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Abstract. First, we recall some characterizations of recursively enumerable

languages by means of �nite H systems with certain regulations on the splicing

operation. Then, we consider a variant of the splicing operation where the

splicing proceeds always in couples of steps: the two strings obtained after a

splicing enter immediately a second splicing (the rules used in the two steps are

not prescribed). Somewhat surprising if we take into account the loose control

on the performed operations, extended H systems with �nite sets of axioms and

of splicing rules, using this double splicing operation, can again characterize the

recursively enumerable languages. Finally, we consider two types of distributed

H systems: communicating distributed H systems and time-varying distributed

H systems. For the �rst type of devices, we give a new proof of the recent result of

[24] that (in the extended case) such systems with three components characterize

the recursively enumerable languages. In what concerns the second mentioned

distributed model, we prove that time-varying H systems with seven components

can characterize the recursively enumerable languages. The optimality of these

two last mentioned results is open.

1. Introduction

An extended H system is a language generating mechanism introduced in [20], based

on the splicing operation of [10]. This operation is a formal model of the recombinant

behavior of DNAmolecules under the inuence of restriction enzymes and ligases. Informally

speaking, two DNA sequences are cut by two restriction enzymes and the fragments are

recombined (by ligation, provided that the ends produced by the enzymes match) such that

possibly new sequences are produced. The sites where the enzymes can cut are encoded

as pairs (u1; u2); (u3; u4), and the fact that they produce matching ends is represented by

the quadruple ((u1; u2); (u3; u4)). We say that this is a splicing rule. In an H system, a set

of axioms (initial strings) and a set of splicing rules are given. By an iterated application

of these rules, starting from the axioms, we get a language. If also a terminal alphabet

is provided and only strings on that alphabet are accepted, then we get the notion of an

extended H system.
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If only a �nite set of rules are used, then, even starting from a regular set of axioms,

we can generate only regular languages (see, [5], [23]). When using extended H systems, we

obtain a characterization of regular languages, [20].

If the set of splicing rules is a regular language (each rule ((u1; u2); (u3; u4)) is written as

a string u1#u2$u3#u4, hence the set of rules can be considered a language), then extended

H systems (with �nite sets of axioms) characterize the recursively enumerable languages,

that is, they reach the full power of Turing machines/Chomsky type-0 grammars. This has

been proved in [14].

However, working with in�nite sets of rules, even regular, is not of much practical in-

terest. Finite sets of rules give only regular languages, hence they stop at the level of �nite

automata/regular Chomsky grammars. There is no natural de�nition of universality for

�nite automata such that a universal �nite automaton exists (hence we cannot obtain \uni-

versal DNA computers" at this level). It is therefore necessary to supplement the model

with a feature able to increase its power. Many suggestions about how this can be done

come both from the regulated rewriting area in formal language theory, see, e.g., [6], and

from the very proof in [14]. Several types of extended H systems with �nite sets of axioms

and of splicing rules were considered, with the application of splicing rules controlled in

speci�c ways. We mention the control by permitting contexts (a rule is applied only to

strings containing certain symbols associated to the rule), forbidding contexts (a rule is ap-

plied only to strings not containing certain symbols associated to the rule; the permitting

contexts are a model of promoters, the forbidding contexts correspond to inhibitors known

in biochemistry), [3], [8]; target languages (we accept the splicing only when the obtained

strings belong to a given regular language), �tness mappings, as in the genetic algorithms

area, [16]; working with multisets (keeping track of the number of copies of each string,

starting with the axioms), [3], [8]; programmed H systems (the splicing rule to be used at

any step depends on the rule used at the previous step), or evolving H systems (the splicing

rules themselves are modi�ed from a step to the next one, by means of local mutations,

that is insertion and deletion operations of single symbols), [21]; H systems with a priority

relation among splicing rules (at each step one uses a rule which is maximal among the rules

which can be applied to the chosen strings). In all these cases, computational completeness

is obtained, that is characterizations of recursively enumerable languages. Moreover, univer-

sal H systems of the mentioned types are obtained, in the usual sense: with all components

�xed and able to simulate any given H system as soon as a code of it is introduced as an

additional axiom in the universal system. Full details about results of this type can be found

in the forthcoming monograph [22].

The fact that �nite H systems with uncontrolled splicing can generate only regular

languages, but apparently weak controls directly lead to characterizations of recursively

enumerable languages is worth emphasizing. Roughly spleaking, in order to equal the power

of type-0 Chomsky grammars, hence to characterize the recursively enumerable languages,

we need two basic ingredients: context-sensitivity and (unbounded) erasing. Moreover,

context-sensitivity means not only context-dependency of the operations performed, but

also the possibility \to send messages" at arbitrary distances in the processed strings. By

its de�nition, the splicing operation has both context-sensitivity and erasing. However, we

still need to improve on the context-sensitivity by means of the mentioned controls. The

explanation is that by using only the splicing we cannot \send mesages" along the strings:

when a string is cut in parts, we cannot enforce the meeting of the two parts in a further

2



splicing operation. At a close examination, exactly this is ensured by all control mechanisms

mentioned above (and it will be quite visible in the new control we introduce here, the double

splicing). On the other hand, the splicing is a \natural" operation, whereas the controls

mentioned above are, all, inspired by formal language theory (hence unrealistic for the

present day lab techniques). In order to obtain computational completeness we have to pay

this price of the control. Because all proofs in this area are constructive (one starts from

type-0 grammars and one produces equivalent H systems of the various types mentioned

above), they directly imply the existence of universal H systems of these types. The proofs

can be slightly modi�ed in such a way to start also from Turing machines. However, this

indirect way of producing universal H systems leads to rather complex outputs, by no

means accessible to the available biochemical technology. It is a research topic to �nd a

small universal H system of a given type.

We continue here this direction of investigation of imposing restrictions on the splicing

operation, by considering H systems with double splicing: we ask that the splicing operations

take place in double steps consisting of two usual splicings, that is, the two strings obtained

by a splicing enter immediately a new splicing, as the two terms of it. The rules used in a

step are not prescribed or linked in any prescribed way; however, the intermediate strings,

those obtained after the �rst splicing of such a double step, are not \visible", they are

immediately consumed by the second splicing.

The way of splicing in double steps can be seen as a counterpart of the matrix restriction

in Chomsky grammars. However, we do not have here matrices speci�ed in advance. All

pairs of rules can constitute matrices. Note that in the case of context-free grammars such a

restriction on the derivation does not increase the generative power: it simply implies that

any derivation has a length which is a multiple of two. Obviously, this does not modify

the power of context-free grammars (for instance, introduce new rules S ! w, where w

is obtained either in one or in two steps in a given grammar, in order to work only with

derivations of an even length). In the splicing case, the e�ect of this restriction is maximal:

we jump from the regular languages to recursively enumerable languages (Theorem 3 below).

All these models based on controlled splicing have a common drawback (plus other

speci�c shortcomings) when looking for implementing them: they use a large number of

splicing rules, which means a large number of restriction enzymes. In general, several

restriction enzymes cannot work together, because each enzyme requires speci�c conditions,

temperature, salinity, etc. (Discusions on this topic can be found, for instance, in [11].) A

possible idea to diminish this drawback is to use distributed architectures, as in grammar

systems area, [2], [7]. A variant of \distributed test tube systems" was introduced in [4].

Several H systems work independently using their splicing rules and communicate by sending

to each other strings; these \messages" are accepted only if they pass certain �lters (if they

are composed of symbols in given subalphabets); the language generated by a designated

component of the system is the language generated by the system. Again, a characterization

of recursively enumerable languages is obtained. The proof of this result from [4] does not

give a bound on the number of components, but in [29] it is shown that distributed systems as

in [4] with at most nine components can characterize the recursively enumerable languages.

The same authors have then improved by one the result, whereas in [17] it is shown that

six components su�ce. Recently, it was proven that systems with only three components

characterize the recursively enumerable languages, [24]. We give here a new proof of this

important result, also bounding the radius of the splicing rules used (the maximal length of a
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string ui in the splicing rules u1#u2$u3#u4). Whether or not two components su�ce is still

an open problem (we conjecture that such systems generate only context-free languages).

A related machinery are the time-varying distributed H systems, introduced in [17].

Again we have several usual H systems, but at any moment only one is enabled; the order of

enabling the system components is periodic in time; the components pass from each other

the result of the splicing and all terminal strings generated in this way form the language

generated by the system. In [17] one characterizes the recursively enumerable languages by

time-varying H systems with three splicing rules in each component, but without bounding

the number of components. We prove here that seven components are enough (this time

the size of components is no longer bounded). It is an open problem whether or not seven

components are enough.

2. Splicing Systems

Let us consider an alphabet V and two special symbols, #; $, not in V . By V � we denote

the set of all strings over V , including the empty one, denoted by �. By jxj we denote the

length of x 2 V
�. By FIN, REG, LIN, CF, CS, RE we denote the families of �nite, regular,

linear, context-free, context-sensitive, recursively enumerable languages, respectively. For

further elements of formal language theory we refer to [26].

A splicing rule over V is a string u1#u2$u3#u4, where u1; u2; u3; u4 2 V
�. The max-

imum of juij; 1 � i � 4, is called the radius of this splicing rule. For a splicing rule

r = u1#u2$u3#u4 and four strings x; y; w; z 2 V
� we write

(x; y) `r (w; z) i� x = x1u1u2x2; y = y1u3u4y2;

w = x1u1u4y2; z = y1u3u2x2;

for some x1; x2; y1; y2 2 V
�
:

We say that we splice the strings x; y at the sites u1u2; u3u4, respectively.

A pair � = (V;R), where V is an alphabet and R is a set of splicing rules over V is

called an H scheme. With respect to a splicing scheme � = (V;R) and a language L � V
�

we de�ne

�(L) = fw 2 V
�
j (x; y) `r (w; z) or (x; y) `r (z; w); for some x; y 2 L; r 2 Rg;

�
0(L) = L;

�
i+1(L) = �

i(L)[ �(�i(L)); i � 0;

�
�(L) =

[

i�0

�
i(L):

An extended H system is a construct

 = (V; T;A;R);

where V is an alphabet, T � V;A � V
�, and R � V

�#V �$V �#V �. (T is the terminal

alphabet, A is the set of axioms, and R is the set of splicing rules.) When T = V , the

system is said to be non-extended. The pair � = (V;R) is the underlying H scheme of .

The language generated by  is de�ned by

L() = �
�(A)\ T

�
:
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(We iterate the splicing operation according to rules in R, starting from strings in A, and

we keep only the strings composed of terminal symbols.)

We denote by EH(F1; F2) the family of languages generated by extended H systems

 = (V; T;A;R), with A 2 F1; R 2 F2, where F1; F2 are two given families of languages.

(Note that R is a language, hence the de�nition makes sense.)

Two basic results concerning the power of extended H systems are the following ones.

Theorem 1. EH(FIN; FIN) = EH(REG; FIN) = REG:

Theorem 2. EH(FIN;REG) = RE:

The inclusion EH(REG;FIN)� REG follows from the results in [5], [23], the inclusion

REG � EH(FIN; FIN) is proved in [20]. Theorem 2 is proved in [14].

3. The Operation of Double Splicing

Consider a splicing scheme � = (V;R), four strings x; y; w; z in V
�, and two rules r1; r2

in R. We write

(x; y) `r1;r2 (w; z) i� (x; y) `r1 (u; v) and (u; v) `r2 (w; z); for some u; v 2 V
�
:

Then, for a language L � V
� we de�ne

�d(L) = fw j (x; y) `r1;r2 (w; z) or (x; y) `r1;r2 (z; w); for x; y 2 L; r1; r2 2 Rg;

�
�

d(L) =
[

i�0

�
i
d(L); where

�
0
d(L) = L;

�
i+1
d (L) = �

i
d(L) [ �d(�

i
d(L)); i � 0:

Let  = (V; T; A;R) be an extended H system and � = (V;R) its underlying splicing

scheme. We associate with  the language

Ld() = �
�

d(A)\ T
�
:

For two families of languages F1; F2 we denote by EHd(F1; F2) the family of languages

Ld() generated as above by extended H systems  = (V; T; A;R) with A 2 F1 and R 2 F2.

Let us examine an example: consider the extended H system

 = (fa; b; c; d; eg; fa; b; c; dg; fcabd; caebdg;R);

with R containing the splicing rules

r1 = c#a$ca#ebd; r2 = ce#bd$b#d:

Take a string of the form ca
n
b
n
d; n � 1; one of the axioms is of this form, with n = 1. The

only possible splicing involving this string is

(cjanbnd; cajebd) `r1 (cebd; ca
n+1

b
n
d):
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In the sense of the double splicing operation, we have to continue; the only possibility is

(cejbd; can+1bnjd) `r2 (ced; ca
n+1

b
n+1

d):

Consequently, we have

(canbnd; caebd) `r1;r2 (ced; ca
n+1

b
n+1

d):

The operation can be iterated.

Another possibility is to start with two copies of the axiom caebd:

(cjaebd; cajebd) `r1 (cejbd; caaebjd) `r2 (ced; caaebbd):

We can continue, but the symbol e will be present in all obtained strings; these strings

cannot enter splicings with strings of the form ca
n
b
n
d, hence they do not lead to terminal

strings.

In conclusion, we obtain

Ld() = fca
n
b
n
d j n � 1g;

which is not a regular language. Contrast this with Theorem 1: the double splicing is strictly

more powerful than the simple one. This assertion will be stressed in the next section in the

strongest possible way: extended H systems using the double splicing operation are equal

in power to type-0 grammars.

4. A Characterization of Recursively Enumerable Languages

It is known that every recursively enumerable language can be obtained from a linear

language (even generated by a grammar using only one nonterminal) by using reduction

rules of the form u! �. Results of this type can be found in [9], [28], etc. We will use here

the following variant, from [28]:

Lemma 1. Each language L 2 RE;L � T
�, can be generated by a grammar of the form

G = (fS;B1; B2; B3; B4g; T; S; P [ fB1B2 ! �;B3B4 ! �g), where P contains rules of the

forms S ! uSv; S ! x, with u; v; x 2 (T [ fB1; B2; B3; B4g)
+.

Theorem 3. RE = EHd(FIN; FIN).

Proof. We prove only the inclusion �. The reverse inclusion can be proved by a straight-

forward construction of a type-0 grammar simulating an extended H system based on the

double splicing operation (or we can invoke the Church-Turing thesis).

Consider a grammar G = (fS;B1; B2; B3; B4g; T; S; P [ fB1B2 ! �;B3B4 ! �g) as in

Lemma 1. We construct the extended H system  = (V; T;A;R) with:

V = T [ fS;B1; B2; B3; B4; X; Y; Z;Z
0
g;

A = fSxS j S ! x 2 P; x 2 (T [ fB1; B2; B3; B4g)
�
g

[ fSuZvS j S ! uSv 2 Pg

[ fZ
0
; XY g;

R = fS#$Su#ZvS; SZ#vS$#S j S ! uSv 2 Pg

[ fS#$#Z0
; SZ

0#$#Sg

[ fB1#B2$X#Y; #B1Y $XB2#g

[ fB3#B4$X#Y; #B3Y $XB4#g:
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The idea of this construction is the following. The splicing rules of the forms

S#$Su#ZvS; SZ#vS$#S simulate the context-free rules S ! uSv in P , while the splic-

ing rules B1#B2$X#Y; #B1Y $XB2#; B3#B4$X#Y; #B3Y $XB4# simulate the rules

B1B2 ! �;B3B4 ! �, respectively; the terminal rules of G are simulated by the axioms

SxS in A. The context-free derivations in G are simulated in  in the reverse order, starting

from the center of the produced string (from the substring introduced by a rule S ! x)

towards the ends.

For instance, assume that we have a string of the form SwS with w 2 (T [

fB1; B2; B3; B4g)
�; the axioms SxS are of this type. If we apply a splicing rule r1 =

S#$Su#ZvS, associated with some rule S ! uSv 2 P , then we get

(SjwS; SujZvS) `r1 (SZvS; SuwS):

We have to continue; because no symbol X; Y; Z 0 is present, the only possibility is to use

the rule r2 = SZ#vS$#S associated with the same rule S ! uSv 2 P :

(SZjvS; SuwjS) `r2 (SZS; SuwvS):

The double splicing

(SwS; SuZvS) `r1;r2 (SZS; SuwvS)

has simulated the use of the rule S ! uSv in the reverse order.

(The reader might check that starting with a double splicing (SwSj; SujZvS) `r1

(SwSZjvS; jSu) `r1 (SwSZZu; vS) does not lead to terminal strings.)

If to a string SwS we apply the rule r1 = S#$#Z0, then we have to continue with the

rule r2 = SZ
0#$#S:

(SjwS; jZ0) `r1 (SZ
0
j; wjS) `r2 (SZ

0
S;w):

The occurrences of S from the ends of the string are removed (this means that from now on

no further rule of the form S ! uSv 2 P can be simulated in  starting from the string w).

If to a string w, bounded or not by occurrences of S, we apply the splicing rule r1 =

B1#B2$X#Y (providing that a substring B1B2 appears in w, that is w = xB1B2y), then

we have to continue with the rule r2 = #B1Y $XB2# (no other rule is applicable to the

intermediate strings), hence we get:

(xB1jB2y;X jY ) `r1 (xjB1Y;XB2jy) `r2 (xy;XB2B1Y ):

The occurrence of B1B2 speci�ed above is removed from the input string.

The same assertions are true if we apply �rst the rule B3#B4$X#Y ; an occurrence of

the substring B3B4 is removed.

The strings SZS; SZ0
S cannot enter splicings leading to terminal strings and this can

be easily seen. If a string XB2B1Y;XB4B3Y enters new splicings, they produce nothing

new. For instance, for r = #B1Y $XB2# we get:

(XB2jB1Y;XB2jB1Y ) `r (XB2jB1Y;XB2jB1Y ) `r (XB2B1Y;XB2B1Y ):

No double splicing of a type di�erent from those discussed above can lead to terminal

strings. Consequently, the double splicing operations in  correspond to using context-

free rules in P , to removing two occcurrences of S from the ends of a string, or to using
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the erasing rules B1B2 ! �;B3B4 ! �. The order of using these rules is irrelevant.

Consequently, L(G) = Ld(). 2

For a splicing rule r = u1#u2$u3#u4 we denote rad(r) = maxfjuij j 1 � i � 4g;

this is the radius of the rule r. Then, if  = (V; T; A;R) is a splicing system, we de�ne

rad() = maxfrad(r) j r 2 Rg. The family of languages Ld() generated by extended H

systems of radius at most k and with axioms in a family F is denoted by EHd(F; [k]):

In the previous proof we can modify the \linear" rules S ! uSv of P , replacing them

by rules of the forms D ! �E�, where �; � 2 T [ fB1; B2; B3; B4g and j��j = 1, in such

a way that we obtain a grammar which is equivalent with G, but contains only rules with

the right hand side of length two; moreover, we may assume that all rules D ! �E� have

D 6= E; the nonterminal alphabet is now bigger, new symbols are used.

However, a linear grammar with several nonterminal symbols can be simulated by an

extended H system using double splicing operations in a way similar to the way we have

simulated the context-free rules of the grammar G in the previous proof.

Speci�cally, consider a linear grammar G = (N; T; S;P ) and construct the extended H

system  = (V; T; A;R) with

V = N [ T [ fZ; Z
0
g;

A = fDxD j D! x 2 P; x 2 T
�
g

[ fD�Z�D j D ! �E� 2 P; where D;E 2 N;�; � 2 T [ f�gg

[ fZ
0
g;

R = fE#$D�#Z�; EZ#�D$#E j D! �E� 2 P;D;E 2 N;�; � 2 T [ f�gg

[ fS#$#Z0
; SZ

0#$#Sg:

The reader can easily check that the derivations in G are simulated in  in the reverse

order, starting from strings DxD associated to terminal rules D ! x and going back to a

string of the form SzS, when the symbols S can be eliminated. Therefore, L(G) = Ld().

Clearly, rad() = 2.

Combining this idea with the construction in the proof of Theorem 3 (with the way of

simulating erasing rules of the form BiBj ! �; note that the splicing rules associated with

these rules are of radius two), we get an extended H system of radius two. Therefore, we

can strenghten the previous theorem by stating it in the following way:

Theorem 4. RE = EHd(FIN; [2]):

This result can probably be replaced by a more precise one by considering the width of

a splicing rule, as in [13] (width(u1#u2$u3#u4) = (ju1j; ju2j; ju3j; ju4j); the width of an H

system  is the smallest vector (n1; n2; n3; n4) which is componentwise larger than or equal

to the width of any splicing rule in ). We do not insist here in this direction, but we

conclude by stressing again the unexpected power of the double splicing.

5. Communicating Distributed H Systems

The model we consider in this section is the splicing counterpart of the parallel com-

municating grammar systems with communication by command: the components work by

splicing and communicate by sending to each other strings which pass certain �lters speci�ed

in advance.
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A communicating distributed H system (of degree n; n � 1) is a construct

� = (V; T; (A1; R1; V1); : : : ; (An; Rn; Vn));

where V is an alphabet, T � V , Ai are �nite languages over V , Ri are �nite sets of splicing

rules over V , and Vi � V , 1 � i � n.

Each triple (Ai; Ri; Vi); 1 � i � n, is called a component of �; Ai; Ri; Vi are the set of

axioms, the set of splicing rules, and the selector (or �lter) of the component i, respectively;

T is the terminal alphabet of the system. (Note that we consider here the extended form

of communicating distributed H systems; in [4] and in the subsequent papers mentioned in

the Introduction non-extended systems are considered and the �rst component has only the

role of selecting the terminal strings by means of its �lter V1 = T .)

We denote

B = V
�
�

n[

i=1

V
�

i :

The pair �i = (V;Ri) is the underlying H scheme associated to the component i of the

system.

An n-tuple (L1; : : : ; Ln); Li � V
�
; 1 � i � n, is called a con�guration of the system; Li is

also called the contents of the ith component, understanding the components as test tubes

where the splicing operations are carried out.

For two con�gurations (L1; : : : ; Ln); (L
0

1; : : : ; L
0

n), we de�ne

(L1; : : : ; Ln) =) (L01; : : : ; L
0

n) i�

L
0

i =
n[

j=1

(��j (Lj) \ V
�

i ) [ (��i (Li) \B);

for each i; 1 � i � n:

In words, the contents of each component is spliced according to the associated set of

rules (we pass from Li to �
�

i (Li); 1 � i � n), and the result is redistributed among the n

components according to the selectors V1; : : : ; Vn; the part which cannot be redistributed

(does not belong to some V
�

i ; 1 � i � n) remains in the component. Because we have

imposed no restriction over the alphabets Vi, for example, we did not suppose that they are

pairwise disjoint, when a string in �
�

j (Lj) belongs to several languages V �

i , then copies of

this string will be distributed to all components i with this property.

The language generated by � is de�ned by

L(�) = fw 2 T
�
j w 2 L1 for some L1; : : : ; Ln � V

�
; such

that (A1; : : : ; An) =)
� (L1; : : : ; Ln)g:

That is, the �rst component of the system is designated as its master and the language of �

is the set of all terminal strings generated (or collected by communications) by the master.

We denote by CDHn the family of languages generated by communicating distributed

H systems of degree at most n; n � 1. When n is not speci�ed, we replace the subscript n

with �.

Another possibility is to consider as the language generated by � the union of all lan-

guages generated by its components, but we do not follow this suggestion here.
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Communicating distributed H systems characterize RE. Before proving this result, let

us examine an example:

Consider the system

� = (V; fa; b; cg; (A1; R1; V1); (A2; R2; V2));

V = fa; b; c;X;X
0
; Y; Y

0
; Zg;

A1 = fXY;X
0
aZ; ZbY

0
; cZ; Zcg;

R1 = fX#$X 0
a#Z; #Y $Z#bY 0

; X#$c#Z; #Y $Z#c; #Y $X#g;

V1 = fa; b;X; Y g;

A2 = fXZ;ZY g;

R2 = fX
0#$X#Z; #Y 0$Z#Y g;

V2 = fa; b;X
0
; Y

0
g:

Starting from a string XwY with w 2 fa; bg
� (for the axiom XY we have w = �), in

the �rst component we can perform

(X jwY;X 0
ajZ)) ` (XZ;X

0
awY );

(X 0
awjY; ZjbY

0) ` (X 0
awbY

0
; ZY ):

The two operations can be also performed in the reverse order. One further occurrence of

a and one further occurrence of b can be added in this way to the string w and at the same

time, X; Y are replaced by X
0
; Y

0, respectvely. Moreover, two strings Xw1Y;Xw2Y with

w1; w2 2 fa; bg
�, can be spliced by

(Xw1jY;X jw2Y ) ` (Xw1w2Y;XY ):

The obtained string can enter splicings of the �rst type. A string bounded by X 0
; Y

0 cannot

enter further splicings in the �rst component, but it can be communicated to the second

one. Here we can perform splicings of the forms:

(X 0
jxY

0
; X jZ) ` (X 0

Z;XxY
0);

(XxjY
0
; ZjY ) ` (XxY; ZY

0):

The string XxY can be communicated to the �rst component, hence the process can be

iterated.

That is, pairs of symbols a; b can be added at the ends of a string or any two strings can

be concatenated in the sense described above.

At any moment, in the �rst component we can also replace X; Y with c. If only one of

X; Y is replaced by c (and the other one is replaced by its primed version), then the string

is \lost": the remaining marker X 0
; Y

0 which was not replaced by c cannot be removed,

because the string cannot be communicated. Thus, both X and Y must be replaced by c

at the same time and this ends the derivation.

Consequently, we obtain

L(�) = fcwc j w 2 Da;bg;
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where Da;b is the Dyck language over fa; bg. This is not a linear language (it is a context-free

language of in�nite index).

Thus, CDH2 � LIN 6= ;.

The following result was �rst proved in [24]. We give here a new proof, also bounding

the radius of the obtained system.

Theorem 5. CDHn = CDH� = RE, for all n � 3.

Proof. The inclusions CDHn � CDHn+1 � CDH� � RE; n � 1, are obvious. We have

only to prove the inclusion RE � CDH3.

Consider a type-0 grammar G = (N; T; S;P ), take a new symbol, B, and denote, for an

easy reference,

N [ T [ fBg = fD1; D2; : : : ; Dng:

Because N 6= ;; T 6= ;, we have n � 3. We construct the communicating distributed H

system

� = (V; T; (A1; R1; V1); (A2; R2; V2); (A3; R3; V3));

with

V = N [ T [ fX; Y;X
0
; Y

0
; Z; Bg

[ fXi; Yi j 0 � i � 2ng;

A1 = fXBSY g [ fZvY j u! v 2 Pg

[ fX2iDiZ j 1 � i � ng

[ fX2iZ j 0 � i � n� 1g

[ fZY2i j 0 � i � ng;

R1 = f#uY $Z#vY j u! v 2 Pg

[ f#DiY $Z#Y2i; X#$X2iDi#Z j 1 � i � ng

[ f#Y2i+1$Z#Y2i; X2i+1#$X2i#Z j 0 � i � n � 1g;

V1 = N [ T [ fX; Y;Bg [ fX2i+1; Y2i+1 j 0 � i � n� 1g;

A2 = fZY2i�1; X2i�1Z j 1 � i � ng [ fZZg;

R2 = f#Y2i$Z#Y2i�1; X2i#$X2i�1#Z j 1 � i � ng

[ fX
0
B#$#ZZ; #Y 0$ZZ#g;

V2 = N [ T [ fB;X
0
; Y

0
g [ fX2i; Y2i j 1 � i � ng;

A3 = fZY;XZ; ZY
0
; ZX

0
g;

R3 = f#Y0$Z#Y; X0#$X#Z; #Y0$Z#Y
0
; X0#$X 0#Zg;

V3 = N [ T [ fB;X0; Y0g:

Let us examine the work of �. The underlying idea is rotate-and-simulate, used �rst in

[14] and then in several subsequent papers. Starting from strings of the form XwY (the

axiom XBSY is of this form), the �rst component can simulate the rules of P in a su�x of
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w, by using splicing rules #uY $Z#vY , for u ! v 2 P , or can start rotating the string. In

the �rst case, the string obtained is again bounded by the markers X; Y , hence the process

can be iterated. When removing a symbol Di from the right hand end of w one replaces Y

with Y2i:

(Xw1jDiY; ZjY2i) ` (Xw1Y2i; ZDiY );

providing that w = w1Di; 1 � i � n (observe that B can be removed like any symbol in

N [ T ).

No string containing an occurrence of Z can be moved from a component to another

one. If such strings obtained by splicings enter new splicing operations, then no terminal

string can be obtained using the resulting strings: both of them contain the symbol Z

and by splicing them no new string is obtained. Consider, for instance, the string ZDiY .

Using again the rule #Di$Z#Y2i we obtain the strings ZY2i; ZDiY . A similar result will

be obtained in all cases below.

The string Xw1Y2i cannot be communicated, but a further splicing is possible in the

�rst component:

(X jw1Y2i; X2jDj jZ) ` (XZ;X2jDjw1Y2i);

for some 1 � j � n. The two operations can be performed in the reverse order and the

result is the same.

Strings bounded by markers Xr; Ys with even r; s cannot enter new splicings in the �rst

component and can be communicated to the second component. Two splicings are possible

here, decreasing by one the subscripts of X and Y . If only one splicing is performed, then

the string cannot be communicated. Thus, we get:

(X2jjDjw1Y2i; X2j�1jZ) ` (X2jZ;X2j�1Djw1Y2i);

(X2j�1Djw1jY2i; ZjY2i�1) ` (X2j�1Djw1Y2i�1; ZY2i):

Again, the order of the two operations is not important.

A string with odd subscripts of the end markers can be communicated to the �rst

component. These operations can be iterated and they must be continued, otherwise there

is no way to remove the nonterminal symbols. When in the �rst component we obtain X0

or Y0, the string can no longer be communicated to the second component. If one of the end

markers X; Y has the subscript 0 and the other subscript is strictly larger, then the string is

\lost", it cannot be communicated and it cannot enter new splicings. If both markers have

the subscript 0, then the string can be communicated to the third component.

In the third component, a string of the form X0wY0 can be transformed to XwY (and

this string is passed to the �rst component, thus making possible the iteration of the whole

process, of simulation of rules in P or of rotation), or to X 0
wY

0, or to a string with mixed

forms of the markers X; Y , with and without a prime. In the last case, the string is again

\lost", it cannot be further processed.

A string of the form X
0
wY

0 can be communicated only to the second component, where

only two splicings are possible:

(X 0
Bjw1Y

0
; jZZ) ` (X 0

BZZ;w1Y
0);

(w1jY
0
; ZZj) ` (w1; ZZY

0);

providing that w = Bw1 (which ensures that the string has the same permutation as the

corresponding string produced by G). A string without end markers cannot enter new
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splicings. If it is a terminal one, then it can be communicated to the �rst component, hence

it is an element of L(�); otherwise it is \lost".

Therefore, the subscripts of the two markers must reach at the same time the value

0. This is possible only when they have started from the same value. In the case above,

we must have i = j. This means that exactly the symbol Di which has been erased from

the right end of w has been simultaneously introduced in the left end of w. In this way,

the rotation phase is correctly implemented, hence all circular permutations of the string

can pe obtained. Consequently, all derivations in G can be simulated in � and, conversely,

only strings in L(G) can be sent as terminal strings to the �rst component of �. Thus,

L(G) = L(�). 2

If we start the previous construction from a grammar in Kuroda normal form, then the

radius of the obtained system is 3 (reached in simulating rules in R1). Using the same idea

as in [15], one can easily prove that, in fact, rules of radius two su�ce.

Communicating distributed H systems of degree 1 do not use communication, hence they

are extended �nite H systems. In view of Theorem 1, we can write

CDH1 = REG � CDH2

(the properness of the second inclusion is proved by the example considered before Theorem

5).

It is an open problem whether or not the inclusion CDH2 � CDH3 is proper, hence

whether or not the result in Theorem 5 can be strengthened, to n = 2. We expect a

negative answer. (We conjecture that CDH2 � CF .)

This problem is mainly interesting from a mathematical point of view, not too much

for DNA computing: the motivation of considering distributed H systems is to decrease the

number of splicing rules used in each component; a small number of components intuitively

means components of large size, which is against our goal.

Consider now the very problem which has motivated the de�nition of distributed H

systems { limiting the number of splicing rules working together. For a communicating

distributed H system � = (V; T; (A1; R1; V1); : : : ; (An; Rn; Vn)) we denote by tubes(�) the

degree of � (the number n, of components), by rad(�) the maximum radius of rules in �,

and

size(�) = maxfcard(Ri) j 1 � i � ng:

One can characterize the family RE by communicating distributed H systems of min-

imal size (of course, this is obtained at the expense of leaving the number of components

unbounded). Proofs of the following two theorems can be found in [19].

Theorem 6. For each type-0 grammar G = (N; T; S; P ) we can construct a communi-

cating distributed H system � such that L(G) = L(�) and

tubes(�) = 2(card(N [ T ) + 1) + card(P ) + 9;

size(�) = 1;

rad(�) = card(N [ T ) + 2:

At the price of increasing the number of components, we can also bound the radius of

the obtained system.
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Theorem 7. For each type-0 grammar G = (N; T; S; P ) we can construct a communi-

cating distributed H system � such that L(G) = L(�) and

tubes(�) � 3(card(N [ T ) + 1) + 2 � card(P ) + 5;

size(�) = 1;

rad(�) = 2:

6. Time-Varying Distributed H Systems

The distributed architecture we consider in this section can be viewed as a sequential

counterpart of the previous systems: at di�erent moments we use di�erent sets of splicing

rules. The passing from a set of rules to another one is now speci�ed in a cycle. Thus, the

new model corresponds both to periodically time-varying grammars in regulated rewriting

area and to controlled tabled Lindenmayer systems. We can also also interpret these systems

as counterparts of cooperating distributed grammar systems with the order of enabling the

components controlled by a graph having the shape of a ring.

As a biochemical motivation, these models start from the assumption that the splicing

rules are based on enzymes whose work essentially depends on the environment conditions.

Hence, in any moment, only a subset of the set of all available rules are active. If the

environment changes periodically, then also the active enzymes change periodically.

A time-varying distributed H system (of degree n; n � 1), [17], is a construct

� = (V; T;A;R1; R2; : : : ; Rn);

where V is an alphabet, T � V (terminal alphabet), A is a �nite subset of V � (axioms),

and Ri are �nite sets of splicing rules over V; 1 � i � n. The sets Ri; 1 � i � n, are called

the components of the system.

At each moment k = n � j+ i, for j � 0; 1 � i � n, the component Ri is used for splicing

the currently available strings. Speci�cally, we de�ne

L1 = A;

Lk+1 = �i(Lk); for i � k(mod n); k � 1;

where �i = (V;Ri); 1 � i � n.

Therefore, from a step k to the next step, k+1, one passes only the result of splicing the

strings in Lk according to the rules in Ri for i � k(mod n); the strings in Lk which cannot

enter a splicing are removed.

The language generated by � is de�ned by

L(�) = (
[

k�1

Lk) \ T
�
:

We denote by VDHn; n � 1, the family of languages generated by time-varying dis-

tributed H systems of degree at most n, and by VDH� the family of all languages of this

type.
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The way of working of a time-varying H systems is surprisingly strong. (The explanation

lies in the fact that from a step to another step one passes only the result of splicing

operations done at the previous step; strings produced at di�erent \generations" cannot be

spliced together.)

For example, let us consider the system (of degree 1)

� = (fa; b; cg; fa; b; cg; fcabg; fa#b$c#ag):

We obtain

L1 = fcabg;

L2 = fcaab; cbg; by (cajb; cjab) ` (caab; cb);

L3 = fca
4
b; cbg; by (caajb; cjaab) ` (ca4b; cb);

: : : : : : : : : : : : : : :

Lk = fca
2k�1

b; cbg; k � 1:

Therefore,

L(�) = fca
2n
b j n � 0g [ fcbg;

which is a non-context-free language.

Because each regular language can be generated by a time-varying H system of degree

1 (follow the same construction as in [20], adding splicing rules which pass the axioms from

a step to the next one; because the axioms are of a well speci�ed form, this can be easily

achieved), we have

Lemma 2. REG = EH(FIN; FIN)� V DH1 � VDH2 � : : : � V DH� � RE:

This hierarchy collapses (at most) at level 7 (we do not know whether or not this result

is optimal):

Theorem 8. V DHn = V DH� = RE; n � 7:

Proof. Consider a type-0 grammarG = (N; T; S;P ) with N[T = f�1; : : : ; �n�1g; n � 3;

and P = fui ! vi j 1 � i � mg. Let �n = B be a new symbol. We construct the time-

varying distributed H system

� = (V; T;A;R1; : : : ; R7);

with

V = N [ T [ fX; Y; Y
0
; Z; Bg

[ fYi; Y
0

i ; Xi j 0 � i � ng;

A = fXBSY; ZY; ZY
0
; ZZg

[ fZviY j 1 � i � mg

[ fZYj ; ZY
0

j ; Xj�jZ;XjZ j 1 � j � ng;

and the following sets of splicing rules:

R1 = f#uiY $Z#viY j 1 � i � mg
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[ f#Y $Z#Y; Z#$Z#g

[ f#Yj$Z#Yj j 1 � j � ng;

R2 = f#�jY $Z#Yj j 1 � j � ng

[ f#Y $Z#Y 0
; Z#$Z#g

[ f#Yj$Z#Y
0

j j 1 � j � ng;

R3 = fX#$Xj�j#Z j 1 � j � ng

[ f#Y 0$Z#Y; Z#$Z#g

[ f#Y 0

j $Z#Yj j 1 � j � ng;

R4 = f#Yj$Z#Yj�1 j 1 � j � ng

[ f#Y $Z#Y; Z#$Z#g;

R5 = fXj#$Xj�1#Z j 1 � j � ng

[ f#Y $Z#Y; Z#$Z#g;

R6 = f#Y0$Z#Y; #Y0$ZZ#; #Y $Z#Y
0
; Z#$Z#g

[ f#Yj$Z#Y
0

j j 1 � j � ng;

R7 = fX0#$X#Z; X0B#$#ZZ; #Y 0$Z#Y; Z#$Z#g

[ f#Y 0

j $Z#Yj j 1 � j � ng:

This system works as follows.

Consider a string of the form XwY;w 2 (N [ T [ fBg)�; for the axiom XBSY we have

w = BS.

If w = w
0
ui; 1 � i � m, then the �rst component can simulate the rule ui ! vi 2

P for a su�x of w. A string XwY can also be passed to R2 unmodi�ed, by using the

rule #Y $Z#Y . Similarly, by using the rule Z#$Z#, any axiom (in general, any string

containing an occurrence of Z) can be passed from R1 to R2 { and the same assertion is

true for all consecutive components).

A string XwY can enter in R2 two splicings:

(Xw
0
j�jY; ZjYj) ` (Xw

0
Yj ; Z�jY ); for w = w

0
�j ; 1 � j � n;

(XwjY; ZjY
0) ` (XwY

0
; ZY ):

The string Xw
0
Yj can enter only one splicing in R3:

(X jw0
Yj ; Xi�ijZ) ` (XZ;Xi�iw

0
Yj) (�)

for some i; 1 � i � n:

A string of the formXixYj ; 1 � i; j � n, will enter splicings in R4; R5 which will decrease

by one each of i and j, thus producing Xi�1xYj�1.

A string XixYj ; 1 � i; j � n, will be transformed in R6 into XixY
0

j and this one will be

transformed in R7 into XixYj . R1 will pass such a string unmodi�ed to R2 which will again

replace Yj by Y
0

j ; R3 will return to XixYj . The components R4; R5 will again decrease by

one the subscripts of X and Y . Eventually, one of X; Y will get the subscript 0. We have

three possibilities:

1) R6 receives a string X0xYj with j � 1. The only applicable rule is #Yj$Z#Y
0

j ; the

string X0xY
0

j is passed to R7 which returns to X0xYj ; again Yj is replaced by Y
0

j , then R3
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returns to X0xYj which reaches R4. R4 produces X0xYj�1. No splicing can be done in R5

on such a string, hence no terminal string is obtained in this way.

2) R6 receives a string XixY0 with j � i. If Y0 is replaced by Y , then the string XixY

cannot be spliced in R7. The same assertion is true if Y0 is deleted. No terminal string can

be produced in this way.

3) R6 receives a string X0xY0. (This means that the string Xi�iw
0
Yj obtained after the

splicing (�) has i = j, hence the same symbol �j which was deleted from the right hand end

of the string has been introduced in the left hand end.) If R6 replaces Y0 by Y , then the only

continuation in R7 is to replace X0 by X , hence the whole process can be iterated. If R6

removes Y0 and R7 replaces X0 by X , then the obtained string cannot pass over R1, hence

it is lost. If R6 removes Y0 and R7 removes X0B, then we get a string without markers,

which cannot enter further splicings. If it is terminal, then it belongs to L(�), otherwise it

is lost.

Consequently, every derivation in G can be simulated in � by a standard simulate-and-

rotate procedure, that is, L(G) � L(�).

Assume now that R2 has produced the string XwY
0. If R3 replaces Y

0 by Y , then the

string XwY will pass unchanged through R4; R5, then R6 will produce XwY
0 and R7 will

return to XwY , and we arrive back to R1 with XwY .

If XwY
0 is spliced in R3 by a rule X#$Xj�j#Z, 1 � j � n, then we get the string

Xj�jwY
0. Such a string is blocked by R4, where it cannot be spliced any more.

The strings obtained by the splicings mentioned above and containing occurrences of

Z can pass from a component to another one due to the rules Z#$Z# (and also to rules

using symbols Y; Y
0, etc). If such strings enter further splicings, this will happen only

together with other strings containing occurrences of Z, either axioms or by-products of

other splicings. Thus, both the resulting strings will contain occurrences of Z, hence no

terminal string can be produced in this way.

For instance, after a splicing in R2 using a rule #�jY $Z#Yj , 1 � j � n, we get the

string Z�jY . It can pass unmodi�ed through R3 �R7, but in R1 we can perform

(Zj�jY; ZjviY ) ` (ZviY; Z�jY );

if �j ! vi is the ith rule of P . The input strings are reproduced.

The reader can trace the development of other strings of the type of Z�jY above, and

the result will be similar: no terminal string which is not in L(G) can be produced. In

conclusion, L(G) = L(�). 2

The constant 7 in the equality RE = V DH7 can probably be replaced by a smaller

integer. We do not insist into this direction, because of the motivation we have started with:

diminishing the size of the components. This is possible also for time-varying distributed H

systems; a proof of the following result can be found in [17].

Theorem 9. Each recursively enumerable language can be generated by a time-varying

distributed H system whose components contain at most three splicing rules.

7. Concluding Remarks

By using the previous proofs, which are based on e�ective constructions, universal H

systems of the mentioned types are obtained: just start from a universal type-0 grammar
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and follow the above constructions. (An explicit universal type-0 grammar can be found in

[1] or can be obtained starting from a universal Turing machine { in particular, from small

Turing machines, as those in [25] { and constructing its associated type-0 grammar, for

instance, as in [27].) This result theoretically proves that \universal programmable DNA

computers based on splicing" can be designed in the form of an H system of the types

considered in the previous sections.

In [17] and in [18] one also discusses another class of distributed H systems, called two-

level distributed H systems: the components of the system have their own splicing rules, but

there also exists a set of splicing rules at the level of the system; each component has two

types of strings, \active strings" and \not so active strings"; the system splicing rules are

applied with priority to the active strings of the components and only when no such splicing

is possible, a local splicing is performed, in a component. Details can be found in [17], [18].

Again a characterization of recursively enumerable languages is obtained, by two-level H

systems with three components (while the case of two components is open, too).
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