dients than the splicing operation (according to sets of splicing rules among which a

priority relation is assumed).

3. Distributed two-level H systems

A two-level H system (of degree n; n � 1), is a construct

� = (V; T; �1; : : : ; �n);
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where V is an alphabet, T � V , and

�i = (wi; Ai; Ii; Ei); 1 � i � n;

where wi 2 V +; Ai � V �; Ii; Ei � V �#V �$V �#V �; for #; $ symbols not in V .

The meaning of these elements is as follows: V is the total alphabet, T is the

terminal alphabet, and �i; 1 � i � n, are the components of the system (we also call

them test tubes); for each component, wi is the active axiom, Ai is the set of passive

axioms, Ii is the set of internal splicing rules, and Ei is the set of external splicing

rules.

One can imagine a two-level H system as consisting of n (active) DNA strings, say

z1; : : : ; zn (initially they are w1; : : : ; wn), with their left end �xed on a solid support,

surrounded each by a \soup" containing arbitrarily many copies of passive strings
(initially those in A1; : : : ; An, respectively), and having around both strong restriction
enzymes which can \see" only the active strings and weak restriction enzimes, acting

only locally, on zi and an associated string in the passive set. As a result of the
local splicing, a string with the pre�x of zi will be obtained, hence again �xed on the
support, and one more string which will be added to the surrounding set of passive
strings. An external splicing has priority over the internal splicing. When an external
splicing is performed, according to a rule in some set Ei, then the associated string

zi is the �rst term of the splicing, hence a new string �xed on the solid support is
obtained, having a common pre�x with zi; the second term of the splicing, some
zj; j 6= i, remains unchanged after this operation { one can assume that a copy of zj
has been produced and sent to tube i just for participating to the splicing.

Formally, these operations are de�ned as follows.

The contents of a tube �i; 1 � i � n, is described by a pair (xi;Mi), where xi 2 V �

is the active string and Mi � V � is the set of passive strings. An n-tuple

� = [(x1;M1); : : : ; (xn;Mn)]

is called a con�guration of the system. For 1 � i � n and a given con�guration � as
above, we denote

�(xi; �) =

8<
:
external ; if there are r 2 Ei and xj; j 6= i,

such that (xi; xj) `r (u; v); u; v 2 V �;

internal ; otherwise.

Then, for two con�gurations � = [(x1;M1); : : : ; (xn;Mn)] and �0 = [(x01;M
0

1); . . . ,
(x0n;M

0

n)], we write � =)ext �
0 if the following conditions hold:

1. there is i; 1 � i � n, such that �(xi; �) = external,

2. for each i; 1 � i � n, with �(xi; �) = external, we have (xi; xj) `r (x0i; z); for

some j; 1 � j � n; j 6= i, r 2 Ei, and M 0

i =Mi [ fzg;

3. for each i; 1 � i � n, with �(xi; �) = internal, we have (x0i;M
0

i) = (xi;Mi).
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For two con�gurations � and �0 as above, we write � =)int �
0 if the following

conditions hold:

1. for all i; 1 � i � n, we have �(xi; �) = internal,

2. for each i; 1 � i � n, either (xi; z) `r (x
0

i; z
0); for some z 2 Mi; z

0
2 V �; r 2 Ii,

and M 0

i =Mi [ fz
0g; or

3. no rule r 2 Ii can be applied to (xi; z), for any z 2 Mi, and then (x0i;M
0

i) =

(xi;Mi).

The relation =)ext de�nes an external splicing, =)int de�nes an internal splicing.

Note that in both cases all the splicing operations are performed in parallel and the

components not able to use a splicing rule do not change their contents. We stress the

fact that the external splicing has priority over the internal one and that all operations
have as the �rst term an active string; the �rst string obtained by splicing becomes
the new active string of the corresponding component, the second string obtained
becomes an element of the set of passive strings of that component.

We write =) for both =)ext and =)int and =)� for the re
exive and transitive
closure of =). The language generated by a two-level H system � is de�ned by

L(�) = fw 2 T �
j [(w1; A1); : : : ; (wn; An)] =)

� [(x1;M1); : : : ; (xn;Mn)]; for

w = x1; xi 2 V �; 2 � i � n; and Mi � V �; 1 � i � ng:

We denote by TLHn the family of languages generated by two-level H systems
with at most n components, n � 1, all of them having �nite sets of axioms and �nite

sets of splicing rules. When no restriction is imposed on the number of components,
we write TLH1.

Here is an example: Consider the system

� = (fa; b; C;Dg; fa; bg; �1; �2);

with
w1 = aD; w2 = DbC;

A1 = faD;Dag; A2 = fbCg;

I1 = fb#C$#aD; b#C$D#ag; I2 = fb#C$#bCg;

E1 = fa#D$D#bg; E2 = ;:

A computation in � runs as follows:

[(aD; faD;Dag); (DbC; fbCg)]

=)ext [(abC; faD;Da;DDg); (DbC; fbCg)]

=)int [(abaD; faD;Da;DD;Cg); (Db2C; fbC;Cg)]

=)ext [(abab2C; faD;Da;DD;Cg); (Db2C; fbC;Cg)]

=)int [(abab2D; faD;Da;DD;Cg); (Db3C; fbC;Cg)] =)� : : :

=)ext [(abab2 : : : abkC; faD;Da;DD;Cg); (DbkC; fbC;Cg)]

=)int [(abab2 : : : abka; faD;Da;DD;C;DCg); (Dbk+1C; fbC;Cg)];

6



for some k � 1.

After an alternate sequence of external and internal splicings, the active string

of tube 1 becomes abab2 : : : abkC, which can be turned out to a terminal string by

replacing C with a. Therefore,

L(�) = fabab2 : : : abka j k � 1g:

This language is not semilinear, hence it is not context-free (it is neither a matrix

one, in view of the fact that each one-letter matrix language is regular, [11], and by

removing the symbol a from the strings of L(�) { this amounts to using a restricted

morphism, and the family of matrix languages is closed under such an operation, [8]

{ we get the one-letter non-regular language fb
k(k+1)

2 j k � 1g).

Consequently, TLH2 contains non-context-free languages, the cooperation of tubes
in a two-level H system increases the power of the splicing operation. In fact, as we
shall see in the next section, this increasing is maximal, TLH3 = RE.

We close this section by pointing out the similarity of the architecture of a two-level
H system with that of a parallel communicating (PC) grammar system, introduced in

[21] as a grammatical model of parallel computing. The internal splicing corresponds
to the rewriting steps and the external splicing corresponds to the communication
steps in a PC grammar system; in both cases one starts from some axioms, one work
synchronously on components, and one considers as the generated language the set
of strings generated by a master component, the �rst tube here, the �rst grammar in

[21]. Of course, the analogy stops at this global level, the two devices are essentially
di�erent in details.

4. Characterizing RE languages

We take here as a test bed for our devices the Chomsky hierarchy of languages,
hence RE as the maximal level of algoritmicity, making use of the equivalence of
Turing machines and the Type-0 Chomsky grammars.

Directly from the de�nitions and also using the Turing-Church thesis, we have

TLH1 � TLH2 � : : : � TLH1 � RE:

Obviously, a two-level H system of degree 1 is a particular case of an extended H
system: the external splicing rules are of no use, but each internal splicing must have
as the �rst term the currently active string. Therefore,

TLH1 � EH(FIN;FIN) = REG:

Moreover, from the proof of the inclusion REG � EH(FIN;FIN) in [19], [10], we

can see that REG � TLH1 (when simulating a �nite automaton by an extended H
system, always an \active" string is used as the �rst term of the splicing, hence the

obtained H system is, in fact, a two-level H system of degree 1). Consequently, we

have

TLH1 = REG:
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From the example in the previous section, we get the fact that the inclusion TLH1 �

TLH2 is proper. We do not know whether or not also TLH2 � TLH3 is a proper

inclusion, but, anyway, the hierarchy collapses at this level, TLH3 is the largest family

in this framework.

Theorem 1. TLH3 = TLHn = TLH1 = RE; for all n � 3.

Proof. Of course, we have to prove only the inclusion RE � TLH3.

Consider a language L 2 RE, generated by a type-0 Chomsky grammar G =

(N;T; S; P ). We construct the two-level H system

� = (V; T; �1; �2; �3);

with

V = N [ T [ fB;B0; C;D;E;F;H; J; U;X;X 0; Y; Zg;

w1 = SXXE;

A1 = fHvY Y j u! v 2 Pg

[ fHZZ�; H�UU j � 2 N [ Tg

[ fJXX;Fg;

I1 = f#uXX$H#vY Y j u! v 2 Pg

[ f#�XX$H#ZZ� j � 2 N [ Tg

[ f#XX�$H#�UU j � 2 N [ Tg

[ f#Y Y $J#XX; #ZZ$J#XX; #UU$J#XX; #XXE$F#g;

E1 = fZ�#$XX# j � 2 N [ Tg

[ fUU#$XX�# j � 2 N [ Tg

[ fY Y#$XX#; XX#$BZ#; XX#$BU#; XX#$BY#g;

w2 = CXX 0;

A2 = ;;

I2 = ;;

E2 = fX#X 0$X#X; C#X$#B; C#B$D#X;

B#B0$Z#Z; B#B0$Y#Y; B#B0$U#Ug;

w3 = DXX 0;

A3 = fBB0;DXX 0
g;

I3 = f#DXX 0$#BB0; #BB0$#DXX 0
g;

E3 = ;:

The intuition behind this construction is the following. To a sentential form w of G

corresponds in � a string of the form w1XXw2E, where w1w2 = w; XX indicates the

\working place" (the place of the read-write head in the style of Turing machines), in

the sense that a rule of G can be simulated only in the presence of XX: if w1 = w0

1u,
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for some u ! v 2 P , and w0

1uw2 =) w0

1vw2 in G, then a derivation of the form

w0

1uXXw2E =) w0

1vXXw2E will be realized in �. The symbol E is a marker for

the right-hand end of the string. Only in its presence we can remove XX (by the

last rule in I1). After removing XX, no further splicing is possibile in �1, hence the

string is lost if it contains nonterminal symbols. In order to simulate rules in P in any

position of the current string, we have to freely move XX to the left and to the right.

All these operations { simulation of a rule in P , moving XX one step to the right,

movingXX one step to the left { are performed in a similar way: First, we copy in the

tube �2 the su�x of the active string of �1 starting with the second occurrence of X.

Then, in the �rst component we start performing the desired operation. This means

changing XX for Y Y (simulation of a rule), ZZ (moving one step to the left), or UU

(moving one step to the right). This is done by an internal splicing. Then again an

external splicing is performed, bringing together the active strings of the �rst and the

second components. The initial string is reconstructed, modulo two changes: XX is
replaced by Y Y;ZZ;UU and the desired operation is performed. At the same time,
the second tube performs an external splicing which \cleans up" its active string.
This is done with the help of the third tube, which has only this role, of providing an
appropriate string for splicings in the second tube. Again the second tube makes a

copy of the second \half" of the active string of the �rst tube, starting now with the
second occurrence of the double symbol Y;Z;U , respectively. By an internal splicing,
the �rst component reintroduces the substring XX, then it brings the end of the
string from the second tube, reconstructing the string. The whole procedure can be
iterated, because we are again in the same situation as at the beginning. At every

step, the passive string sets of �1 and �2 are increased, that of �3 remains constantly
equal to fBB0;DXX 0g. However, �2 never performs an internal splicing, whereas
the newly introduced passive strings of �1 never participate to a splicing, due to the
blocking symbols H and J occurring in the internal splicing rules of �1.

From these explanations, it should be clear that L(�) = L(G). However, we still
consider in some details the work of �.

We start from the con�guration

[(SXXE;A1); (CXX 0; ;); (DXX 0; A3)]:

Consider, in general, a con�guration with a string w1XXw2E in the �rst component.

As we have seen, we have to distinguish three cases: (1) to the left of XX we have
u, for some rule u! v 2 P to be simulated, (2) to the left of XX we have a symbol

� 2 N [T to be interchanged with XX, and (3) to the right of XX we have a symbol
� 2 N [ T to be interchanged with XX. We consider all these possibilities together,

separated by vertical bars; the reader should understand that exactly one of them is
running in each step and that the corresponding strings/sets of the components are

running together.

Thus, let us start with

[(w1uXXw2E j w1�XXw2E j w1XX�w2E;M1); (CXX 0;M2); (DXX 0; A3)]:
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In all cases we have to perform external splicings in �2. Hence we get

=)ext [(w1uXXw2E j w1�XXw2E j w1XX�w2E;M1);

(CXXw2E j CXXw2E j CXX�w2E; M
(1)
2 =M2 [ fw1uXX 0

g j

M
(2)
2 =M2 [ fw1�XX 0

g jM
(3)
2 =M2 [ fw1XX 0

g);

(DXX 0; A3)]:

No further external splicing has to be performed, hence we can perform internal

splicing in tubes 1 and 3:

=)int [(w1vY Y j w1ZZ� j w1�UU;

M
(1)
1 =M1 [ fHuXXw2Eg jM

(2)
1 =M1 [ fH�XXw2Eg j

M
(3)

1 =M1 [ fHXX�w2g);

(CXXw2E j CXXw2E j CXX�w2E; M
(1)
2 jM

(2)
2 jM

(3)
2 );

(BB0; A3)]:

Now we have to perform external splicing both in �1 and �2:

=)ext [(w1vY Y w2E j w1ZZ�w2E j w1�UUw2E;

M 0

1

(1)
=M

(1)
1 [ fCXXg jM 0

1

(2)
=M

(2)
1 [ fCXXg j

M 0

1

(3)
=M

(3)
1 [ fCXX�g);

(CBB0
j CBB0

j CBB0; M 0

2

(1)
=M

(1)
2 [ fXXw2Eg j

M 0

2

(2)
=M

(2)
2 [ fXXw2Eg jM

0

2

(3)
=M

(3)
2 [ fXX�w2Eg);

(BB0; A3)]:

One more external splicing must be performed, in �2:

=)ext [(w1vY Y w2E j w1ZZ�w2E j w1�UUw2E; M
0

1

(1)
jM 0

1

(2)
jM 0

1

(3)
);

(CBYw2E j CBZ�w2E j CBUw2E; M
00

2

(1)
=M 0

2

(1)
[ fw1vY B

0
g j

M 00

2

(2)
=M 0

2

(2)
[ fw1ZB

0
g jM 00

2

(3)
=M 0

2

(3)
[ fw1�UB

0
g);

(BB0; A3)]:

An internal splicing in �1 and �3 is possible:

=)int [(w1vXX j w1XX j w1�XX; M 00

1

(1)
=M 0

1

(1)
[ fJY Y w2Eg j

M 00

1

(2)
=M 0

1

(2)
[ fJZZw2Eg jM

00

1

(3)
=M 0

1

(3)
[ fCBUw2Eg);

(CBYw2E j CBZ�w2E j CBUw2E; M
00(1)

2 jM 00(2)

2 jM 00(3)

2 );

(DXX 0; A3)]:

10



We have to perform external splicings both in �1 and �2:

=)ext [(w1vXXw2E j w1XX�w2E j w1�XXw2E;

M 00

1

(1)
[ fCBY g jM 00

1

(2)
[ fCBZg jM 00

1

(3)
[ fCBUg);

(CXX 0
j CXX 0

j CXX 0; M 00

2

(1)
[ fDBY w2Eg j

M 00

2

(2)
[ fDBZ�w2Eg jM

00

2

(3)
) [ fDBUw2Eg);

(DXX 0; A3)]:

We have started from w1uXXw2E;w1�XXw2E, or w1XX�w2E in the �rst

component and we have obtained w1vXXw2E;w1XX�w2E, or, respectively,

w1�XXw2E. Hence we have indeed simulated the rule u ! v 2 P , or we have

moved XX one step to the left, or we have moved XX one step to the right. On
components 2 and 3 we have returned to the strings CXX 0;DXX 0, respectively. The
sets of passive strings are modi�ed but this has no in
uence on the work of �, the
new strings will never enter a splicing. The process can be iterated.

When we have a con�guration of the form

[(wXXE;M1); (CXX 0;M2); (DXX 0; A3)];

we have �rst to perform an external splicing in �2, which does not change the �rst

active string, then an internal splicing in �1 can remove XXE:

=)ext [(wXXE;M1); (CXXS;M2 [ fwXX 0
g); (DXX 0; A3)]

=)int [(w;M1 [ fFXXEg); (CXXE;M2 [ fwXX 0
g); (BB0; A3)]:

If w 2 T �, then, clearly, w 2 L(G); if w =2 T �, then no further splicing can involve
w, hence the work of � is blocked. Consequently, L(G) � L(�). Conversely, if �

produces a string w 2 T �, this means that � has simulated a derivation in G, hence
L(�) � L(G). This concludes the proof of the equality L(�) = L(G), hence of the
inclusion RE � TLH3. 2

Remarks. For a splicing rule u1#u2$u3#u4, the maximum of juij; 1 � i � 4,

is called the radius of the rule. If we start the previous construction from a type-0

grammar G with the rules of the form u! v with juj; jvj � 2 (this is always possible:
take, for instance, G in Kuroda normal form), then the radius of the system �, that is
maximal radius of its rules, is 4, reached by rules of the form #uXX$H#vY Y in I1.

In this way, also the length of each site u1u2; u3u4 in rules of � is bounded, namely by

5. This could be important from a practical point of view, because one knows that
enzymes de�ne cutting sites of small length, less that eight in most cases.

Two practical further remarks: the �nal intersection with T � is a feasible �ltering
operation (used also in [1]), whereas bounding DNA strings with their left end to a

support is feasible, too, see [9].

Consider now the case when we start the previous construction from a universal

type-0 Chomsky grammar. Such a grammar is a construct Gu = (Nu; T;�; Pu),
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that is a grammar without an axiom and having the following property. If we have

an arbitrarily given type-0 grammar G, we encode it in a suitable way, obtaining

a string w(G), and consider the grammar (with a string as axiom) Gu(w(G)) =

(Nu; T; w(G); Pu). Then we have L(G) = L(Gu(w(G))): A universal type-0 grammar

can be obtained from a universal Turing machine { whose existence is proved already

in [24] { or can be directly constructed, as in [3]. Because Gu has no axiom, the active

string w1 of �1 in the previous construction is missing. All the other components are

built in the same way. Note that all of them depend on the components of Gu, hence

they are �xed. This means that the obtained two-level H system �u is universal, in

the following sense: it has all components �xed, except for the axiom of �1, and can

be \programmed" to simulate any type-0 grammar. Indeed, take an arbitrary type-0

grammar G and construct its code, w(G) as in [3]. Introduce the string w(G)XXE

as axiom of the �rst tube of �u. Denote by �u(w(G)) the obtained system. Then

L(�u(w(G))) = L(G). Consequently, we have

Theorem 2. For each alphabet T, there is a two-level H system with three com-

ponents, which is universal with respect to the type-0 grammars having the terminal

alphabet T.

5. Concluding remarks

We have introduced a distributed system based on the splicing operation, inspired
from architectures much investigated in grammar systems area. The model is quite
homogeneous and it is computationally complete. Moreover, universal distributed

systems exist; the \program" to be added to such a \computer" consists of only one
string. Three components are enough, all their elements being �nite.

After Adleman shocking experiment, [1], a series of papers were written about the
possibility of constructing universal DNA computers. Our work di�ers from most of
them by the fact that (1) we explicitly look for universality results like Theorem 2,

without con�ning ourselves to merely simulating any given Turing machine, (2) we
are not concerned with the biochemical details of such a simulation, by de�nition such

details being in a rapid development, and (3), maybe the most important, we prove

our statements.
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