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Abstract

We examine some ways of proving the Implicit Function Theorem and

the Inverse Function Theorem within Bishop's constructive mathematics.

Section 2 contains a new, entirely constructive proof of the Implicit Func-

tion Theorem. The paper ends with some comments on the application

of the Implicit Function Theorem in classical mechanics.

1 Introduction

In this paper, which is written entirely within the framework of constructive

mathematics (BISH) erected by the late Errett Bishop [2], we examine a stan-

dard proof of the Implicit Function Theorem and give a completely new proof.

As far as understanding constructive mathematics goes, the reader need only

be aware that when working constructively, we interpret \existence" strictly as

\computability". To do so, we need to be careful about our logic. For exam-

ple, when we prove a disjunction P _ Q; we need to either produce a proof

of P or produce a proof of Q; it is not enough, constructively, to show that

: (:P ^ :Q) : To understand this better, consider the case

P � 8n (an = 0) ;

Q � 9n (an = 1) ;

where (an) is a binary sequence. A constructive proof of P _Q will produce one

of the following:

� a demonstration that an = 0 for all n;

� the computation of a positive integer n such that an = 1:

A constructive proof of : (:P ^ :Q) will simply show that it is impossible for

both P and Q to be false, but, in the case where Q actually holds, it will not

enable us to compute n with an = 1:
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One consequence of this illustration is that constructive mathematics cannot

use the Law of Excluded Middle, P _ :P: Note that the exclusion of this

law from constructive mathematics is a consequence of the interpretation of

\existence"; it does not arise from some arbitrary, irrational distrust of the law

itself.

The logic we use in constructive mathematics is not the familiar, classical

logic, but one, called intuitionistic logic, that was �rst discussed in [12]

and that has subsequently proved of great signi�cance for logicians. In fact,

it appears that constructive mathematics, in practice, is simply mathematics

using intuitionistic logic (see [13], [14], and [5]). For more on intuitionistic logic,

see [1], [7], [6], and [16].

In view of the nature of this special issue of Chaos, Solitons & Fractals, the

reader might reasonably ask what is the connection with constructive mathe-

matics and complexity. We believe that constructive mathematics is concerned

with, inter alia, computability in principle (is the object computable even un-

der the most ideal conditions?), whereas complexity deals with computability

in practice (can the object be computed using a feasible amount of time, mem-

ory, or other resource?). It makes sense to investigate the former notion of

computability before investing e�ort in the latter. In other words, a construc-

tive development of a theory can be regarded as a sensible �rst step towards

a development that distinguishes those situations that are amenable to feasible

computation from those that are not.

2 The Implicit Function Theorem

In this section we illustrate the problems associated with constructivising one of

the standard classical proofs of the Implicit Function Theorem. We use standard

modern notations for derivatives, such as D for the derivative itself, and Dk for

the kth partial derivative (k = 1; 2), of a mapping from a subset of Rm �Rn

to Rp:

For the most part we con�ne our attention to the following special case of

the Implicit Function Theorem.

Theorem 1 Let � be a di�erentiable mapping of a neighbourhood of (x0; y0) 2

Rm�Rn into Rp; let �(x0; y0) = 0; and let1 det (D2�(x0; y0)) 6= 0: Then there

exist r > 0 and a di�erentiable function f : B(x0; r) � Rm ! Rn such that

for each x 2 B(x0; r) � Rm; (x; f(x)) is the unique solution y of the equation

�(x; y) = 0 in some neighbourhood of (x0; y0):

1a metric space the inequality x 6= y means that the distance between x and y is positive.
Note that the statement

8x 2 R (not (x = y)) x 6= y)

implies a principle|Markov's Principle|that represents an unbounded search and is not
derivable with intuitionistic logic.
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The general case of the theorem, as stated by Dieudonn�e ([9], (10.2.1)), requires

a theory of di�erentiable functions on Banach spaces, where, in the in�nite{

dimensional case, there are problems with �nding suitable constructive de�ni-

tions of \di�erentiable on an open set". In fact, we shall simplify the exposition

by taking a further special case, in which n = p = 1:

Although Dieudonn�e's proof of the Implicit Function Theorem is based on

a constructively valid contraction mapping theorem, there are a several details

that have to be tidied up before the proof can be constructivised. For example,

in proving the uniqueness of the implicit function f , he uses the classical notion

of connectedness in a standard way. His argument goes as follows: suppose

there are two implicit functions f; g on B � B(x0; r); and show that

fx 2 B : f(x) = g(x)g ;

which is certainly closed in B; is open in B; it follows (classically) that this

set equals B: Unfortunately, the classical notion of connectedness used here by

Dieudonn�e is nonconstructive, since it fails in the recursive model of constructive

mathematics (there exists a recursive example of a proper subset of [0; 1] that is

both open and closed in [0; 1] ([7], Ch. 3)). What is true constructively is that

if S is a nonempty subset of B that is open, closed, and located|in the sense

that

�(x; S) = inf fjx� sj : s 2 Sg

exists for each x 2 B|then S = B [4].

To obtain a constructive analogue of Dieudonn�e's proof of uniqueness, we

use Theorem (4.9), Chapter 4 of [3], to choose arbitrarily small " > 0 such that

S = fx 2 B : jf(x)� g(x)j � "g

is compact, and therefore both closed and located; we then show that S is also

open in B; so that S = B: Since " > 0 is arbitrary, we conclude that f(x) = g(x)

for all x 2 B:

This is a small illustration of the patching up that needs to be done to turn

a classical proof of the Implicit Function Theorem into a constructive one. But

there are other problems that we must address in this process, the �rst of which

is to ensure that we get the right de�nitions. For example, in constructive

mathematics for a real{valued function f to be di�erentiable on a compact

(that is, totally bounded, complete) set K � RN we require that it be uniformly

di�erentiable on K; thus , given " > 0; we must be able to �nd ! > 0 such that

jf(x) � f(x0)�Df(x0) (x� x0)j � " kx� x0k

whenever x = (x1; x2) and x0 = (x01; x
0
2) belong to K and

kx� x0k = maxfjx1 � x01j ; jx2 � x02jg � !:

For convenience, we usually write !(") for !; thereby making a notationally

convenient (but mathematically unjusti�able2) use of the Axiom of Choice; we

2Axiom of Choice entails the Law of Excluded Middle [11].
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then refer to the \function" ! as a modulus of di�erentiability for f on K:

In turn, for the di�erentiability of a function f on an open set 
 � RN we

require that f be (uniformly) di�erentiable on each compact set K that is well

contained in 
 (that is, has 
 as a neighbourhood).

We make these requirements of di�erentiability because

� they are satis�ed in the intuitionistic model of BISH [7],

� the usual notion of di�erentiability at a point is not computationally strong

enough for practical purposes, and

� in practice, without additional hypotheses such as recursiveness, construc-

tively de�ned di�erentiable functions always appear to be di�erentiable in

our strong sense.

We make a similar requirement of a continuous function on 
 : it must be

uniformly continuous on each compact set well contained in 
: (Note that the

classical uniform continuity theorem is not provable in BISH, since there is a

recursive counterexample to it; see Chapter 6 of [7].) Of course, a function that

is di�erentiable in our sense is continuous in our sense.

3 A New Proof of The Implicit Function Theo-

rem

Rather than complete the patching{up of Dieudonn�e's proof of the Implicit

Function Theorem, we present a new proof, one that depends only on elementary

arguments about continuous functions. For this we need some lemmas, the �rst

two of which we state without proof since their constructive proofs are, at most,

minor adaptations of arguments used in Chapter 7 of [9].

Lemma 1 Let f be di�erentiable on the compact interval [a; b] ; and let m �

jf 0(x)j �M for all x 2 [a; b] : Then

m(b� a) � jf(b)� f(a)j �M(b� a): 2

The second lemma is a version of Rolle's Theorem.

Lemma 2 Let f be di�erentiable on the compact interval [a; b] : Then

inf
a�x�b

jf 0(x)j � (b� a)�1 jf(b)� f(a)j : 2

The key to our proof of the existence of an implicit function is provided by

the following simple lemma.
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Lemma 3 Under the hypotheses of Theorem 1, there exist r; s > 0 such that

j�(x0; y0 � s)j � 2
3
jD2� (x0; y0)j s; (1)

inf
khk�r; jkj�s

jD2� (x0 + h; y0 + k)j > 0; (2)

and

inf
khk�r

j� (x0 + h; y0 � s)j � 1
2
jD2� (x0; y0)j s > sup

khk�r

j� (x0 + h; y0)j : (3)

Proof. Choose an open ball B, with centre (x0; y0) and radius R; such that

jD2�(x; y)j >
1
2
jD2�(x0; y0)j

for all (x; y) 2 B: Since � is di�erentiable at (x0; y0); there exists s 2 (0; R)

such that if jy � y0j � s; then

j�(x0; y)�D2�(x0; y0)(y � y0)j �
1
3
jD2�(x0; y0)(y � y0)j

and therefore

j�(x0; y)j �
2
3
jD2�(x0; y0)(y � y0)j :

In particular, we obtain inequality (1). Since �(x0; y0) = 0 and � is continuous,

we can now choose r 2 (0; R) such that inequalities in (3) hold. Since r < R;

our choice of R ensures that (2) also holds. 2

It is convenient to separate out the proof of the di�erentiability of the implicit

function whose existence will be established later.

Lemma 4 Let B be a compact ball in Rm; J a compact interval in R; and

� : B � J ! R be a (uniformly) di�erentiable function such that

0 < m = inf
B�J

jD2�j :

Suppose that there exists a function f : B ! J such that �(x; f(x)) = 0 for all

x 2 B: Then f is uniformly di�erentiable on B; and

f 0(�) = �
D1�(�;f(�))

D2�(�;f(�))

for each � 2 B:

Proof. Let ! be a modulus of di�erentiability for � on B�J: Let 0 < " < 1=2m;

and let x1; x2 be points of B such that

kx1 � x2k � min f!("); !(!("))g :
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Then

j�(x1; f(x1))��(x2; f(x2))�D1� (x2; f(x2)) (x1 � x2)

�D2� (x2; f(x2)) (f(x1)� f(x2))j

� " (kx1 � x2k+ jf(x1)� f(x2)j) :

But �(x1; f(x1)) = 0 = �(x2; f(x2)) and jD2� (x2; f(x2))j � m; so

���D1�(x2;f(x2))

D2�(x2;f(x2))
(x1 � x2) + f(x1)� f(x2)

���
� m�1" (kx1 � x2k+ jf(x1)� f(x2)j) (4)

� 1
2
(kx1 � x2k+ jf(x1)� f(x2)j) :

Hence

jf(x1)� f(x2)j � 2
���D1�(x2;f(x2))

D2�(x2;f(x2))
(x1 � x2)

���+ kx1 � x2k :

Choosing a bound M for jD1�j on the compact set B � J; we see that

jf(x1)� f(x2)j �
�
2Mm�1 + 1

�
kx1 � x2k :

It follows from (4) that

���f(x1)� f(x2) +
D1�(x2;f(x2))

D2�(x2;f(x2))
(x1 � x2)

��� � 2m�1
�
Mm�1 + 1

�
kx1 � x2k ":

Hence f is uniformly di�erentiable on B � J; with

f 0(�) = �
D1�(�;f(�))

D2�(�;f(�))

for each � 2 I: 2

Proof of the Implicit Function Theorem. Assume that the hypotheses of

Theorem 1 are satis�ed, and choose r; s as in Lemma 3. Let

K = f(x; y) : jx� x0j � r; jy � y0j � sg ;

which is a compact set. Fix � with j� � x0j � r; and let

0 < " < m � inf
khk�r; jkj�s

jD2� (x0 + h; y0 + k)j :

Consider y; y� such that jy � y0j � s; jy� � y0j � s; and j�(�; y)��(�; y�)j <

"2: If jy � y�j > "; then, by Lemma 2, there exists � between y and y� such

that

jD2� (�; �)j < jy � y�j
�1

"2 < " < m � jD2� (�; �)j ;

a contradiction: Hence jy � y�j < 2": In particular, if j�(�; y)j < "2=2 and

j�(�; y�)j < "2=2; then jy � y�j < 2":
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Next suppose that

0 < 
 = inf
jy�y0j�s

j�(�; y)j :

If jy � y0j � s; then

��D2�
2(�; y)

�� = 2 j�(�; y)j jD2�(�; y)j � 2
m > 0:

Since the function D2�
2(�; �) is continuous on the interval J = [y0 � s; y0 + s] ;

the Intermediate Value Theorem (see [3], Ch. 2, (4.8)) allows us to assume,

without loss of generality, that D2�
2(�; y) � 2
m for all y 2 J: So �2(�; �) is

strictly increasing on J; and therefore �2(�; y0) > �2(�; y0�s); this is impossible,

in view of our choice of s: Hence 
 = 0 and for each n we can choose yn such

that jyn � y0j � s and j�(�; yn)j < 1=2n2: The work in the �rst paragraph of

this proof now shows that if j; k > m�1; then jyj � ykj < 2=n; so (yn) is a

Cauchy sequence, and therefore converges to a limit y1; in the interval J: The

same argument also shows that y1 is the unique solution y in J of the equation

� (�; y) = 0; so we may de�ne a function f : [x0 � r; x0 + r]! J by f(�) = y1:

Reference to Lemma 4 completes the proof. 2

Note the following simple proof that the function f in our theorem is uni-

formly continuous on I: Let � be a modulus of continuity for � on K: Given

" > 0; and points �; �0 2 I such that
��� � �0

�� � !("2); we have

���(�0; f(�))�� = ���(�0; f(�))��(�; f(�))
�� � "2;

since also �(�0; f(�0)) = 0; it follows from the �rst part of the proof of Theorem

1 that
��f(�)� f(�0)

�� < 2":

With classical logic we can simplify the proof of the existence of f by taking

y1 to be a point where the continuous function �(�; �) attains its in�mum

on the compact interval J: This move is nonconstructive, since there exists a

recursive example of a positive-valued uniformly continuous mapping on [0; 1]

whose in�mum is 0; see Chapter 6 of [7].

Next we consider the relation between the Implicit Function Theorem and

the following Inverse Function Theorem.

Theorem 2 Let U � Rn be open and nonempty, a an element of U; and f :

U �! Rn a di�erentiable mapping on U such that detDf(a) 6= 0: Then there

exist open sets V;W � Rn such that a 2 V � U , b = f(a) 2 W , f is a

di�erentiable homeomorphism of V onto W , and f�1 : W ! V is di�erentiable.

Minor adaptations of the classical argument found in [8] enable us to prove

that the Inverse Function Theorem implies the Implicit Function Theorem: We

show that the Inverse Function Theorem can be derived constructively from the

Implicit Function Theorem, so that the two theorems are, in fact, equivalent
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constructively. To this end, assume the Implicit Function Theorem and the

hypotheses of the Inverse Function Theorem. Let

U1 = U �Rn � R2n;

de�ne a mapping g : U1 ! Rn by

g(x; y) = f(x)� y;

and set b = f(a). It is clear that

g(a; b) = 0; (a; b) 2 U1; and D1g(a; b) = Df(a) 6= 0:

Thus the Implicit Function Theorem, with the order of its variables reversed,

applies to g. Hence there exist

� two open sets V1;W such that

(a; b) 2 V1 � U1 � R2n;

and b 2W � Rn;

� a di�erentiable function h : W ! Rn such that the following two condi-

tions are equivalent:

{ g(x; y) = 0 for each (x; y) 2 V1;

{ x = h(y) for each y 2W:

Note that g(x; y) = 0 if and only if y = f(x). Now let

V = fx 2 h(W ) : 9y 2 Rn ((x; y) 2 V1)g :

Since

(h � f)(x) = h(f(x)) = h(y) = x

for all x 2 V; we see that f maps V onto W . Since f and h are di�eren-

tiable, it follows that f is a di�erentiable homeomorphism of V onto W , with

di�erentiable inverse h:

4 Some Applications to Physics

The Implicit Function Theorem is frequently used in mechanics|for example,

in the construction of canonical transformations in analytical mechanics (see

[10] and [15]).

For another example, take the motion of a point mass m, subject to a force

law f generated by an in�nitely di�erentiable potential V satisfying the condi-

tion

DV (�) 6= 0 for each � 6= 0:
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The existence of an in�nitely di�erentiable inverse function is guaranteed con-

structively by our Inverse Function Theorem. This situation arises in the solu-

tion of certain Cauchy problems, such as the damped pendulum

m�x+ � _x + ksinx = 
f(t) (t 2 R+); (5)

where 
 2 R; �;m; k are positive; �2 6= 4km; and f is periodic and in�nitely

di�erentiable. If the oscillations are small, then the damped linear oscillator

admits isochronous periodic motions with forcing term ([10], pp. 71-74). More

precisely, if f is in�nitely di�erentiable with period T > 0, then, provided 
 is

small enough, there exists a periodic motion, with period T , satisfying (5).

Together with (5) let us consider the linearised equation

m�x+ � _x+ kx = 
f;

which admits a periodic solution ~x isochronous with f . We look for a periodic

solution of (5) of the form

x(t) = 
~x(t) + y(t)
�
t 2 R+

�
with initial data

y(0) = "; _y(0) = �:

We set

x(T ) = 
~x(T ) + a("; �; 
)

and

_x(T ) = 
 _~x(T ) + b("; �; 
):

Since ~x(0) = ~x(T ) and _~x(0) = _~x(T ) by the periodicity of ~x, the condition that

(5) admits a periodic solution with period T can be restated as a("; �; 
) = "

and b("; �; 
) = �. But the solvability of the equations

�
a("; �; 
) = ";

b("; �; 
) = �;

is equivalent to the existence of a periodic solution of (5) with period T . We now

have the problem of expressing " and � as functions of a \su�ciently small" 
.

This is possible if the Jacobian determinant of partial derivatives with respect

to " and � is nonzero. The computation of these partial derivatives is based on

the equations

a("; �; 
) = y(T );

b("; �; 
) = _y(T );

where y(t) is a solution of the Cauchy problem

m�y(t) + � _y(t) + ky(t) = k (
~x(t) + y(t)� sin(
~x(t) + y(t)))
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with initial conditions y(0) = "; _y(0) = �: Finally, it is easy to see that the

corresponding Jacobian determinant equals

(ea+T � 1)(ea�T � 1) 6= 0;

where a+ and a� are, respectively, the positive and negative parts of a: So

the Cauchy problem has a constructive solution given by our Implicit Function

Theorem.
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