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Abstract

The first part of the paper introduces the varieties of modern construc-
tive mathematics, concentrating on Bishop’s constructive mathematics
(BISH). It gives a sketch of both Myhill’s axiomatic system for BISH and
a constructive axiomatic development of the real line R. The second part
of the paper focusses on the relation between constructive mathematics
and programming, with emphasis on Martin-Löf’s theory of types as a
formal system for BISH.

1 What is Constructive Mathematics?

The story of modern constructive mathematics begins with the publication,
in 1907, of L.E.J. Brouwer’s doctoral dissertation Over de Grondslagen der
Wiskunde [18], in which he gave the first exposition of his philosophy of in-
tuitionism (a general philosophy, not merely one for mathematics). According
to Brouwer, mathematics is a creation of the human mind, and precedes logic:
the logic we use in mathematics grows from mathematical practice, and is not
some a priori given before mathematical activity can be undertaken.

It is not difficult to see how, with this view of mathematics as a strictly cre-
ative activity, Brouwer came to the view that the phrase “there exists” should
be interpreted strictly and uniquely as “there can be constructed” or, in more
modern parlance, “we can compute”. In turn, this interpretation of existence led
Brouwer to reject the unbridled use of the Law of Excluded Middle (LEM),
P ∨¬P, in mathematical arguments. For example, consider the following state-
ment, the Limited Principle of Omniscience (LPO):

∀a ∈ {0, 1}N (a = 0 ∨ a 6= 0) . (1)

Here, N = {0, 1, 2, . . .} is the set of natural numbers, {0, 1}N is the set of all
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binary sequences a ≡ (a0, a1, a2, . . .) ,

a = 0 ⇔ ∀n (an = 0) ,
a 6= 0 ⇔ ∃n (an = 1) .

According to Brouwer’s analysis, a proof of statement (1) would, for any a ∈
{0, 1}N,

• either demonstrate that each term of the sequence a equals 0

• or else construct (compute) a certain natural number N, and show that
aN = 1.

To see the power of such a proof, if it were available, we need only realise that,
applied to the sequence a defined by

an =

 0 if 2n+ 4 is a sum of two primes

1 otherwise,

it would, at least in principle, enable us to solve the Goldbach Conjecture1. The
intervention of the Goldbach Conjecture here is not essential: were that conjec-
ture to be resolved today, we could replace it in our example by any one of a
host of open problems of mathematics, including the twin prime conjecture, the
conjecture that there are no odd perfect numbers, and the Riemann Hypothesis.
A Brouwerian proof of (1) would provide a method of literally incredible power
and wide applicability; for this reason, Brouwer would not accept as valid math-
ematical principles either (1) or LEM, from which (1) is trivially deducible. In
turn, he could not accept any classical proposition that constructively entails
LEM, LPO, or some other manifestly nonconstructive principle.

It is important to stress here that, for Brouwer,

• mathematics precedes logic, which arises out of intuitionistic mathematical
practice, and

• a careful, introspective analysis of the meaning of mathematical existence
leads to the rejection of certain consequences of LEM, such as LPO, and
therefore of LEM itself.

Passing over the intervening years, in which Brouwer struggled, perhaps
too aggressively, to overcome the antipathy of Hilbert and his followers to in-
tuitionistic mathematics,2 we arrive at 1930, when Heyting, a former student
of Brouwer, published axioms for the intuitionistic propositional and predicate

1This conjecture, first stated in a letter from Christian Goldbach to Euler in 1742, states
that every even integer > 2 is a sum of two primes.

2See [45] for more details of the history of that period.

2



calculi. These axioms, which we shall describe shortly, have led to substan-
tial developments in intuitionistic logic, but for the Brouwerians were of lesser
importance than the mathematical activity from which they were abstracted.

From the 1940s there also grew, in the former Soviet Union, a substantial
group of analysts, led by A.A. Markov, who practised what was essentially recur-
sive mathematics using intuitionistic logic. Although this group accomplished
much, the strictures of the recursive function theoretic language in which its
mathematics was couched did not encourage its acceptance by the wider com-
munity of analysts, and perhaps also hindered the production of positive con-
structive analogues of traditional mathematical theories. An excellent reference
for the work of the Markov School is [28].

By the mid–1960s it appeared that constructive mathematics was at best
a minor activity, with few positive developments to show in comparison with
the prodigious advances in traditional mathematics throughout the century.
Indeed, many mathematicians were virtually ignorant of Brouwer’s work outside
classical topology, and those who knew something about it probably shared
Bourbaki’s view:

The intuitionistic school, of which the memory is no doubt destined
to remain only as an historical curiosity, would at least have been
of service by having forced its adversaries, that is to say definitely
the immense majority of mathematicians, to make their position
precise and to take more clearly notice of the reasons (the ones of a
logical kind, the others of a sentimental kind) for their confidence in
mathematics. ([7], p. 38)

This situation changed dramatically with the publication, in 1967, of Errett
Bishop’s Foundations of Constructive Analysis [3]. Here was a major young
mathematician, already holding a formidable reputation among functional ana-
lysts and experts in several complex variables, who had turned away from tra-
ditional mathematics to become a powerful advocate of a radical constructive
approach. Moreover, the breadth and depth of mathematics in his monograph
were breathtaking: starting with traditional calculus, Bishop gave a constructive
development of a large part of twentieth century analysis, including the Stone-
Weierstrass Theorem, the Hahn-Banach and separation theorems, the spectral
theorem for selfadjoint operators on a Hilbert space, the Lebesgue convergence
theorems for abstract integrals, Haar measure and the abstract Fourier trans-
form, ergodic theorems, and the elements of Banach algebra theory. At a stroke,
he refuted the long-held belief summarised in the famous words of Hilbert:

Taking the principle of excluded middle from the mathematician
would be the same, say, as proscribing the telescope to the as-
tronomer or to the boxer the use of his fists. [25]

Although Bishop’s work led to a renewed interest in constructive mathe-
matics, especially among logicians and computer scientists (see the second part
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of this paper), it would be idle to suggest that he convinced any but a few
mathematicians to take up his challenge to work systematically within a con-
structive framework. Nevertheless, there have been substantial developments in
Bishop-style constructive analysis since 1967, and, contrary to Bishop’s expec-
tations ([5], pp. 27-28), modern algebra has also proved amenable to a natural,
thoroughgoing, constructive treatment [33].

Bishop’s development (BISH) was based on a primitive, unspecified notion
of algorithm and on the properties of the natural numbers:

The primary concern of mathematics is number, and this means the
positive integers. We feel about number the way Kant felt about
space. The positive integers and their arithmetic are presupposed
by the very nature of our intelligence and, we are tempted to believe,
by the very nature of intelligence in general. The development of the
positive integers from the primitive concept of the unit, the concept
of adjoining a unit, and the process of mathematical induction carries
complete conviction. In the words of Kronecker, the positive integers
were created by God. ([3], p. 2)

By not specifying what he meant by an algorithm, Bishop gained two significant
advantages over other approaches to constructivism.

• He was able to develop the mathematics in the style of normal analysis,
without the cumbersome linguistic restrictions of recursive function theory.

• His results and proofs were formally consistent with Brouwer’s intuition-
istic mathematics (INT), recursive constructive mathematics (RUSS),
and classical (that is, traditional) mathematics (CLASS): every theorem
proved in Bishop is also a theorem, with the same proof, in INT, RUSS,
and CLASS.

Now, one point at which BISH is open to criticism is its lack of precision
about the notion of algorithm (although it is precisely that lack of precision
that allows it to be interpreted in a variety of models). But that criticism can
be overcome by looking more closely at what we actually do, as distinct from
what Bishop may have thought he was doing, when we prove theorems in BISH:
in practice, we are doing mathematics with intuitionistic logic, and we observe
from our experience that the restriction to that logic always forces us to work
in a manner that, at least informally, can be described as algorithmic. The
original algorithmic motivation for our approach led us use intuitionistic logic,
which, in turn, seems to produce only arguments that are entirely algorithmic
in character. In other words, algorithmic mathematics appears to be equivalent
to mathematics that uses only intuitionistic logic.3 If that is the case—and all

3Is this Bishop’s “secret still on the point of being blabbed” ([3], epigraph)?
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the evidence of our experience suggests that it is—then we can carry out our
mathematics using intuitionistic logic on any reasonably defined mathematical
objects, not just some special class of so–called “constructive” objects.

To emphasise this point, which may come as a surprise to readers expecting
here some version of hard-core constructivism, our experience of doing construc-
tive mathematics suggests that we are

• dealing with normal mathematical objects, and

• working only with intuitionistic logic, and not the classical logic of normal
mathematical practice.

This view, more or less, appears to have first been put forward by Richman ([40],
[41]). It does not, of course, reflect the way in which Brouwer, Heyting, Markov,
Bishop, and other pioneers of constructive mathematics regarded their activities.
Indeed, it is ironic that, having first become interested in constructivism through
the persuasive writings of Bishop, in which, as with Brouwer, the use of what
became identified as intuitionistic logic was derived from an analysis of his
perception of meaningful mathematical practice, we have been led, through our
practice of Bishop-style mathematics, to a view that perhaps it is the logic that
determines the kind of mathematics that we are doing.

Note that this is a view of the practice of constructive mathematics, and
is certainly compatible with a more radical constructive philosophy of mathe-
matics, such as Brouwer’s intuitionism, in which the objects of mathematics are
mental constructs. Thus, in saying that constructive mathematics deals with
“normal mathematical objects”, we have not precluded the possibility that the
radical constructivist view of the nature of those objects may hold; the view-
point we have adopted is an epistemological, rather than ontological, one

From now on, when we speak of “normal mathematical objects”, we have in
mind the kind of things that are handled by either Heyting arithmetic—the
Peano axioms plus intuitionistic logic—or, at a higher level, a formal system
such as intuitionistic set theory (IZF), Myhill’s constructive set theory (CST),
or Martin-Löf’s type theory (the last two of which are discussed later in this
paper). When working in any axiomatic system, we must take care to use only
intuitionistic logic, and therefore to ensure that we do not adopt a classical
axiom that implies LEM or some other nonconstructive principle. For example,
in IZF we cannot adopt the common classical form of the axiom of foundation,

∀x∃y (y ∈ x ∧ y ∩ x = ∅) ,

since it entails LEM ([35], [14]).
A rather different approach to a constructive theory of sets (based on A.P.

Morse’s beautiful classical development [34]), in which each statement can be
read either as one in intuitionistic predicate calculus or as one about sets, was
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developed in [13]. In this approach there is a universal class U, and the mem-
bers of U correspond to those objects whose existence has been established
constructively. An outline of this theory can be found in [14].

We now look a little more closely at intuitionistic logic. To illustrate how
Heyting arrived at his axioms, note that in order to prove that either the equa-
tion f(n) = 0 or the equation g(n) = 0 has a solution, where f, g are functions
on the natural numbers, it is not enough for the intuitionist to prove the impos-
sibility of neither having a solution: such a proof would not enable him to find
a solution of either equation. Thus we are led to the constructive interpretation
of disjunction: (P or Q) holds if and only if either we have a proof of P or we
have a proof of Q.

Similar consideration of all the logical connectives

∨ (or), ∧ (and), ⇒ (implies),¬ (not)

in the light of constructive mathematical practice leads to the following axioms
for the intuitionistic propositional calculus:

1. P ⇒ (P ∧ P )

2. (P ∧Q)⇒ (Q ∧ P )

3. (P ⇒ Q)⇒ (P ∧R⇒ Q ∧R)

4. (P ⇒ Q)⇒ ((Q⇒ R)⇒ (P ⇒ R))

5. Q⇒ (P ⇒ Q)

6. (P ∧ (P ⇒ Q))⇒ Q

7. P ⇒ (P ∨Q)

8. (P ∨Q)⇒ (Q ∨ P )

9. ((P ⇒ R) ∧ (Q⇒ R))⇒ ((P ∨Q)⇒ R)

10. ¬P ⇒ (P ⇒ Q)

11. ((P ⇒ Q) ∧ (P ⇒ ¬Q))⇒ ¬P

To use these axioms we also need one rule of inference, modus ponens: from
P and (P ⇒ Q) we infer Q. To obtain axioms for the classical propositional
calculus, we need only add LEM to the foregoing intuitionistic ones.

A first-order language consists of the connectives used above, together
with the quantifiers ∃ (there exists) and ∀ (for each), a list of variables and con-
stants, and a list of predicate symbols. Each predicate symbol has an associated
positive integer, giving the number of places it has. We need the notion of a
well-formed formula, introduced recursively as follows.
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If P is an n-place predicate, and a1, . . . , an are variables or constants,
then P (a1, . . . , an) is a well-formed formula.

If A and B are well-formed formulae, then so are A∨B, A∧B, A⇒
B, and ¬A.
If A is a well-formed formula, and x is a variable, then ∃xA and
∀xA are well-formed formulae.

We denote by A(x/t) the result of replacing every occurrence of the variable x
in A by t; here, t can be either a variable or a constant. An occurrence of the
variable x in A is bound if it appears in a subformula of the form ∀xB or ∃xB;
otherwise, the occurrence of x in A is free. Let x be a variable, t a variable or
constant, and A a formula; we say that t is free for x in A if no free occurrence
of x in A is in a subformula of A of the form ∀tB.

We obtain the intuitionistic predicate calculus by adding to the axioms
of the intuitionistic propositional calculus those in the following list, together
with the rule of inference known as generalisation: from A infer ∀xA.

1. ∀x (A⇒ B)⇒ (A⇒ ∀xB) if x is not free in A

2. ∀x (A⇒ B)⇒ (∃xA⇒ B) if x is not free in B

3. ∀xA⇒ A(x/t) if t is free for x in A

4. A(x/t)⇒ ∃xA if t is free for x in A.

There is are model theories for this logic—Kripke models and Beth models.
These models are often useful for showing that classical results, such as LPO,
cannot be derived within Heyting arithmetic; see [19] and Chapter 7 of [17].

To carry out the development of mathematics, as distinct from logic, con-
structively, Bishop also requires the notions of set and function.

A set is not an entity which has an ideal existence: a set exists only
when it has been defined. To define a set we prescribe, at least
implicitly, what we (the constructing intelligence) must do in order
to construct an element of the set, and what we must do to show
that two elements of the set are equal. ([3], p. 2)

There are two points to emphasise in this quotation. First, Bishop does not
require that the property characterising a set be decidable. (Under the recursive
interpretation, to do so would be to restrict oneself to recursive subsets of the
natural numbers, which would patently destroy the viability of the theory.)
Secondly, Bishop requires the equality relation between elements of a set to be
a part of the definition of the set, provided that it satisfies the usual rules for
an equivalence relation:

• x = x,
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• x = y ⇒ y = x,

• ((x = y) ∧ (y = z))⇒ x = z.

In particular, this means that we cannot form such objects as the union of
two sets unless the sets come with equality relations that are compatible in the
obvious sense; normally, this means that the two sets will themselves be given
as subsets of a third set from which their equality relations are induced.

In general, Bishop is not interested in intensional equality (identity) of ob-
jects. For example, he defines a real number as a sequence (xn) of rational
numbers that is regular, in the sense that

|xm − xn| 6 1
m + 1

n

for all m,n > 1; he then defines two real numbers (xn), (yn) to be equal if

|xn − yn| 6 2
n

for all n > 1. So he works directly with Cauchy sequences, rather than, as would
the classical mathematician, with equivalence classes of Cauchy sequences. This
is akin to the standard practice of calling the fractions 1

2 and 17
34 “equal”, rather

than “equivalent”.
Having dealt with sets, Bishop turns to functions:

in order to define a function from a set A to a set B, we prescribe a
finite routine which leads from an element of A to an element of B,
and show that equal elements of A give rise to equal elements of B.
([3], p. 2)

The notion defined by dropping from this definition the last clause, about preser-
vation of equality, is called an operation. In the first part of this paper we
shall have little to say about operations, but they will have more significance in
the second part, when we discuss Martin-Löf’s theory of types.

The notions of positive integer, set, and function are the foundation stones
of BISH:

Building on the positive integers, weaving a web of ever more sets
and more functions, we get the basic structures of mathematics:
the rational number system, the real number system, the euclidean
spaces, the complex number system, the algebraic number fields,
Hilbert space, the classical groups, and so forth. Within the frame-
work of these structures most mathematics is done. Everything
attaches itself to number, and every mathematical statement ul-
timately expresses the fact that if we perform certain computations
within the set of positive integers, we shall get certain results. ([3],
pp. 2-3)
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The constructivists’ rejection4 of LPO has some significant consequences
even at the level of the real number line R. For example, we cannot expect to
prove constructively that

∀x ∈ R (x = 0 ∨ x 6= 0) ,

where x 6= 0 means |x| > 0. (Here we are anticipating some elementary con-
structive properties of R.) For if we could prove this statement, then, given any
binary sequence a and applying it to the real number whose binary expansion
is 0 · a1a2a3 · · · , we could prove LPO.

Among other classical propositions that imply LPO are

• The law of trichotomy: ∀x ∈ R (x < 0 ∨ x = 0 ∨ x > 0) .

• The least-upper-bound principle: each nonempty subset of R that is
bounded above has a least upper bound.

• Every real number is either rational or irrational. (To see this, consider a
decreasing binary sequence (an) and the real number

∑∞
n=1 an/n!.)

Another classically trivial principle that is rejected in BISH is the Lesser
Limited Principle of Omniscience (LLPO)

∀a ∈ {0, 1}N (∀m∀n (am = an = 1⇒ m = n) ⇒
∀n (a2n = 0) ∨ ∀n (a2n+1 = 0))

—in other words, if (an) is a binary sequence with at most one term equal to 1,
then either a2n = 0 for all n or else a2n+1 = 0 for all n.
Among the classical propositions that entail LLPO and are therefore regarded
as essentially nonconstructive are

• ∀x ∈ R (x > 0 ∨ x 6 0) .

• If x, y ∈ R and xy = 0, then x = 0 or y = 0.

• The Intermediate Value Theorem: If f : [0, 1] → R is a continuous
function with f(0) < 0 < f(1), then there exists x ∈ (0, 1) such that
f(x) = 0.

For more on LPO, LLPO, and related matters, we refer the reader to Chapter
1 of [17].

4There is another reason for rejecting LPO in the constructive setting: its recursive inter-
pretation is provably false within recursive function theory, even with classical logic (see [17],
Chapter 3). So if we want BISH to remain consistent with a recursive interpretation, we must
not allow LPO to be used therein.
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It would be wrong to get the impression that constructive mathematics only
deals with negative results. For example, there are several constructive substi-
tutes for the Intermediate Value Theorem, each of which can be successfully
applied to most of the functions that arise in practice in analysis; see [6] (pages
40-41 and 63), and [17] (pages 54-58). Indeed, the major effort of Bishop and
his followers has been directed at obtaining positive constructive substitutes for
classical results and theories.

2 Myhill’s Constructive Set Theory

In this section we outline Myhill’s constructive set theory (CST—see [36]), pro-
viding a formal foundation for BISH. Although this is one of several formal
systems intended to capture the spirit and method of BISH ([20], [21]), it is one
which we understand that Bishop himself held in some regard.

CST is based on intuitionistic predicate logic with identity. The variables
are of three basic kinds: numbers, sets, and functions. The seven primitive
notions are

• three constants

– 0 (zero)

– s (successor)

– N (the set of natural numbers);

• two one-place predicates

– M(a) (a is a set)

– F(a) (a is a function);

• a two-place predicate

– a ∈ b (a is an element of the set b);

• a three-place predicate

– V (a, b, c) (the function a is defined for the argument b and has the
corresponding value c)

The last of these predicates enables us to handle partial functions whose domains
are not necessarily decidable. In practice, we would normally write a(b) = c
rather than V (a, b, c).

The axioms of CST fall into several groups, the first of which clarifies the
nature of the basic objects.
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A1 Everything is a number, a function, or a set: a ∈ N ∨ F(a) ∨M(a)

A2 Numbers are not functions: a ∈ N⇒ ¬F(a)

A3 Functions are not sets: F(a)⇒ ¬M(a)

A4 Sets are not numbers: M(a)⇒ ¬ (a ∈ N)

A5 Only numbers have successors: V (s, a, b)⇒ a ∈ N

A6 Only functions have values: V (a, b, c)⇒ F(a)

A7 Only sets have members: a ∈ b⇒M(b)

A8 A function has at most one value for a given argument: V (a, b, c) ∧
V (a, b, d)⇒ c = d

The second group of axioms is Peano’s axioms for the natural numbers.

B1 0 ∈ N

B2 a ∈ N⇒ ∃y (V (s, a, y) ∧ y ∈ N)

B3 ¬V (s, a, 0)

B4 V (s, a, c) ∧ V (s, b, c)⇒ a = b

B5 (P (0) ∧ ∀x∀y ((P (x) ∧ V (s, x, y))⇒ P (y)))⇒ ∀x (x ∈ N⇒ P (x)) , where
P (x) is a one-place predicate.

The next axiom embodies the principle that if for each element x of a set A
there exists a unique element y of a set B such that P (x, y), then y is obtained
from x by a function from A to B. Before stating this axiom we introduce a
convenient shorthand:

dom(z) = a stands for ∀x (x ∈ a⇔ ∃y V (z, x, y))

Now we have what Myhill calls an axiom of nonchoice:

C1 (M(a) ∧ ∀x ∈ a ∃!y ∈ b P (x, y))⇒
∃f (F(f) ∧ dom(f) = a ∧ ∀x ∈ a ∃y ∈ b (V (f, x, y) ∧ P (x, y)))

In addition, we have the axiom of dependent choice:

C2 (t ∈ a ∧ ∀x ∈ a ∃y P (x, y))⇒
∃f (F(f) ∧ dom(f) = N ∧ V (f, 0, t)∧
∀x ∈ N ∃y ∈ a ∃z ∈ a (V (f, x, y) ∧ V (f, s(x), z) ∧ P (y, z))) ,
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where P is a two-place predicate. It is not hard to derive from this last axiom
the principle of countable choice:

(∀x ∈ N ∃y ∈ aP (x, y))⇒ ∃f (F(f) ∧ dom(f) = N ∧ ∀x ∈ N ∃y ∈ AV (f, x, y)) .

These three choice principles appear to be sufficient5 for the development of
analysis in [3] and [6]. The full axiom of choice, on the other hand, cannot be
allowed in constructive mathematics, since, as Goodman and Myhill have shown
[22], it entails the law of excluded middle.

There appears to be a conflict here with Bishop’s remark ([3], p. 9) that

the axiom of choice ... is not a real source of nonconstructivity
in classical mathematics. A choice function exists in constructive
mathematics, because a choice is implied by the very meaning of
existence.

Indeed, it is true that if to each element x of a set A there corresponds an
element y of set B such that the property P (x, y) holds, then it is implied
by the meaning of existence in constructive mathematics that there is a finite
routine for computing an appropriate y ∈ B from a given x ∈ A; but this
computation may depend not only on the value a but also on the information
that shows that a belongs to the set A. The computation of the value at a of a
function f from A to B would depend only on a, and not on the proof that a
belongs to A; in other words, a function is extensional. So Bishop’s remark
is correct if he admits functions whose value depends on both a and a proof
that a ∈ A, but is not correct if, as Myhill does, one only admits extensional
functions.

Of course, the axiom of choice will hold for us if the set A is one for which no
computation is necessary to demonstrate that an element belongs to it; Bishop
calls such sets basic sets. For Myhill and Bishop, N is a basic set, a belief
reflected in their acceptance of the principle of countable choice.

Returning to Myhill’s axioms, we now have a group that reflects the usual
types of axiom found in classical set theories. The first two of these show that
the domain and range of a function are sets.

D1 F(f)⇒ ∃X ∀x (x ∈ X ⇔ ∃y V (f, x, y))

D2 F(f)⇒ ∃X ∀x (x ∈ X ⇔ ∃y V (f, y, x))

Axiom D2 acts like the standard axiom of replacement in classical set theory,
since it implies that

F(f)⇒ ∃X ∀y (y ∈ X ⇔ ∃x ∈ AV (f, x, y))
5It appears, however, that there may be many places in the development of BISH where

substantial results are provable without the principles of countable choice or dependent choice;
see for example, [39].
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—in other words, that the set {f(x) : x ∈ A ∩ dom(f)} exists.
Next we have the mapping set axiom:

D3 ∃X ∀f (f ∈ X ⇔ F(f) ∧ dom(f) = A ∧ ran(f) ⊂ B) ,

where
∀x (x ∈ ran(f)⇔ ∃y V (f, y, x))

and
S ⊂ B ⇔ ∀x (x ∈ S ⇒ x ∈ B) .

The mapping set axiom if a weak substitute for the standard power set axiom,

∃Y ∀s (s ∈ Y ⇔ s ⊂ X) ,

to which Myhill and others have raised serious constructive objections; see pages
351–352 and 364-365 of [36]. The power set axiom is used implicitly in the
chapter on measure theory in [6], but, as Myhill points out on pages 354-355
of his paper [36], the power set axiom can easily be avoided in constructive
measure theory.

Myhill’s next axiom, asserting the existence of the pair set {a, b} formed
from two objects a and b, can actually be deduced from the one following it,
C1, and D2, but we shall not do this:

D4 ∃X ∀x (x ∈ X ⇔ x = a ∨ x = b) .

The existence of the ordered pair (a, b), defined as the function f with domain
{0, 1} such that f(0) = a and f(1) = b, can also be deduced from the axioms.

For the next axiom we define the notion of a restricted formula as follows.
Atomic formulae are restricted; propositional combinations of restricted formu-
lae are restricted; if P is restricted and τ is a parameter or N, then ∀x ∈ τ P (x)
and ∃x ∈ τ P (x) are restricted. We now have the axiom of predicative sep-
aration:

D5 ∃X ∀x (x ∈ X ⇔ x ∈ A ∧ P (x)) , where every bound variable of P is re-
stricted to a set.

The purpose of the restriction condition is to ensure that the condition defining
a set only refers to sets that have already been defined—in other words, to avoid
circularity in the definition of sets.

The last axiom of this group is that of union:

D6 (∀x ∈ AM(x))⇒ ∃X ∀x (x ∈ X ⇔ ∃Y (x ∈ Y ∧ Y ∈ A))

Finally, we have two axioms of extensionality for functions and sets:

E1 F(a) ∧ F(b)⇒ (a = b⇔ (dom(a) = dom(b))∧
∀x ∈ dom(A) ∀y (V (a, x, y)⇔ V (b, x, y)))

13



E2 A = B ⇔ ∀x (x ∈ A⇔ x ∈ B)

We believe that Myhill’s axiomatic system captures well the spirit of Bishop’s
approach to constructive mathematics, based, as it is, on the notions of natural
number, set, and function. However, we shall not attempt in this paper to use
the axioms to formalise any parts of BISH.

3 The Constructive Real Line

Although the derivation of the algebraic and order properties of the real line R
using Bishop’s definitions of real number, equality of real numbers, positive, and
nonnegative is reasonably smooth, it is instructive (and perhaps paedogogically
advantageous) to produce a constructive axiomatic development of R. These
axioms are intended to capture the idea that a real number, whatever it may be,
is something that can be arbitrarily closely approximated by rational numbers.
(In Bishop’s formal construction, referred to above, that approximation is done
by means of regular Cauchy sequences of rational numbers.)

Our starting point is to assume the existence of a set R with

• a binary relation > (greater than)

• a corresponding inequality relation 6= defined by

x 6= y if and only if (x > y or y > x)

• binary operations (x, y) 7→ x + y (addition) and (x, y) 7→ xy (multipli-
cation)

• distinguished elements 0 (zero) and 1 (one) with 0 6= 1

• a unary operation x 7→ −x

• a unary operation x 7→ x−1 on the set of elements x 6= 0.

The elements of R are called real numbers. We identify the sets N of natural
numbers, N+ of positive integers, Z of integers, and Q of rational numbers with
the usual subsets of R : for example, we identify N+ with {n1 : n ∈ N+} .

We say that a real number x is positive if x > 0, and negative if −x > 0.
We define the relation > (greater than or equal to) by

x > y if and only if ∀z (y > z ⇒ x > z) ,

and we define the relations < and 6 in the usual way, calling x nonnegative
if x > 0. Two real numbers x, y are equal if x > y and y > x, in which case we
write x = y. Note that this notion of equality satisfies the usual properties of
an equivalence relation.
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We assume that all the foregoing relations and operations are extensional;
for example, to say that the relation > is extensional means that if x > y, x =
x′, and y = y′, then x′ > y′. We also assume that they satisfy a number of
axioms, falling into three groups, the first of which deals with the basic algebraic
properties of R.

R1. R is a Heyting field: For all x, y, z ∈ R,

x+ y = y + x,

(x+ y) + z = x+ (y + z) ,
0 + x = x,

x+ (−x) = 0,
xy = yx,

(xy) z = x (yz) ,
1x = x,

xx−1 = 1 if x 6= 0, and
x(y + z) = xy + xz.

Of course, we also denote x−1 by 1
x or 1/x.

It is natural to ask whether, for the existence of x, it suffices to have ¬(x = 0).
The answer is provided by a well known example which shows that the statement

∀x ∈ R (¬(x = 0)⇒ ∃y ∈ R (xy = 1))

is equivalent to Markov’s Principle (MP):

∀a ∈ {0, 1}N (¬ (a = 0)⇒ a 6= 0)

—that is, if (an) is a binary sequence such that ¬∀n (an = 0) , then there exists
n such that an = 1. (See [17], Ch. 1, Problem 8). Since Markov’s Principle is
a form of unbounded search, it is not accepted by the majority of constructive
mathematicians (although it is clearly true in classical mathematics).

We now have the second group of axioms.

R2. Properties of > .

1. ¬(x > y and y > x)

2. (x > y)⇒ ∀z (x > z ∨ z > y)

3. ¬(x 6= y)⇒ x = y.

4. (x > y)⇒ ∀z (x+ z > y + z)
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5. (x > 0 ∧ y > 0)⇒ xy > 0

The second of these axioms is a substitute for the law of trichotomy, and
can be justified heuristically as follows. Given that x > y, and given any real
number z, approximate 1

2 (x+ y) and z to within 1
8 (x− y) by rational numbers

p and q respectively. Using rational arithmetic, we can decide whether q 6 p or
q > p. In the first case we have

z < q + 1
8 (x− y)

6 p+ 1
8 (x− y)

< 1
2 (x+ y) + 1

8 (x− y) + 1
8 (x− y)

= x.

In the second case a similar argument shows that z > y.
In connection with axiom R2(3), note that the statement

∀x, y ∈ R (¬ (x = y)⇒ x 6= y)

is equivalent to Markov’s Principle ([17], Ch. 1, Problem 8).
Our last two axioms describe special properties of > and > . For the second

of these we need to know that the notions bounded above, bounded below,
and bounded are defined as in classical mathematics; and that, for example,
if S is a nonempty subset of R that is bounded above, then its least upper
bound, if it exists, is the unique real number b such that

• b is an upper bound of S, and

• for each b′ < b there exists s ∈ S such that s > b′.

(Note that nonempty means inhabited—that is, we can construct an element
of the set in question.)

R3 Special properties of > .

1. Axiom of Archimedes: For each x ∈ R there exists n ∈ Z such that
x < n.

2. The Least-upper-bound Principle: Let S be a nonempty subset of
R that is bounded above relative to the relation > , such that for all real
numbers α, β with α < β, either β is an upper bound of S or else there
exists s ∈ S with s > α; then S has a least upper bound.

The first of these two axioms would seem to require no justification; but the
second is a little harder to motivate. To do so, consider the following attempt
to construct the least upper bound of a set S that is bounded above. Let s0 ∈ S
and let b0 be an upper bound for S. Having constructed sn ∈ S and an upper
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bound bn for S, consider t ≡ 1
2 (sn + bn) : if t is an upper bound for S, set

sn+1 = sn and bn+1 = t; if t is not an upper bound for S, then choose sn+1 ∈ S
such that sn+1 > t, and set bn+1 = bn. This gives an inductive construction of
a sequence (sn) in S and a sequence (bn) of upper bounds for S, such that for
each n > 1,

[sn, bn] ⊂ [sn−1, bn−1]

and
0 < bn − sn < 2−n(b0 − s0).

Our intuition of the real number system now suggests that the sequence (sn)
and (bn) converge to a common limit that is the required least upper bound.

Viewed constructively, this argument breaks down because we cannot decide
whether or not t is a least upper bound for S. However, if S has the additional
property in the hypothesis of axiom R3(2), then we can modify the unsuccessful
classical attempt as follows. Having found sn and bn, consider the two numbers

t1 ≡ 2
3sn + 1

3bn,

t2 ≡ 1
3sn + 2

3bn.

Since t1 < t2, either t2 is an upper bound for S, in which case we set sn+1 = sn
and bn+1 = t2; or else there exists sn+1 ∈ S such that sn+1 > t1, in which case
we set bn+1 = bn. This gives an inductive construction of a sequence (sn) in S
and a sequence (bn) of upper bounds for S, such that for each n > 1,

[sn, bn] ⊂ [sn−1, bn−1]

and
0 < bn − sn <

(
2
3

)n (b0 − s0).

Again, our intuition leads us to expect that the sequences (sn) and (bn) will
approach a common limit, which will be the least upper bound of S. Thus we
have the heuristic motivation for our axiom R3(2).

While not exactly routine, it is nevertheless not too hard to derive from these
axioms the properties of R that Bishop establishes directly from his definitions.
In particular, we can prove that R is complete, in the usual sense that each
Cauchy sequence of real numbers has a limit in R [15].

4 A Case Study: Approximation Theory

To illustrate Bishop’s mathematics in practice, we now consider some construc-
tive aspects of approximation theory. This will require of the reader some fa-
miliarity with some basic classical notions of the theory of metric and normed
spaces.
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A subset V of a metric space (X, ρ) is located if

ρ(x, V ) ≡ inf{ρ(x, v) : v ∈ V }

exists (is computable!) for each x ∈ X. It is relatively straightforward to show
that finite-dimensional subspaces of a normed space are located. But we cannot
expect to prove that every linear subset of R is located. To see this, take any
real number a and consider the linear subset

Ra = {ax : x ∈ R}

of R. If Ra is located, then we can compute ρ(1,Ra). By axiom R2(2), either
ρ(1,Ra) > 0 or ρ(1,Ra) < 1. In the first case it is absurd that a 6= 0, so a = 0,
by R2(3). In the second, choosing x such that |1− ax| < 1, we see that |ax| > 0,
so a 6= 0. (It is an elementary deduction from our axioms for R that if xy 6= 0,
then x 6= 0 or y 6= 0; see [15].

Let Y be a located subset of the metric space (X, ρ), and a and element of
X. We say that b ∈ Y is a best approximation to a in Y if ρ(a, b) = ρ(a,X);
and that Y is proximinal in X if each x ∈ X has a best approximation in Y.
The fundamental theorem of classical approximation theory says that

Each finite-dimensional subspace of a real normed space is proximinal.

The classical proofs of this theorem depend on the theorem that a continuous,
real-valued function on a compact space attains its infimum, a result that implies
LLPO. In fact, as is shown in [11], it is not just the proofs, but the theorem itself,
that is nonconstructive. So it is a serious problem to find a good constructive
substitute for that theorem.

To this end, we say that an element a of a metric space X has at most one
best approximation in the subset Y of X if

max{ρ(a, y), ρ(a, y′)} > ρ(a, Y )

whenever y, y′ are distinct points of Y ; and that Y is quasiproximinal if each
x ∈ X with at most one best approximation in Y has a (unique) best approx-
imation in Y. Clearly, a proximinal subspace is quasiproximinal. Classically, it
can be shown that proximinal and quasiproximinal are equivalent concepts: for
if a given x ∈ X has no best approximation in a quasiproximinal subspace Y,
then it has at most one, and therefore exactly one, best approximation in Y,
which is absurd.

The following constructive version of the fundamental theorem of approxi-
mation theory was proved in [9]:

Each finite-dimensional subspace of a real normed space is quasiprox-
iminal.
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The tricky part of the proof is a lemma dealing with a strong version of the case
where the dimension is 1; the rest is a careful induction over the dimension of
the subspace. The result itself is an ideal constructive substitute for the classi-
cal fundamental theorem, in that it is classically equivalent to that theorem. It
illustrates a common phenomenon: namely, that classical unique existence often
translates into constructive existence. It also covers Chebyshev approxima-
tion, where X is the Banach space of continuous functions on the closed interval
[0, 1] and Y is the subspace spanned by the monomials 1, x, x2, . . . , xn [8]. How-
ever, the existence, continuity, and strong unicity of the best Chebyshev approx-
imation can be proved constructively without using the Fundamental Theorem
[11].

Now, there is a famous algorithm for constructing best Chebyshev approxi–
mations—the Remes algorithm. Does that not provide a constructive existence
proof? It does not. Inspection reveals that the classical proof of the convergence
of the Remes algorithm is nonconstructive: at one crucial step it shows that
a sequence converges by assuming the contrary and deducing a contradiction
[27]. It is really quite remarkable that such an important classical algorithm
is presented without estimates of its rate of convergence! Fortunately, a more
careful description and analysis of the algorithm leads to a constructive proof
of its convergence [10].

We should be realistic about what such a proof has achieved. In order to
handle the convergence of the Remes algorithm in even the most pathological
cases, the estimates produced by the constructive proof are, of necessity, ex-
tremely rough. There remains, however, the possibility that a deeper construc-
tive analysis will produce convergence estimates that can be used in practical
applications of the algorithm.

5 Intuitionism and Computer Science

The first explicit, direct use of intuitionistic logic in connection with computer
science was the paper Constructive Mathematics and Computer Programming
(later reprinted as [32]), which was read by Per Martin-Löf at the 6th Interna-
tional Congress for Logic, Methodology and Philosophy of Science in Hannover
in August 1979. This paper followed the first expositions of Martin-Löf’s ideas
in [29] and in some lecture notes, made by Sambin during a course in 1980,
published as [31]. (It is interesting to note that Bishop foresaw the possibility
of using constructive mathematics as a basis for programming; he suggested in
[4] using Gödel’s theory of computable functionals of finite type.)

In his series of papers Martin-Löf first develops the philosophical and formal
basis for his constructive set theory, or constructive type theory, and then
points out and exploits the identity between mathematics and programming. In
this very clear sense Martin-Löf’s work shows the truth of the statement made
in an earlier section, namely that algorithmic mathematics—that is, computer
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science—appears to be equivalent to mathematics that uses only intuitionistic
logic. We now expand on this point and make clear that the apparent equivalence
is real.

Martin-Löf explains the equivalence in a table in [30], some of which runs:

Programming Mathematics

program, procedure, algorithm function
input argument

output, result value
...

...
a : A a ∈ A

...
...

record s1 : T1; s2 : T2 end T1× T2
...

...

and he says (in the same paper):

the whole conceptual apparatus of programming mirrors that of
modern mathematics (set theory, that is, not geometry) and yet is
supposed to be different from it. How come? The reason for this cu-
rious situation is, I think, that the mathematical notions have grad-
ually received an interpretation, the interpretation which we refer to
as classical, which makes them unusable for programming. Fortu-
nately, I do not need to enter the philosophical debate as to whether
the classical interpretation of the primitive logical and mathematical
notions ... is sufficiently clear, because this much at least is clear,
that if a function is defined as a binary relation satisfying the usual
existence and unicity conditions, whereby classical reasoning is al-
lowed in the existence proof ... then a function cannot be the same
thing as a computer program ... Now it is the contention of the intu-
itionists...that the basic mathematical notions, above all the notion
of function, ought to be interpreted in such a way that the cleavage
between mathematics, classical mathematics, that is, and program-
ming that we are witnessing at present disappears. In the case of
the mathematical notions of function and set, it is not so much a
question of providing them with new meanings as of restoring old
ones ...

6 A computational view of proof

In this section we expand on some of the ideas mentioned in the above quote,
and, making comments as appropriate, give the complete version of the foregoing
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table. In this way we hope to give a good, fairly non-technical view of the effects
of constructive mathematics on modern computer science thinking.

One large difference between mathematics and computer science that will
quickly become clear is that computer scientists, while “all” that they are doing
is algorithmic mathematics, have to spend most of their time dealing with a
very formalised world. This is simply because, in the end, they have to produce
programs, which are of course nothing more than rather large and very com-
plicated formal objects. Whereas a mathematician, when communicating with
other mathematicians, can rely on knowledge, intuition, insight and all those
human processes that make up our ability to reason intelligently, the computer
scientist has to produce an object that instructs a machine. Every last detail
must be explicit; machines, after all, have no intelligence and so cannot be relied
on to fill in the gaps in the programs that instruct them. So, since computer
scientists spend much of their time producing formal objects, it should not be
surprising that they create formal systems within which to work and within
which their programs can be built.

Bearing this in mind, we might adapt the characterisation of computer sci-
ence given above to: computer science is equivalent to completely formalised
mathematics that uses only intuitionistic logic.

All we have said is by way of preparation for the reader, who must be in
the right frame of mind for accepting the need for formalisation and for being
patient when we appear to spend inordinate amounts of time and space getting
the details of a formalisation correct. We do this not out of any narrowness of
view or inability to think; rather we do it because we know that we are forced
to do by the nature of the end product.

Now we start building the formal system, based on Martin-Löf’s work, within
which, later on, we create our programs. Our plan is to begin with a standard
logical system (which can be seen as merely a different presentation of Heyting
arithmetic) and gradually build on this, all the while mirroring to some extent
the underlying logic in Section 1, until we arrive at a system that is expressive
enough for our task of constructing programs.

The main difference between the formal parts of Section 1 and what we are
about to do is that we use a natural–deduction presentation of the system. In
doing this we are not only presenting the system just as Martin-Löf did, but we
are following what has (thanks precisely to Martin-Löf’s work as taken up by
theoretical computer scientists) become a standard way of elegantly presenting
a language and its associated logic.

First, we need to introduce some technical terms. Since we will have to
distinguish carefully between a proof (in the sense of a witness to the fact that
some proposition has been proved) and the record of the construction of that
proof we introduce two terms: a proof object—that is, a witness to the fact
that some proposition has been proved; and a derivation—the record of the
construction of a proof object. We will see many examples of this use of language
later.
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A judgement comes in two basic forms: either it is a relation between proof
objects and propositions, or else it states a property of some propositions. In the
first basic form there are two cases, the first of which records that the mentioned
proof object is a witness to the mentioned proposition. We write this as

a : A

which we read as a is in A, or a proves A, or a witnesses A. (These are
all somewhat imprecise statements, but they are all commonly used, convenient
ways of stating a common situation.) The second case records that two proofs
objects are equal and that they witness that a proposition has been proved. We
write this as

a = b : A

The second basic form of a judgement also has two cases, the first of which
records that a certain proposition is well-formed. For reasons which we address
later, this is written as

A prop

The second case records that two propositions are equal, and is written

A = B

Finally, these basic forms of judgement are generalised to make them hypothet-
ical judgements by allowing finite lists of hypotheses to appear; so the general
judgement has the form

a : A[x1 : A1, x2 : A2, ..., xn : An]

where

• the xi are distinct variables,

• the Ai are propositions such that if xj is in Ai then j < i, and

• a : A is any of the three other possible forms.

These form contexts which introduce variables over proof objects, the variables
being available for use within the body of the judgement a : A. Again, we
will see examples of this below which should help clarify this rather general
definition.

We describe the usual connectives via natural deduction rules for their in-
troduction and elimination. These rules are exactly the ones we would expect
for a classical logic except that the rules allowing proofs of ¬¬ψ ⇒ ψ or ψ∨¬ψ
are not included. Our rules also include mention of proof objects.

We need one non–logical rule:

A prop

x : A[x : A]
assumption
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This says that when A is a proposition, the hypothetical judgement x : A[x : A]
can be derived.

6.1 Equality Rules

At the level of judgements we have all the rules governing equality that one
would expect. For example:

a : A
a = a : A

refl
a = b : A
b = a : A

symm a : A A = B
a : B

prop− eq

C(x) prop [x : A] a : A
C(a) prop

subst− prop

c(x) : C(x)[x : A] a : A
c(a) : C(a)

subst− obj

6.2 Propositional rules

A prop B prop

A⇒ B prop
⇒ −form

b(x) : B(x)[x : A]
λ(b) : A⇒ B

⇒ −intro

The b in this rule is an abstraction of the form (v)e where v is some variable
which, if it appears free in the expression e, will be bound in (v)e. The usual
term equality holds here:

(v)e(x) = e[x/v]

—that is, free occurrences of v in e which are free for x are replaced by x.
In intuitionistic (and so classical) logic we have the valid proposition A⇒ A

for any propositionA. We should expect this to have a proof in the system we are
describing, and so it does. First, consider using the ⇒-intro rule without men-
tioning the proof objects (so that it looks like a conventional natural-deduction
rule), and build a derivation which shows this sentence to be valid. We can
build

A prop

A[A]
assumption

A⇒ A
⇒ −intro

Now we can consider the same derivation, this time with the proof objects
added:

A prop

x : A[x : A]
assumption

λ((x)x) : A⇒ A
⇒ −intro
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So something of the form λe is a proof object associated with an implication.
This makes concrete the idea, originating with Heyting, that the proof of an
implication is an algorithm which, given a proof of the antecedent of the impli-
cation, constructs a proof of the consequent. (Readers familiar with the lambda
calculus [1] will appreciate why λ was chosen to denote such proof objects in this
system.) Note that in this trivial case, given a proof of A, the proof of A⇒ A,
λ((x)x), does indeed return a proof of A: from an algorithmic viewpoint it is
just the identity function.

c : A⇒ B a : A
apply(c, a) : B

⇒ −elim
a : A b(x) : B[x : A]

apply(λ(b), a) = b(a) : B
⇒ −eq

The rule ⇒-elim is the formal counterpart of modus ponens, while ⇒-eq
(as with all the -eq rules) tells us how certain expressions simplify (reading the
equality left-to-right), and so can be thought of as a computation rule when λ
and apply are given their obvious algorithmic meanings.

If we now reconsider the rules above, replacing⇒ by→ and ‘prop’ by ‘type’,
then we catch a first glimpse of the propositions–as–types principle which
has been so influential. In particular, if we allow our view to switch between
propositions and types, we see that implication (a logical notion) has identical
properties to the function–space type–former (a computational notion). This
identity extends to all the other standard logical connectives.

A prop B prop

A ∧B prop
∧ − form a : A b : B

(a, b) : A ∧B ∧ − intro

So, given a proof of a conjunction, we can construct further proofs referring to
its two component proofs.

x : A ∧B d(y, z) : C((y, z))[y : A, z : B]
split(x, d) : C(x)

∧ − elim

a : A b : B d(x, y) : C((x, y))[x : A, y : B]
split((a, b), d) = d(a, b) : C((a, b))

∧ − eq

This shows that given a pair of proofs we can project out the components. Thus
we see that the logical notion of conjunction is associated with the computational
notion of forming and manipulating a Cartesian product. Once again, the point
about propositions and types being two views of the same idea comes through.

To illustrate this, consider the valid proposition (A∧B)⇒ A. We can build
a proof object for this as in the following derivation:
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A ∧B prop

x : A ∧B[x : A ∧B]
assumption

A prop

y : A[y : A]
assumption

split(x, (y, z)y) : A [x : A ∧B]
∧ − elim

λ((x)split(x, (y, z)y)) : (A ∧B)⇒ A
⇒ −intro

We can see how this object is used computationally by applying it to a proof
of A ∧ B, which will have the form (a, b) where a is a proof of A and b is a
proof of B. Instead of giving the fully formal derivation, we paraphrase it by
the following sequence:

apply(λ((x)split(x, (y, z)y)), (a, b)) = split((a, b), (y, z)y) = a

So the proof object that witnesses (A ∧ B) ⇒ A again has a computational
interpretation: given a proof of A ∧B it returns a proof of A.

A prop B prop

A ∨B prop
∨ − form

a : A
i(a) : A ∨B ∨ − intro

b : B
j(b) : A ∨B ∨ − intro

The interpretation of ∨ is where the distinction between our logic and a classical
one becomes clear: in order to prove a proposition of the form A ∨ B, we have
to provide either a proof of A or a proof of B, and record, for later use, which of
these we have provided. This means that the proposition A ∨ ¬A is not true—
that is, not provable—since we cannot, for arbitrary A, exhibit either a proof
of A or one of ¬A.

This point is important since, as we shall see, from a propositional point of
view, ∨ represents a disjoint union +, and ⇒ represents →, the function–space
constructor. If we consider the definition, perhaps in some notional program-
ming language,

Number =df Float+ Int

and the existence of a function

add : Number → Number

we can see that in computing addition, add needs to be able to tell, for some
argument n : Number, from which summand n originally came, since the oper-
ation of addition which add has to carry out depends on this information.

The remaining rules for disjunction are

c : A ∨B d(x) : C(i(x))[x : A] e(y) : C(j(y))[y : B]
when(c, d, e) : C(c)

∨ − elim
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a : A d(x) : C(i(x))[x : A] e(y) : C(j(y))[y : B]
when(i(a), d, e) = d(a) : C(i(a))

∨ − eq

b : B d(x) : C(i(x))[x : A] e(y) : C(j(y))[y : B]
when(j(b), d, e) = e(b) : C(j(b))

∨ − eq

To give some idea of how these work (since they are somewhat notationally
dense) consider the following simple example. We would hope that, given a
proof of (A∨B)⇒ C and a proof of A, we would be able to prove that C holds.
Assuming that we have a proof of C, we can derive the judgement

λ((x)when(x, (y)c, (z)c)) : C [c : C]

and assuming that A holds—that is, that a : A—we have the derivation

a : A
i(a) : A ∨B ∨ − intro

Given all this, we can prove C with the following derivation:

a : A
i(a) : A ∨B ∨ − intro λ((x)when(x, (y)c, (z)c)) : (A ∨B)⇒ C [c : C]

apply(λ((x)when(x, (y)c, (z)c)), i(a)) : C [c : C]

Then the various equality rules allow us to show that

apply(λ((x)when(x, (y)c, (z)c)), i(a)) = when(i(a), (y)c, (z)c)
= (y)c(a)
= c

as required.

6.3 Rules for quantifiers

The rules for the universal quantifier are completely standard:

A prop B(x) prop
∀(A,B) prop

∀ − form
b(x) : B(x)[x : A]
λ(b) : ∀(A,B)

∀ − intro

a : A c : ∀(A,B)
apply(c, a) : B(a)

∀ − elim
a : A b(x) : B(x)[x : A]

apply(λ(b), a) = b(a) : B(a)
∀ − eq

Note that, as for implication, a proof of a universal proposition is viewed as
a function: one that, given a proof that some object is in the domain, returns a
proof that the object has the property which is stated as being universal. Also
note that these rules are closely related to the rules for ⇒; indeed the latter
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rules can be derived from the former just by observing that the proposition B
does not vary in the case of implication.

The rules for the existential quantifier require that, in order to justify a
claim that we have proved an existential proposition, we exhibit an object in
the required domain and a proof that it has the properties claimed. Hence the
natural way of representing the proof object for an existential proposition is as
a pair consisting of the object whose existence is claimed and a proof that it
has the claimed property.

A prop B(x) prop
∃(A,B) prop

∃ − form
a : A b(a) : B(a)

(a, b) : ∃(A,B)
∃ − intro

c : ∃(A,B) d(x, y) : C((x, y)) [x : A, y : B(x)]
split(c, d) : C(c)

∃ − elim

a : A b(a) : B(a) d(x, y) : C((x, y)) [x : A, y : B(x)]
split((a, b), d) = d(a, b) : C((a, b))

∃ − eq

6.4 Rules for natural numbers

The rules for the natural numbers follow the pattern for all the other rules we
have seen. Note that the judgement n : N is clearly most naturally interpreted
as “n is a natural number”, and N does not have a clear interpretation as a
proposition, though it does as a set or a type. Perhaps “n is a witness to the
proposition that there are natural numbers” might be one way of reading the
judgement, in which, as a proposition, N is “there are natural numbers”.

Rather than worrying too much about how we might informally interpret
N, we just rely on the following rules to give it meaning:

N prop
N− form

0 : N N− intro x : N
succ(x) : N

N− intro

n : N d : C(0) e(x, y) : C(succ(x)) [x : N, y : C(x)]
rec(n, d, e) : C(n)

N− elim

d : C(0) e(x, y) : C(succ(x)) [x : N, y : C(x)]
rec(0, d, e) = d : C(0)

N− eq

n : N d : C(0) e(x, y) : C(succ(x)) [x : N, y : C(x)]
rec(succ(n), d, e) = e(n, rec(n, d, e)) : C(succ(n))

N− eq

These rules give us the usual interpretation of N as the set of natural num-
bers. However, we often want to talk about finite sets with a known number
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of elements; as we will see, the sets with zero elements, one element and two
elements turn out to be particularly important. For this reason we also have
sets with k members (k > 0):

Nk prop
Nk − form mk : Nk

Nk − intro, 0 ≤ m < k

n : Nk a0 : C(0k) . . . ak−1 : C((k − 1)k)
Rk(n, a0, . . . , ak−1) : C(n)

Nk − elim

a0 : C(0k) . . . ak−1 : C((k − 1)k)
Rk(ik, a0, . . . , ak−1) = ai : C(ik)

Nk − eq

N0 is the set containing no members; as a proposition it has no proofs, which
means that we can interpret N0 as absurdity. Therefore N0-elim:

n : N0

R0(n) : C(n)
N0 − elim

says that if we have a proof of absurdity then any proposition C follows, which
is exactly the rule ex falso quodlibet.

As usual, we can use N0 to define negation:

¬P =df P ⇒ N0

Computationally this says that a proof of ¬P is a function that, given a proof
of P , will construct for us a proof of N0, which is evidently not possible since
no such proof exists.

Similarly, we can interpret N1 as the proposition that is true everywhere
(though, of course, any nonempty type could be chosen for this role), and N2

can stand for the type which in programming languages is normally known as
something like “Boolean”—the type containing exactly two distinct elements.

6.5 Rules for Equality

The final set of rules that we examine deal with the notion of equality. We
already have equality at the judgement level, as shown by the eq rules in the
previous sections. These rules allow us to reason about how we can compute with
objects and how they transform into other objects via computation. However,
it is clear from the structure of the rules that equality at the judgement level
cannot be embedded within other judgements, since objects and types cannot
include the equality. For example, if we want to say something simple like “a, b,
and c are all equal”, we cannot write

a = b : N ∧ b = c : N

since judgemental equality is the only equality we have so far and there is no
notion of conjunction for judgements.
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In order for the system to reach its full power, we want to have equality as a
type; this will enable us to combine equalities together to form more complicated
expressions. We need to be able to form dependent types—types that are
parametrised by objects. To do this we need to move from an equality which
appears explicitly in a judgement to its expression as a type. That means that
the equality can then appear in further types (and objects in higher universes).

The rules for moving from judgements to types are straightforward:

a : A b : A
I(A, a, b) prop

I − form a = b : A
e : I(A, a, b)

I − intro

r : I(A, a, b)
a = b : A I − elim

r = e : I(A, a, b)
r : I(A, a, b)

I − eq

Note that these rules introduce two new constants: I for forming types, and e
which witnesses that two objects are the same.

We can now show, for example, that equality is symmetric. If A is a type
and a : A and b : A, and if we assume that c : I(A, a, b), then we have to show
that there is a witness for I(A, b, a); but this follows trivially by the rules above
and the equality rules from section 6.1. We can similarly show that all the
other standard properties of equality hold at this type level just as they do at
the judgemental level.

7 Propositions as Types

It turns out that the rules given above still make sense in general if we replace
uses of “proposition” with uses of “set” or “type” and the connectives and
quantifiers are replaced by various operations from set theory, as in the following
table.

Propositions Sets

∨, disjunction +, disjoint union
∧, conjunction ×, Cartesian product
⇒, implication →, function–space constructor
∃, existential

∑
, disjoint union over a family

∀, universal
∏

, product over a family

Indeed, Martin–Löf’s original theory was intended as a constructive set the-
ory; the logical interpretation is recovered if we consider a proposition to be
represented by the set of all its proofs.

This idea was written-up by Howard [26]. It came from the suggestive simi-
larity between the formal descriptions of, as one case, function application and

29



implication elimination and, as another case, abstraction within the λ-calculus
and implication introduction.

Rather than going into more details here, we direct the reader to [26], [37]
and [43].

8 Mathematical considerations

The axiom of choice (in an informal form of our syntax):

(∀x : A)(∃y : B(x))C(x, y)⇒ (∃f : (∀x : A)B(x))(∀x : A)C(x, apply(f, x))

is derivable in this system. The proof, following the one in [31], goes informally
as follows. Assume

z : (∀x : A)(∃y : B(x))C(x, y) (2)

If
x : A (3)

then we have
apply(z, x) : (∃y : B(x))C(x, y)

So
fst(apply(z, x)) : B(x)

and
snd(apply(z, x)) : C(x, fst(apply(z, x)))

Now we abstract on x—that is, discharge assumption (3)—to get

λ((x)snd(apply(z, x))) : (∀x : A)C(x, fst(apply(z, x)))

We also have
λ((x)fst(apply(z, x))) : (∀x : A)B(x)

so
apply(λ((x)fst(apply(z, x))), x) = fst(apply(z, x)) : B(x)

Hence, by substitution,

C(x, apply(λ((x)fst(z, x)), x)) = C(x, fst(apply(z, x)))

and therefore

λ((x)snd(apply(z, x))) : (∀x : A)C(x, apply(λ((x)fst(z, x)), x)

Existential introduction now yields

(λ((x)fst(apply(z, x))), λ((x)snd(apply(z, x)))) :
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(∃f : (∀x : A)B(x))(∀x : A)C(x, apply(f, x))

and so, by abstraction on z—that is, by discharging our first assumption 2—we
get

λ((z)(λ((x)fst(apply(z, x))), λ((x)snd(apply(z, x))))) :

(∃f : (∀x : A)B(x))(∀x : A)C(x, apply(f, x))

This completes the proof of the axiom of choice.
We also want to be sure that we can do arithmetic in our theory. This

we can show by considering Peano’s axioms. Only one of the five axioms—the
fourth one, which says that 0 is not the successor of any natural number—is
not already available by simple constructions using the rules we have introduced
above. In order to prove this axiom, we have to introduce universes.

These can be regarded as an extension to the system that allows the idea
“every object has a type” to appear uniformly (or, equivalently, that allows
every object to be a member of some set). In particular, the propositions or
types or sets are objects in the theory that do not themselves have sets in which
to reside.

A more general problem is that the theory as it stands allows to construct
only finitely many new sets—for example, we cannot construct a function which,
given some natural number n, returns the n–fold product of N with itself: such
a function has no type within the system.

For similar reasons we cannot hope to model the important and powerful
idea of abstract data types. Such types would typically be defined by stating
the existence of a type with various desired properties. So we would expect
such an object to reside in a type of the form ∃(A,B). But we do not currently
have a type that B could be; in other words, we do not have a type that could
contain the abstract type. We shall say more on this, with examples, towards
the end of this paper.

Finally, we might want, for programming purposes, to be able to write func-
tions which take types as arguments, thereby allowing us to model ideas like
parametric polymorphism. Again, we currently have no way of writing down
the type of such a function, so it certainly cannot be constructible in the current
system.

For all of these reasons we need to extend the language to include a type
that contains all our current types, so that our current types are themselves
objects in this new type. The type that contains all the types we have seen so
far is denoted by U0, and we have new rules such as

U0 type
U − form1

A type

A : U0
U − form2

N : U0
N− form

A : U0 B(x) : U0

∀(A,B) : U0
U0 − intro

In the rules we had previously, all occurrences of A prop are replaced by A : U0.
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We can now construct type–valued functions like

λ((x)rec(x,N, (x, y)(N× y))) : N→ U0

In particular, we can show that the fourth Peano axiom, which we express as

I(N, 0, succ(n))→ N0 [n : N]

is derivable in the theory, as follows.
First assume that

x : I(N, 0, succ(n)) [n : N] (4)

We can show, using the U0-intro rules, that

rec(m,N1, (y, z)N0) : U0 [m : N]

The N-eq rules give us

rec(0,N1, (y, z)N0) = N1 : U0 (5)

and
rec(succ(n),N1, (y, z)N0) = N0 : U0 [n : N] (6)

By I-elim on 4, we have

0 = succ(n) : N[n : N]

and from this it follows that

rec(0,N1, (y, z)N0) = rec(succ(n),N1, (y, z)N0) : U0 [n : N]

Further, from 5 and 6 we obtain

N1 = N0 (7)

Since N1-intro yields
01 : N1

we also have
01 : N0

by 7; so, by discharging the assumption 4, we finally have

λ((x)01) : I(N, 0, succ(n))→ N0 [n : N]

Now that we have a type U0 that contains all our old types, there remains
the question of what type U0 itself appears in and whether we can extend the
theory so that objects like ∀(A,U0) can also be admitted as elements of some
type. The answer is that we add another type U1 which contains U0 and all the
elements built from it using the usual type constructors. In fact this sequence
of types can be extended so that we get Un for any natural number n. The one
thing that we cannot have is a type that contains all types including itself; that
would make the system inconsistent.
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9 Program specification and Derivation

Having reviewed much of the formal machinery, we are, at last, in a position to
say something about how it is put to use in programming.

One of the central problems in computer science is to develop a program p
that meets—that is, correctly implements—a given specification S. There are
of course other problems linked to this one:

• How do you develop the specification itself?

• How do you know that the specification correctly expresses what the cus-
tomer wants?

• How do you manage change in specifications (perhaps as required by
changing customer or technological requirements) as time passes, and how
do you reflect these faithfully in the program?

All these problems are very real and important, and are the object of much
research, but we will ignore them in what follows.

The problem on which we concentrate can be expressed within the system
presented above as

given a type S, which should be viewed as a specification, derive a
program p such that p : S

So we view specifications as either types or propositions. Viewing them as types,
we wish to construct an element of the type. Viewing them as propositions, we
wish to show that the specification is provable (in other words, that it does
not express an impossible state of affairs); moreover, since we are working in a
constructive logic, we will then use the witness as a program which meets the
specification.

This approach has several advantages, amongst which are

• that the specification and program development process (building a deriva-
tion of p) all go on in one system, and

• that a program is at once a computational object (so it can carry out the
task set by the specification) and a proof that the specification has been
met.

9.1 A Simple Example

An example of a specification is one for a natural number division algorithm:

∀(N, (n)∀(N, (m)∃(N, (k)∃(N, (r)I(N, n, plus(prod(m, k), r)))))) (8)
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where we already have terms

plus =df (x, y)rec(x, y, (a, b)succ(b))

for addition and

prod =df (x, y)rec(x, 0, (a, b)plus(y, b))

for multiplication.
Note that (8) states that for any two natural numbers their quotient and

remainder exist, which is what we expect if we are defining division. But note
that because this is a constructive logic, the proof not only shows us that this is
the case but also explicitly computes the quotient and remainder. Indeed, the
proof object that we would construct for (8) would be of the form

λ((n)λ((m)(k, (r, p))))

Applying this object to natural numbers a and b would return a structure con-
taining k, r and p where k is the quotient, r the remainder, and p a proof that
a = (b× k) + r.

9.2 Abstract Data Types

One of the most important ideas to emerge from studies of good programming
practice is that of separation of concerns. This refers to the fact that in build-
ing large pieces of software, we have to solve highly complex problems which
usually require several people working concurrently (for reasons of economy or
efficiency, for example). This means that the division of labour amongst the
programmers has to be carefully considered so that inconsistencies in assump-
tions about properties of the system being built do not cause the system to fail
when all the separately built parts are brought together. One way of dealing
with this is to identify structures which can be logically separated out from
the rest of the problem and allow two views of them—the view of the person
implementing them and the view of the person using them.

These views share part of the structure, a part known as the interface.
This names the operations provided by the data type and gives their types, so
that the user knows what the type makes available. It also tells the person
implementing the program what operations and types have to be implemented;
the interface can be viewed as a contract between the two sides. Then the user
knows about the structure only as far as the interface describes it. Since this
means that, for the user, the way that the structure is implemented is hidden
and inaccessible, such a structure is known as an abstract data type (ADT).
This separation of implementation and usage for an ADT means that if, for
some later reason, perhaps a change of hardware or an improved algorithm for
some aspect of the ADT, the implementer wants to change a part, then because
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the user of the ADT has used only the operations provided by the interface
and has had no access to the implementation, any software the user has written
does not have to change. It also means that the user and implementer can work
concurrently on the implementation and use of the ADT, since they each only
have to respect the interface and their concerns have been separated.

Having described the importance of the ADT idea, we now have to describe
how ADTs can be modelled within the system we have been presenting.

One ADT commonly used as a building–block for many other structures
is the list. Informally, a list is a sequence of elements from some type where
order is significant and repeated occurrences of elements are allowed. There is
a distinguished element, the empty list, and a binary operation, usually called
cons, which adds an element to the start, or head, of a list.

In specifying the list ADT, we have to state that such a type exists and that
each of the operations that allow us to compute with lists exists also; so it is
not surprising that the type that models the ADT has the outermost form of an
existential proposition, or what has become widely known in computer science
as an existential type.

We will first consider a list of natural numbers. We can write it as

∃(U0, (L)∃(L, (e)∃(L⇒ N, (h)∃(L×N⇒ L, (c)∀(N, (n)∀(L,

(l)(I(N, apply(h, apply(c, (n, l))), n) ∧ I(L, apply(h, e), e))))))))

An object in this type has the form

(list, (empty, (head, (cons, λ((n)λ((l)p)))))) (9)

where list is the type whose existence is claimed by the type (read as a proposi-
tion), empty, head, and cons are the various operations which form part of the
ADT, and the last component is a proof that, for any natural number and any
list, the operations satisfy the equalities that define them.

We can generalise the ADT for lists of natural numbers to allow it to be
parametrised by the underlying type. This gives us a single ADT which can
be specialised to any underlying type—including, for example, the ADT for
lists itself. The generalisation is very easy: we simply add another level of
quantification, as follows.

∀(U0, (T )∃(U0, (L)∃(L, (e)∃(L⇒ T, (h)∃(L× T ⇒ L, (c)∀(T, (n)∀(L,

(l)(I(T, apply(h, apply(c, (n, l))), n) ∧ I(L, apply(h, e), e)))))))

An object of this type has the form

λ((t)(list, (empty, (head, (cons, λ((n)λ((l)p)))))))

which, when applied to some type T (which is bound to t), has as value an
object like that in (9) but with the underlying type T instead of the fixed type
N we had before.
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9.3 Further work

An example of ongoing work in this area is that of providing simpler and more
elegant semantics for the specification language Z than currently exists (see
[23]). For reasons closely linked with the work of Martin-Löf presented above,
this is being done by examining formal systems for intuitionistic logic. The
point is that an intuitionistic basis for Z will yield not only a logic for Z as a
specification language but also a logic for program derivation, in the sense that
we will be able to derive programs that meet given Z specifications in much
the same way as, above, we have been able to derive programs from the types,
propositions, or sets treated there.

Although it turns out that giving such a logic for Z is fairly straightforward,
we are still left with the problem of making the process of derivation meaningful
to a programmer rather than a person working in intuitionistic logic. The rules
that give the program derivation steps are very primitive, and it is usually the
case that many of these primitive rules are required to make a derived rule which
encapsulates one step at the level at which a programmer would normally work.
So the larger challenge is to develop, from the primitive rules provided by the
underlying logical system, derived rules that match a programmer’s view of
program derivation from Z specifications.

This is a clear illustration of the difference between work in formal logic
(which has the distinctive characteristic that no one ever really wants to do
a proof within the formalism, only about the formalism) and computer science
(where we do want to develop formal systems which are usable). While the for-
mal systems are invaluable as vehicles for expressing the semantics and logic of
our programming endeavours, they have nothing to offer in the way of methods
for actually making derivations within them.

Making such formal systems practicable has also given rise to a huge volume
of work on the development of software supporting uses of formal systems, in
the sense of syntax checkers, type checkers, proof checkers and proof assistants
and theory managers (systems which store, index, allow retrieval of, and ensure
the consistency of the huge formal theories that programming logics depend on).
A simple example of such a system is described in [38]. It should be noted that
work in this area of proof assistants is still at an early stage and there are many
unsolved problems, not the least of which is to develop good interfaces to such
systems. Too often the system is developed and used by a small team of people
who get to know it so well that they lose sight of the fact that new users would
find it very hard to use because little attention has been paid to the modes of
interaction with the system and, in particular, to making those modes clear and
understandable for a new user.

Computer science can be seen a discipline which has both revived the need for
formal systems and seen them put to practical use. In this respect, constructive
mathematics and its underlying formal systems have proved, and are likely to
continue to be, of paramount importance.
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