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Abstract. Various questions about adjoints, absolute values and polar
decompositions of operators are addressed from a constructive point of view.
The focus is on bilinear forms. Conditions are given for the existence of an
adjoint, and a general notion of a polar decomposition is developed. The Riesz
representation theorem is proved without countable choice.

1. Introduction. Let H be an inner product space over the real or complex
numbers. An operator is an everywhere defined linear transformation from H to H.
If H is finite-dimensional, then every bounded operator has an adjoint, a theorem
that can be proved in general using the Law of Excluded Middle. In the constructive
framework of this paper, however, it cannot be shown that every bounded operator
on an infinite-dimensional Hilbert space has an adjoint. In order to explain this by
means of a Brouwerian example, we need a lemma whose proof is a straightforward
application of the Cauchy-Schwarz inequality.

Lemma 1. Let (αn), (βn) be sequences of complex numbers such that
∑∞
n=1 |αn|2

converges and
∑∞
n=1 |βn|2 is bounded. Then

∑∞
n=1 |αnβn| converges. 2

A Brouwerian example Q: Let (an) be a binary sequence with a1 = 0 and at most
one term equal to 1, and let (en) be an orthonormal basis of an infinite-dimensional
Hilbert space. Lemma 1 enables us to define a bounded operator Q such that Qen =
ane1 for each n. That is

Qx =

( ∞∑
n=1

anxn

)
e1.

If Q has an adjoint, then either ‖Q∗e1‖ > 0 or else ‖Q∗e1‖ < 1. Since

〈Q∗e1, en〉 = 〈e1, Qen〉 = an,

we see that an = 1 for some n in the first case, and an = 0 for all n in the second.
Thus the proposition

Every bounded operator on a separable Hilbert space has an adjoint

entails the nonconstructive Limited Principle of Omniscience (LPO), a count-
able form of the law of excluded middle:

For each binary sequence (an), either there exists n such that an = 1 or
else an = 0 for all n.

1
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In this paper, beginning with a choice–free proof of the Riesz Representation
Theorem, we study conditions that are equivalent to the existence of an adjoint,
beginning with a general result about when a bilinear form can be written as 〈x, Ty〉,
a result that leads to a simple proof that a compact operator has an adjoint.

The usual definition of the absolute value of an operator, and the proof of the
existence of the polar decomposition, both depend on the existence of an adjoint.
As there is no guarantee that an adjoint exists, it is desirable to define the absolute
value, and to construct a polar decomposition, without reference to an adjoint. In
Section 4 we give adjoint-free definitions of the absolute value and of polar decompo-
sitions, and show that if the absolute value of an operator T has approximate polar
decompositions, then T has an adjoint.

Background in constructive mathematics is available in [1], [2], [4], or [7]. In
particular, the basics of constructive Hilbert space theory may be found in [2, Chapter
7]. We do not restrict ourselves to separable Hilbert spaces, as is traditional in
constructive mathematics; nor do we assume the countable axiom of choice. In order
to deal with arbitrary Hilbert spaces, we need a couple of definitions.

An orthonormal basis for an inner product space is a set of pairwise orthogonal
unit vectors that generate a dense subspace. Examples of this are provided by taking
an arbitrary discrete set S, and considering the space of complex valued functions
on S with finite support. This space has a natural inner product structure, and
a basis consisting of those functions that are 1 on one element of S and 0 on the
others. The completion is a Hilbert space, L2(S), with the same basis, which need
not be separable. This definition is more traditional, even in the separable case, than
the sequential one in [1] and [2] where basis elements must be allowed to be zero to
achieve sufficient generality.

The second definition concerns sums over arbitrary index sets. If (ri)i∈I is a
family of nonnegative real numbers, then we define

∑
i∈I ri to be supF

∑
i∈F ri, where

F ranges over the finite subsets of I. This agrees with the standard definition when
I is the set of positive integers.

The following notation for inequalities involving suprema will be convenient (see
also [6]). If X is a subset of R, and α, β ∈ R, then

α < supX ≤ β

means that α < x for some x ∈ X, and that x ≤ β for all x ∈ X, even if the supremum
of X is not known to exist. For example, if T is an operator on H, then ‖T‖ ≤ 1
means that ‖Tx‖ ≤ 1 for all unit vectors x, and ‖T‖ ≥ 2 means that for each ε > 0
there is a unit vector x such that ‖Tx‖ ≥ 2 − ε. Other such notations will be used
in the obvious, analogous ways. If S and T are operators on H, and a > 0, then
‖S‖ ≤ a ‖T‖ means that if ‖T‖ ≤ c, then ‖S‖ ≤ ac, and if c ≤ ‖S‖, then c/a ≤ ‖T‖.
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2. Linear Functionals. The space H ′ of bounded linear functionals on H is not
quite a normed space because a bounded linear functional f need not have a norm.
However, the statement ‖f‖ ≤ r has a meaning—namely that |f(x)| ≤ r ‖x‖ for all
x in H. Also, the convex sets (closed balls) Sr = {f : ‖f‖ ≤ r} satisfy

• S0 = {0},

• cSr ⊂ S|c|r,

• Sr + Ss ⊂ Sr+s.

and define a uniform structure on H ′.
There is a natural embedding ν : H → H ′ taking y to the linear functional 〈 · , y〉

whose norm is equal to ‖y‖. The Riesz representation theorem says that if f ∈ H ′
has a norm, then f ∈ ν(H). A proof of this is given in [2, 2.3 page 419]. We give a
direct proof here that avoids the countable axiom of choice and the prior verification
that ker f is located if f is nonzero. First we have a lemma which will also be used
later.

Lemma 2. Let H = H1 ⊕H2 be a decomposition of an inner product space H into
orthogonal subspaces. If f is a linear functional on H, then

‖f‖2 = ‖f‖21 + ‖f‖22

where ‖f‖i is the norm of the restriction of f to Hi.

Proof.

‖f‖2 = sup
‖u‖=1

|f(u)|2

= sup
‖u1‖2+‖u2‖2=1

|f(u1) + f(u2)|2

= sup
‖u1‖2=‖u2‖2=1

|α1|2+|α2|2=1

|α1f(u1) + α2f(u2)|2 ,

where the last equality holds because we may restrict to nonzero u1 and u2. In the
last supremum, we may further restrict to u1 and u2 such that f(u1) and f(u2) are
nonzero, so we may assume that α1f(u1) and α2f(u2) are positive. Hence

sup
‖u1‖2=‖u2‖2=1

|α1|2+|α2|2=1

|α1f(u1) + α2f(u2)|2 = sup
‖ui‖2=1
a2

1+a2
2=1

f(ui)>0

(a1f(u1) + a2f(u2))2
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The supremum on the right, for fixed ui, is realized when

ai = f(ui)/
√
f(u1)2 + f(u2)2,

so
‖f‖2 = sup

‖ui‖2=1
f(ui)>0

(
f(u1)2 + f(u2)2

)
= ‖f‖21 + ‖f‖22 2

It is important to observe that the norms in Lemma 2 need not exist as real
numbers; the equation is an equality of expressions involving suprema.

Theorem 3. Let f be a linear functional on a Hilbert space H. If f has a norm,
then f = 〈·, y〉 for some (necessarily unique) element y in H.

Proof. As H is complete, it suffices to show that f is in the closure of ν(H). Given
δ > 0, we construct y ∈ H such that ‖f − ν(y)‖2 ≤ 2δ. Either ‖f‖2 < 2δ or ‖f‖2 > 0.
In the former case take y = 0. In the latter we may assume that ‖f‖ = 1. Pick y so
that ‖y‖ = 1 and f(y) ≥ 1− δ (so f(y) ≤ 1 is real). Let H = H1 ⊕H2, where H1 is
the span of y, and H2is the orthogonal complement of y. Then

|(f − νy)(cy)| = |c| |f(y)− 1| ≤ |c| δ,

so ‖f − ν(y)‖1 ≤ δ, in the notation of Lemma 2. By Lemma 2,

1 = ‖f‖2 = ‖f‖21 + ‖f‖22 ≥ (1− δ)2 + ‖f‖22

so
‖f − ν(y)‖22 = ‖f‖22 ≤ 2δ − δ2.

By Lemma 2 again,

‖f − ν(y)‖2 = ‖f − ν(y)‖21 + ‖f − ν(y)‖22
≤ δ2 + 2δ − δ2 = 2δ. 2

Let B be a bilinear form, and let

‖B‖ = sup
‖x‖≤1,‖y‖≤1

|B(x, y)| .

We say that B is left (respectively, right) representable if there exists an operator
T , necessarily unique, such that B(x, y) = 〈Tx, y〉 (respectively, B(x, y) = 〈x, Ty〉)
for all x and y. Note that, in either case, ‖B‖ = ‖T‖; so, in particular, B is bounded
if and only if T is bounded. Note also that an operator T has an adjoint if and only
if the (left representable) bilinear form 〈Tx, y〉 is right representable.
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Theorem 4. Let B be a bilinear form on a Hilbert space. Then B is right repre-
sentable if and only if the linear functional B(· , y ) has a norm for each y.

Proof. Denote the unique z such that B(·, y) = 〈·, z〉 by Ty. It is readily checked
that T is an operator. The converse is trivial. 2

Corollary 5. Any compact operator on a Hilbert space has an adjoint.

Proof. Let T be a compact operator and consider the bilinear form B(x, y) =
〈Tx, y〉. Because T is compact, the linear functional B( · , y ) has a norm for each y,
hence B(·, y) = 〈·, T ∗y〉 for some bounded linear operator T ∗. 2

We give a criterion, in terms of the convergence of a series, for when a linear
functional on a Hilbert space with an orthonormal basis has a norm. First we require
a lemma about an arbitrary bounded linear mapping between Hilbert spaces.

Lemma 6. Let E be an orthonormal basis of a Hilbert space H, and PF the projection
on the span of the finite subset F ⊂ E. Let T : H → K be a bounded linear mapping.
Then ‖TPF ‖ ≤ ‖TPF ′‖ if F ⊂ F ′, and

‖T‖ = sup
F
‖TPF ‖ .

In particular, T has a norm if and only if supF ‖TPF ‖ exists.

Proof. Note that TPF has a norm, since it is a compact operator. If F ⊂ F ′, then
‖TPF ‖ ≤ ‖TPF ′‖ because the supremum is over a smaller set. Clearly

‖T‖ = sup
‖x‖≤1

‖Tx‖ ≥ sup
‖x‖≤1

‖TPFx‖ = ‖TPF ‖

As T is bounded, TPFx→ Tx for each x in H, so

‖T‖ = sup
‖x‖≤1

‖Tx‖ = sup
F

sup
‖x‖≤1

‖TPFx‖ = sup
F
‖TPF ‖ . 2

Theorem 7. Let E be an orthonormal basis of a Hilbert space H, and f a bounded
linear functional on H. Then ∑

e∈E
|f(e)|2 = ‖f‖2 .

In particular, f is bounded by c ≥ 0 if and only if the finite partial sums of
∑
e∈E |f(e)|2

are bounded by c2, and f has norm c if and only if

sup
F⊂E,Ffinite

∑
e∈F
|f(e)|2

exists and equals c2.
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Proof. For F a finite subset of E, let PF be the projection on the span of F . It
follows from Lemma 2 that

‖fPF ‖2 =
∑
e∈F
|f(e)|2 .

The result now follows from Lemma 6. 2

3. The Existence of Adjoints. We are interested in conditions equivalent to
the existence of an adjoint. In this connection, we refer the reader to the work of
Ishihara [5].

Note that if T ∗ is an adjoint of T , then

‖T‖ = sup
‖x‖=1
‖y‖=1

|〈Tx, y〉| = sup
‖x‖=1
‖y‖=1

|〈x, T ∗y〉| = ‖T ∗‖ .

Theorem 8. Let E be an orthonormal basis of a Hilbert space H, and let B be a
bounded bilinear form on H. Then the following are equivalent.

(i) The linear functional B( · , y) has a norm for each y in H (in other words, B is
right representable).

(ii)
∑
e∈E |B(e, e′)|2 converges for each e′ ∈ E.

(iii)
∑
e∈E |B(e, y)|2 converges for each y ∈ H.

Proof. Theorem 7 shows that (i) is equivalent to (iii). Clearly (iii) implies (ii).
Now assume (ii), and let c > 0 be a bound for B. The linear functional B( · , e′)

is bounded by c, so
∑
e∈E |B(e, e′)|2 ≤ c2, by Theorem 7.

Given x ∈ H and ε > 0, choose a finite subset F ′ of E such that ‖x−∑e′∈F ′ xe′e
′‖ <

ε, where xe′ = 〈x, e′〉. Then, using (ii), choose a finite subset F of E such that∑
e′∈F ′

∑
e∈E\F

∣∣B(e, e′)
∣∣2 ≤ ε.

Write x = y + z where y =
∑
e′∈F ′ xe′e

′. So

|B(e, y)|2 =

∣∣∣∣∣∣B
e, ∑

e′∈F ′
xe′e

′

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
e′∈F ′

x̄e′B(e, e′)

∣∣∣∣∣∣
2

≤ ‖x‖2
∑
e′∈F ′

∣∣B(e, e′)
∣∣2

for e ∈ E \ F (by the Cauchy-Schwarz inequality) so∑
e∈E\F

|B(e, y)|2 ≤ ‖x‖2 ε
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and ∑
e∈E\F

|B(e, z)|2 ≤ c2 ‖z‖2 ≤ c2ε

Then∑
e∈E\F

|B(e, x)|2 =
∑

e∈E\F
|B (e, y + z)|2 =

∑
e∈E\F

|B(e, y) +B(e, z)|2

≤
(√
‖x‖2 ε+

√
c2ε

)2

= ‖x‖2 ε+ εc2 + 2 ‖x‖ εc = (‖x‖+ c)2 ε

(the triangle inequality in L2(E)). Hence
∑
e∈E |B(e, x)|2 converges, so (ii) implies

(iii). 2

Note that in the last theorem the boundedness of B is only required to prove that
(ii) ⇒ (iii).

It is tempting to look for weaker conditions that entail the existence of an adjoint.
One natural candidate is

inf
F

sup
e∈E\F

|〈Te, x〉| = 0, (1)

which suffices to construct the adjoint of Q, the Brouwerian example in Section 1.
This condition is not generally sufficient, even when T has a norm, as the following
Brouwerian example shows.

Let (an) be a binary sequence with a1 = a2 = 0 and at most one term equal to 1.
Define a linear mapping T : H → H as follows:

• Te1 = 0, Te2 = e2,

• if ak = 0 for 3 ≤ k ≤ n, then Ten = 0,

• if an = 1, then Ten = · · · = Te2n−1 = 1√
n
e1 and Tek = 0 for all k ≥ 2n.

It is straightforward to show that ‖T‖ = 1. Clearly, T satisfies (1). But, although
the partial sums

∑m
n=1 |〈Ten, e1〉|2 are bounded by 1, the series

∑∞
n=1 |〈Ten, e1〉|2 does

not converge. If it converges to s, then either s > 0, in which case 〈TeN , e1〉 6= 0 for
some N , and therefore an = 1 for some n ≤ N ; or else s < 1 and therefore an = 0 for
all n.

Next we show that if a bilinear form is approximately right representable, then it
is right representable.

Proposition 9. Let B be a bilinear form on a Hilbert space H, and suppose that
for each ε > 0 there exists an operator Tε such that

|B(x, y)− 〈x, Tεy〉| < ε

for all x, y in the unit ball of H. Then B is right representable.
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Proof. For all ε, ε′ > 0 and all x, y in the unit ball of H we have

|〈x, (Tε − Tε′)y〉| ≤ ε+ ε′,

so ‖Tε − Tε′‖ ≤ ε+ ε′. By the completeness of H, there exists an operator T , which
Tε approximates within ε, such that B(x, y) = 〈x, Ty〉. 2

4. Absolute Values and Polar Decompositions. An absolute value of an
operator T is a (necessarily unique) positive selfadjoint operator |T | : H → H such
that 〈|T |x, |T | y〉 = 〈Tx, Ty〉 for all x, y ∈ H. If T has an adjoint, then |T |2 = T ∗T ,
and this equation may be used to define |T |.

An operator need not have an absolute value. Let Q be the Brouwerian example
of the introduction, and P1 the projection on the span of e1. The operator T = P1+Q
does not have an absolute value, for if there were a linear mapping S : H → H such
that

〈Se1, en〉 = 〈Te1, T en〉 = 〈e1, Qen〉 = an

for each n > 1, then the sequence (an) would be square-summable, so we would be
able to decide whether there exists n such that an = 1. Note that ranT is one-
dimensional.

On the other hand, although we cannot construct the adjoint of Q, we can con-
struct its absolute value: |Q|x =

∑∞
n=1 anxnen. Note that |Q| is a projection.

To clarify the difference between having an adjoint and having an absolute value,
consider any bounded operator T that maps H into the one-dimensional subspace
spanned by e1. If λn = 〈Ten, e1〉, then

∑∞
n=1 |λn|2 has bounded partial sums, but

converges if and only if T has a norm. Suppose T has an absolute value. If S = |T |2,
then

〈Sx, en〉 = 〈Tx, Ten〉 =

( ∞∑
k=1

λkxk

)
λ∗n,

so the series
∞∑
n=1

∣∣∣∣∣λ∗n
∞∑
k=1

λkxk

∣∣∣∣∣
2

(∗)

converges to ‖Sx‖2 . Conversely, if (∗) converges, then T has an absolute value.
Certainly (∗) converges if

∑∞
n=1 |λn|2 converges—that is, if T has a norm. But

the operator Q (with λn = an) shows that the series can converge even if
∑∞
n=1 |λn|2

only has bounded partial sums. Explicitly, for any x ∈ H, and any n, we clearly have∣∣∣∣∣an
∞∑
k=1

akxk

∣∣∣∣∣
2

≤ |xn|2
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so
∞∑

n=N+1

∣∣∣∣∣an
∞∑
k=1

akxk

∣∣∣∣∣
2

≤
∞∑

n=N+1

|xn|2 .

The right hand side goes to zero as N goes to∞, so
∑∞
n=1 |an

∑∞
k=1 akxk|2 converges.

Rather than simply study the operators T and |T |, it is convenient to study
operators T and R such that 〈Tx, Ty〉 = 〈Rx,Ry〉 for all x, y. Call two such operators
isometric. Note that in that case

• if either R or T has an absolute value, then so does the other and the absolute
values are equal;

• if either R or T is bounded, then so is the other; and

• if either R or T has a norm, then so does the other.

The first of these observations has a converse: two operators with absolute values are
isometric if their absolute values are equal.

Theorem 10. If the operators T and R are isometric, then there is an isometry U
from ranR to ranT such that T = UR. Hence T is compact if and only if R is
compact.

Proof. The equation 〈Rx,Ry〉 = 〈Tx, Ty〉 allows us to define U by URx = Tx, and
shows that U is an isometry. If X is the image of the unit ball under R, then UX is
the image of the unit ball under T . As U is an isometry, X is totally bounded if and
only if UX is. 2

Theorem 10 is a version of polar decomposition. Normally, one wants to extend
U in a canonical way to all of H. Classically, this is done by extending U (uniquely)
to the closure of ranR and defining U to be zero on the orthogonal complement of
ranR. However, this does not define U on all of H unless ranR is located. (A subset
K of H is located if

ρ(x,K) = inf {‖x− y‖ : y ∈ K}

exists for each x ∈ H.) A subspace of H is located if and only if its closure is the
image of a projection.

Let P be a projection and U an operator. Then the following conditions are
equivalent:

• |U | exists and equals P ;

• U is an isometry on the range of P and is 0 on the kernel of P.
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If these hold for some projection P , we say that U is a partial isometry. Note that
if U is a partial isometry, then U |U | = U . The Brouwerian example Q is a partial
isometry.

Proposition 11. An adjoint of a partial isometry is a partial isometry.

Proof. Let U be a partial isometry with adjoint U∗. Then

(UU∗)2 = U |U |2 U∗ = U |U |U∗ = UU∗.

Taking square roots of both sides, we have |U∗|2 = |U∗| , so |U∗| is a projection. 2

Lemma 12. If T = UR, where U is a partial isometry, then the following are equiv-
alent.

1. T and R are isometric operators.

2. |U | is an isometry on ranR.

3. |U |R = R.

4. kerU ⊂ (ranR)⊥.

Proof. As
〈|U |Rx, |U |Ry〉 = 〈URx,URy〉 = 〈Tx, Ty〉,

(1) and (2) are equivalent. As |U | is a projection, (2) and (3) are equivalent.
Note that kerU = ker |U |. Suppose that (3) holds. If x ∈ kerU , then

〈x,Ry〉 = 〈x, |U |Ry〉 = 〈|U |x,Ry〉 = 0.

So (4) holds. Conversely, suppose that (4) holds. Then ker |U | ⊂ (ranR)⊥, so

ranR ⊂ (ranR)⊥⊥ ⊂ (ker |U |)⊥ = ran |U |

and (3) holds. 2

If T , R and U are as in the above lemma, then we say that T = UR is a polar
decomposition. If U has an adjoint, then for all x, y ∈ H,

〈U∗Tx, y〉 = 〈Tx, Uy〉 = 〈URx,Uy〉 = 〈|U |Rx, y〉 = 〈Rx, y〉 ,

so R = U∗T is a polar decomposition.

Proposition 13. If R is an operator that has an adjoint and a polar decomposition
R = UT , then T ∗ exists and equals R∗U .
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Proof. Using part (3) of Lemma 12, we have

〈Tx, y〉 = 〈|U |Tx, y〉 = 〈UTx,Uy〉 = 〈x,R∗Uy〉 . 2

If T and R are isometric operators such that ran T and ranR are located—a
classically trivial condition—then there exists a partial isometry U with an adjoint
such that

T = UR and R = U∗T .

To construct U , extend the U of Theorem 10 to H by setting it equal to zero on
the complement of ranR. Then U∗ is the inverse of U on ranT and zero on the
complement of ranT .

If Q is the Brouwerian example of the introduction, then Q = Q |Q| is a polar
decomposition. So a polar decomposition T = U |T | does not guarantee that T ∗ exists.
However, a polar decomposition |T | = UT does entail that T ∗ exists (Proposition 13);
in fact, approximate polar decompositions suffice (Theorem 15).

Let R and T be isometric operators. We say that UR is an ε-approximate polar
decomposition of T if U is a partial isometry and ‖T − UR‖ < ε. It is shown in [3]
(Theorem 1.1) that if T is a bounded operator with an adjoint, then for each ε > 0
there exists a partial isometry U , with an adjoint, such that ‖|T | − UT‖ < ε and
‖T − U∗ |T |‖ < ε. It follows that if R and T are isometric operators with adjoints,
then |R| = |T | and for each ε > 0 there is a partial isometry U , with an adjoint, such
that ‖R− UT‖ < ε and ‖T − U∗R‖ < ε. The following lemma will be used to prove
a converse of that result.

Lemma 14. Let R and T be isometric bounded operators. Suppose further that R
has an adjoint. For each ε > 0, there exists δ > 0 such that if UT is a δ-approximate
polar decomposition of R, then

|〈Tx, y〉 − 〈x,R∗Uy〉| ≤ ε

for all x, y in the unit ball.

Proof. Choose δ > 0 so that
√

2 (‖T‖+ δ) δ+ δ < ε. Let P = |U | and S = UT −R,
so ‖R‖ ≤ δ. For all x, y in the unit ball

〈PTx, PTy〉 = 〈UTx,UTy〉
= 〈(R+ S)x, (R+ S) y〉
= 〈Tx, Ty〉+ 〈Sx,Ry〉+ 〈Rx, Sy〉+ 〈Sx, Sy〉

so
|〈PTx, PTy〉 − 〈Tx, Ty〉| ≤ (2 ‖T‖+ δ)δ ‖x‖ ‖y‖ .
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Since

‖(PT − T )x‖2 = 〈PTx− Tx, PTx− Tx〉 = −〈PTx, PTx〉+ 〈Tx, Tx〉,

it follows that ‖PT − T‖2 ≤ (2 ‖T‖+ δ)δ. Then

|〈Tx, y〉 − 〈x,R∗Uy〉| ≤ |〈Tx, y〉 − 〈PTx, y〉|+ |〈UTx,Uy〉 − 〈Rx,Uy〉|
≤ ‖T − PT‖ ‖x‖ ‖y‖+ ‖UT −R‖ ‖x‖ ‖y‖

≤
√

(2 ‖T‖+ δ) δ + δ

< ε

completing the proof. 2

Theorem 15. Let R and T be bounded isometric operators such that R has an
adjoint. If for each ε > 0 there is an ε-approximate polar decomposition UT of R,
then T has an adjoint.

Proof. The result follows immediately from Lemma 14 and Proposition 9. 2
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