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Abstract

The main results of the paper are two e�ective versions of the Riemann mapping theo-

rem. The �rst, uniform version is based on the constructive proof of the Riemann mapping

theorem by Bishop and Bridges and formulated in the computability framework developed

by Kreitz and Weihrauch. It states which topological information precisely one needs about

a nonempty, proper, open, connected, and simply connected subset of the complex plane

in order to compute a description of a holomorphic bijection from this set onto the unit

disk, and vice versa, which topological information about the set can be obtained from a

description of a holomorphic bijection. The second version, which is derived from the �rst

by considering the sets and the functions with computable descriptions, characterizes the

subsets of the complex plane for which there exists a computable holomorphic bijection onto

the unit disk. This solves a problem posed by Pour{El and Richards. We also show that

this class of sets is strictly larger than a class of sets considered by Zhou, which solves an

open problem posed by him. In preparation, recursively enumerable open subsets and closed

subsets of Euclidean spaces are considered and several e�ective results in complex analysis

are proved.

1 Introduction

One of the most famous classical results in complex analysis is the Riemann Mapping Theorem.

It states that the subsets of the complex plane which can be mapped conformally onto the

unit disk are exactly the nonempty, proper, open, connected and simply connected subsets (we

call a function mapping complex numbers to complex numbers conformal if and only if it is

holomorphic, i.e. analytic, and injective, i.e. one{to{one, on its domain). While it is easy to see

that any conformal image of the unit disk has the listed topological properties, it is remarkable

that these topological properties of a subset of the complex plane already guarantee the existence

not only of a homeomorphism (a continuous bijection whose inverse is continuous as well) onto

the unit disk but even of a conformal homeomorphism (a mapping which at least locally preserves

the geometry) onto the unit disk.

The most common proofs are pure existence proofs, mostly based on the extremal principle

of Fej�er and Riesz [16]. The question how to obtain such a conformal mapping for a given
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proper, simply connected region (a region is a nonempty, open, connected subset of the complex

plane) has received attention already very early. In fact, the �rst complete proof of the theorem,

given by Carath�eodory and Koebe [10] in 1912, is already constructive in a naive sense. The

conformal mapping was constructed as the combination of a mapping which maps the region into

the unit disk and of a limit function obtained by repeatedly applying dilating mappings which

map the region to regions �lling the unit disk better and better. A pure, constructive proof in

the framework and language of constructive mathematics along the lines of the Koebe proof was

given by Bishop and Bridges [2]. We shall come back to this later. Pour{El and Richards [15,

Problem 5] posed the problem to characterize the subsets of the complex plane for which there

exists a computable conformal mapping onto the unit disk. Here computability of a function

is de�ned in the sense that by using better and better approximations for the input one must

be able to compute better and better approximations for the output. This is the computability

notion for real functions based on the Turing machine model and studied by Grzegorczyk [4, 5],

Lacombe [12], Hauck [6, 7], Pour-El and Richards [15], Kreitz and Weihrauch [19, 11, 23, 20],

Ko [9], and others. We shall prove the following answer to the Pour{El/Richards problem:

Theorem For a subset U � C of the complex plane the following two statements are equivalent:

1. U is a nonempty, proper, r.e. open, connected, simply connected subset of C and its bound-

ary @U is r.e. closed.

2. There exists a computable conformal bijection f from the unit disk onto U .

Furthermore, there exists an algorithm which computes a program for a conformal bijection of

the unit disk onto U if the algorithm is given a program for such a set U as an r.e. open set and

a program for its boundary as an r.e. closed set. Also an algorithm performing the inverse task

exists.

Hence, besides the known non-e�ective topological properties a subset of the complex plane

must satisfy two e�ective properties in order to possess a computable conformal bijection onto

the unit disk (the inverse of a computable conformal mapping is again a computable conformal

mapping): it must be r.e. open and its boundary must be r.e. closed. An open set U is called r.e.

open if one can enumerate a set of open spheres with rational centre and rational radius which

cover exactly U . A closed set C is called r.e. closed if one can enumerate a set of computable

real numbers which form a dense subset of C. It is interesting that an e�ectivity condition plays

an important role whose non-e�ective analogue is trivially ful�lled, namely that the boundary is

r.e. closed. Zhou [24] had considered a class of sets which are called recursively open and asked

[24, Problem 5.4] whether every set which is the image of the unit disk under a computable

conformal mapping must be recursively open. We give a negative answer to this question.

The result above is a direct corollary of the main result of the paper. This is formulated in

the language of Type 2 Theory of E�ectivity, developed by Kreitz and Weihrauch [19, 11, 20].

This theory allows the de�nition and analysis of computability for operators between more

general objects than real numbers or vectors: the objects are represented by in�nite binary

(one may also use larger alphabets) sequences containing certain information about them (in

the same way as real number representations contain information about real numbers). Our

main result states that from a sequence which describes a proper, simply connected region in

a certain, purely topological way corresponding to the two e�ectivity conditions above one can
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compute a sequence which describes a conformal bijection from the set onto the unit disk, and

that the inverse operation, starting with a description of a conformal mapping and computing

equivalent topological information about the set, is also computably possible. Hence, we show

which topological information precisely about a proper, simply connected region is equivalent to

the standard information about the conformal mapping onto the unit disk: it is the information

to enumerate spheres covering exactly the set and to enumerate points forming a dense subset of

the boundary. The theorem above is obtained by considering the sets and conformal functions

which possess computable names with respect to these representations.

We follow the classical proof by Koebe [10] and additionally use ideas and estimates from

the strictly constructive proof of the Riemann Mapping Theorem by Bishop and Bridges [2].

They show that the constructive existence of a conformal mapping of a subset U of the complex

plane onto the unit disk is equivalent to certain constructive topological conditions on the set

U , whose computability theoretic analogues turn out to be equivalent to the conditions in the

theorem above. It is interesting that the constructive/computable analogue of the classically

purely topological direction of the Riemann Mapping Theorem | that every conformal image

of the unit disk is a proper, simply connected region | seems to require an application of

the Koebe 1
4 theorem. This is due to the additional information about the boundary (see the

theorem above), which does not appear in the non-e�ective formulation.

We would like to mention that the problem to construct a conformal mapping onto the unit

disk for a given proper, simply connected region is also of great practical interest, compare

Henrici [8]. While in this paper we are interested in the computability theoretic aspects of

the Riemann Mapping Theorem, a complexity theoretic analysis would certainly be interesting.

Besides the book of Bishop and Bridges [2] we mention the exposition of the Riemann Mapping

Theorem by Henrici [8], which contains also estimates for the speed of convergence, i.e. for the

complexity of the algorithm. The exposition by Remmert [17] discusses also other variants of

proofs and gives a lot of historical background.

In the following section we provide a brief introduction into Type 2 Theory of E�ectivity,

introducing computability for \in�nite" objects via representations and Turing machines. In

Section 3 we introduce various representations of open subsets and of closed subsets of Euclidean

spaces. For example we de�ne the notions of being r.e. open or r.e. closed or recursively open.

Section 4 contains several results from computable complex analysis which we need for the proof

of the main result and which seem to be of independent interest. In Section 5 the main result

and its corollaries are formulated. Then, in Section 6, we prove the main result. We conclude

with a summary and with some open problems.

2 Type 2 Computable Analysis

This section contains a brief introduction into computable analysis based on representations and

Type 2 computable functions and provides the necessary terminology. For a more complete and

systematic treatment see Kreitz and Weihrauch [11, 20, 21].

If one wishes to perform computations over a countable set of objects, e.g. the natural

numbers IN = f0; 1; 2; : : :g, on a Turing machine, one can do so by using a notation of these

objects. One represents the objects by �nite strings over the �nite alphabet of the Turing

machine and performs the computation on these names. Elements of an uncountable set, e.g. the

real numbers IR, cannot be identi�ed by �nite words. Yet, one would like to de�ne and to speak

3



of computable real number functions. Type 2 Theory of E�ectivity, developed by Kreitz and

Weihrauch [19, 11, 20], see also Hauck [7], o�ers the following solution for uncountable sets

whose cardinality does not exceed the cardinality of the continuum: one represents the objects

by in�nite sequences of digits from the Turing machine alphabet and performs the computation

on longer and longer pre�xes of these sequences. Thus, in �nite time only �nite pre�xes have

been read and written and only �nite, partial information about the objects has been processed.

But it is important that this process can at least in principle be continued ad in�nitum. This

means that it must be possible to carry the computation out with arbitrary precision. For real

number functions this approach leads to a computability notion based on approximations. The

approach allows also the de�nition of computability for more complicated objects and operators,

e.g. operators between certain spaces of sets or functions. Besides computable real and complex

number functions and sets of real vectors we are interested in the computability of operators

which transform topological information about certain open subsets of the complex plane into

geometric information describing conformal functions, and vice versa.

We denote the set of natural numbers by IN = f0; 1; 2; : : :g, the set of real numbers by

IR. We write d(x; y) = jx � yj for the usual Euclidean distance of two vectors x; y 2 IRn,

S(x; r) := fy 2 IRn j jx � yj < rg for the open sphere in IRn with centre x and radius r, and

Sc(x; c) := fy 2 IRn j jx � yj � rg for its closure. By f :� X ! Y we mean a function whose

domain dom f of de�nition is a subset of X and whose range is a subset of Y .

We start with the de�nition of notations and representations. In the whole paper � will be

a �nite set, called the alphabet, which contains at least the symbols 0, 1, #, and a blank B. By

" we denote the empty string. �� is the set of �nite strings over � and �! = fp j p : IN! �g is
the set of in�nite sequences over �.

De�nition 2.1 Let X be a set. A notation is a surjective function � :� f0; 1g� ! X. A

representation is a surjective function � :� �! ! X.

First we introduce a standard notation of numbers.

Example 2.2 The notation �IN : f0; 1g� ! IN is the quasi{lexicographical bijection between

f0; 1g� and IN with �IN(") := 0, �IN(0) := 1, �IN(1) := 2, �IN(00) := 3; : : :.

We shall often use the Cantor pairing function h; i : IN2 ! IN with hi; ji := 1
2(i+j)�(i+j+1)+j

and the derived bijection h; i : (f0; 1g�)2 ! f0; 1g� with hv; wi := ��1IN h�IN(v); �IN(w)i. We de�ne

inductively hvi := v and hv1; : : : ; vn+1i := hhv1; : : : ; vni; vn+1i.

Examples 2.3 1. The notation �ZZ : f0; 1g� ! ZZ of the set of integers ZZ = f: : : ;�2;�1; 0;
1; 2; : : :g is de�ned by �ZZhv; wi := �IN(v) � �IN(w) for v; w 2 f0; 1g�.

2. The notation �ID : f0; 1g� ! ID of the set of dyadic rational numbers

ID = fx 2 Q j (9 k 2 ZZ;m 2 IN) x = k=2mg

is de�ned by �IDhv; wi := �ZZ(v)=2
�IN(w) for v; w 2 f0; 1g�.

3. Let � be a notation of a set X. Then the notation �n of the set Xn is de�ned by

�nhv1; : : : ; vni := (�(v1); : : : ; �(vn)) for v1; : : : ; vn 2 f0; 1g�.
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4. Let n � 1 be �xed. We de�ne a notation �Sn of the set of open dyadic spheres in IRn with

dyadic center and dyadic radius by �Snhv; wi := S(�nID(v); �ID(w)) for v; w 2 f0; 1g�. The
notation �Scn of closed dyadic spheres is de�ned accordingly.

For representations the following additional constructions are very useful. We de�ne a map-

ping En : �! ! fA j A � f0; 1g�g by

En(p) := fv 2 f0; 1g� j #v# is a subword of pg :

Also, for each n � 1 we use the standard tupling function h; i : (�!)n ! �! de�ned by

hpi := p, hp; qi := p(0)q(0)p(1)q(1) : : :, and hp(1); : : : ; p(n+1)i := hhp(1); : : : ; p(n)i; p(n+1)i, for
p = p(0)p(1)p(2) : : :, q = q(0)q(1)q(2) : : :, p(1); : : : ; p(n+1) 2 �!. The inverse projections �ni
are de�ned by p = h�n1 p; : : : ; �nnpi for 1 � i � n. We can also de�ne a tupling function

h; i : (�!)! ! �! via

hp(0); p(1); p(2); : : :i(hi; ji) := p(i)(j) ;

for p(0); p(1); p(2); : : : 2 �!. The projections �1i are de�ned by p = h�10 p; �11 p; �12 p; : : :i.
Examples 2.4 1. Let n � 1 be �xed. We de�ne a representation �(n) :� �! ! IRn of real

n{vectors as follows: if p 2 �! has the form p = #v0#v1#v2# : : : for words vi 2 dom �nID
with j�nID(vi)� �nID(vj)j � 2�minfi;jg for all i; j, then we set �(n)(p) := lim�nID(vi). If p does

not have this form, then �(n)(p) is unde�ned.

2. We shall need also representations for the set of the extended real numbers IR = IR [
f�1;1g, endowed with the obvious order relation and the usual arithmetic operations,

e.g. x + 1 = 1 for all x 2 IR [ f1g, etc. We de�ne representations �<, �>, and

� :� �! ! IR as follows:

�<(p) = x i� En(p) = fv 2 f0; 1g� j �ID(v) < xg ;
�>(p) = x i� En(p) = fv 2 f0; 1g� j �ID(v) > xg ;
�hp; qi = x i� �<(p) = x and �>(q) = x :

3. We de�ne �<, �>, and � :� �! ! IR to be the restrictions of �<, �>, and � to names of

real numbers.

4. Let n � 1 be �xed. If � is a representation of a set X, then the representation �n of the

set Xn is de�ned by �nhp(1); : : : ; p(n)i := (�(p(1)); : : : ; �(p(n))) for p(1); : : : ; p(n) 2 �!.

In order to use notations and representations for computations we have to de�ne computable

functions on strings and in�nite sequences. We use the usual notions based on the Turing

machine model and explained e.g. in Weihrauch [21]. They are based on the idea that by using

a large enough pre�x of the input (if it is in�nite) one can compute a pre�x of the output of any

desired length, if it is in�nite, and the exact output, if it is �nite. We give a precise de�nition

only for the case of computable functions whose input and output are in�nite sequences. A

function g :� �� ! �� is called monotonic, i� g(vw) 2 g(v)�� for all v; vw 2 dom g. The

function f :� �! ! �! induced by a monotonic function g :� �� ! �� is de�ned by

1. dom f =
T
n2IN(g

�1(�n��)�!) (i.e. p 2 dom f i� for all n 2 IN there is some pre�x

v 2 dom g of p with jg(v)j � n),
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2. f(p) 2 g(v)�! for any pre�x v 2 dom g of p (for p 2 dom f).

It is clear that f is well-de�ned by these conditions.

De�nition 2.5 A function F :� �! ! �! is called a computable functional, i� there is a

computable (in the standard sense), monotonic function g :� �� ! �� which induces F .

Before we de�ne computability for functions between represented spaces we use computable

functionals in order to compare representations.

De�nition 2.6 Let  :� �! ! X and � :� �! ! Y be representations of sets X and Y . We

write  � � i� there is a computable functional F with (p) = �F (p) for all p 2 dom . We

write  � � and say that  and � are equivalent i�  � � and � � .

Examples 2.7 1. �(n) � �n for all n � 1.

2. � � �<, but �< 6� �.

Every computable functional F :� �! ! �! is continuous where on �! we consider the

usual product topology. A base of this topology is formed by the sets w�! = fp 2 �! j w is a

pre�x of pg. In analogy to the standard notation ' of computable functions mapping strings to

strings (compare e.g. Rogers [18], Weihrauch [20]) there is a total standard representation � of

the set of all continuous functionals F :� �! ! �! whose domains are G�{sets, see Weihrauch

[20].

Theorem 2.8 There exists a total representation � : �! ! fF :� �! ! �! j F is continuous

and domF is a G�{setg with the following properties:

1. (utm Theorem) The functional u :� �! ! �! with uhp; qi := �p(q) for all p; q 2 �!, is

computable.

2. (smn Theorem) For every computable functional F :� �! ! �! there exists a total com-

putable functional G : �! ! �! with �G(p)(q) = F hp; qi for all p; q 2 �!.

The following de�nition of computability for represented spaces follows the idea that com-

putations are not performed on the objects themselves but on their names.

De�nition 2.9 1. Let f :� X ! Y be a function between two sets X and Y and let

 :� �! ! X and � :� �! ! Y be representations of sets X and Y . We say that f is

(; �){tracked by a functional F i�

f(p) = �F (p)

for all p 2 dom f. If f is (; �){tracked by �p for some p 2 �!, then we call p a (; �){

tracking name for f .

2. The function f is called (; �){computable i� there exists a computable functional which

(; �){tracks f .
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A function f :� X ! Y is (; �){tracked by a continuous functional if and only if it is

continuous with respect to the topologies on X and Y induced by  and �, compare Kreitz

and Weihrauch [11, 20]. It is important to note that a function f :� IRm ! IRn possesses a

(�m; �n){tracking name i� it is continuous.

We mention one intuitively clear corollary which says that the composition of functions is

computable.

Corollary 2.10 There exists a computable functional Comp with the following property: if

� :� �! ! X,  :� �! ! Y , and � :� �! ! Z are representations of sets X;Y;Z, and if p is a

(�; ){tracking name for a function f :� X ! Y and q is a (; �){tracking name for a function

g :� Y ! Z, then Ghq; pi exists and is a (�; �){tracking name for the composition g � f .
Proof. By the utm and smn Theorem for � there exists a computable functional Comp with

�Comphq;pi(r) = �q�p(r) for all p; q; r 2 �!. This functional Comp has the desired property. 2

We also wish to introduce computability for elements, not just for functions. This is done

via computable names. A sequence p 2 �! is called computable i� the function g : �� ! ��

with g(��1IN (i)) = p(i) for all i, is computable. Let ' be a total standard notation of the set of

all computable functions g :� �� ! �� (compare Rogers [18], Weihrauch [20]).

De�nition 2.11 Let  :� �! ! X be a representation of a set X.

1. An element x 2 X is called {computable i� there is a computable sequence p 2 �! with

(p) = x.

2. The notation � of {computable elements induced by  is de�ned by �(v) = ('v) if the

term on the right side exists.

A �{computable real number is simply called computable.

Lemma 2.12 (Computable Points Lemma) Let F be a computable functional. If p 2 domF

is a computable sequence, then also F (p) is a computable sequence. Furthermore, there is a com-

putable function on strings which maps any '{name for a computable sequence p 2 domF to a

'{name for F (p).

This lemma has important consequences. Let  :� �! ! X and � :� �! ! Y be repre-

sentations of sets X and Y . If  � �, then every {computable element is also �{computable.

If  and � are equivalent, then an element of X (which is identical with Y in that case) is {

computable i� it is �{computable. If f :� X ! Y is a (; �){computable function, then f maps

{computable elements to �{computable elements. And, given a �{name of a {computable

element in dom f , one can compute a ��{name for f(x). Further statements of this kind are

obtained by considering also computable functionals whose input or output are (; �){tracking

names for functions. Then also the following corollary of Theorem 2.8 is important.

Lemma 2.13 A function F :� �! ! �! is a computable functional i� there exists a computable

p 2 �! with �p = F .

The following proposition summarizes a few characterizations of computable functions f :�
IRm ! IRn. This is the computability notion for real functions considered e.g. by the authors

cited in the introduction. Especially, for functions whose domain of de�nition is a computable

rectangle as considered by Pour{El and Richards [15], one obtains their computability notion.
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Proposition 2.14 Let m;n � 1 be �xed. The following conditions are equivalent for a function

f :� IRn ! IRm:

1. f is (�n; �m){computable.

2. f is (�(n); �(m)){computable.

3. f possesses a computable (�n; �m){tracking name.

4. There exists an r.e. set A � f0; 1g� with f�1(�Sm(w)) = dom f \ Shv;wi2A �Sn(w) for all

w 2 f0; 1g�.

We conclude this section with a simple example which we shall need later. Let U � IRn be an

open set. If a sequence (fn)n of continuous functions de�ned on U converges locally uniformly,

then it converges to a continuous limit function f . If all functions fn are computable on U and

for every compact subset of U the convergence is computably fast, then the limit function is

computable on every compact subset of U , but it does not need to be computable on U . For a

counterexample see Pour{El and Richards [15]. This changes, when one can compute a lower

bound for the speed of convergence not only in n but also uniformly in the compact sets. We

say that a sequence p 2 �! describes a modulus of converges for the sequence (fn)n on U i� p

has the form

p = #hu0; v0; w0i#hu1; v1; w1i# : : :

where jfi(x)� fj(x)j � 2��IN(vk) for all k, for all x 2 U \ �Sn(uk), and for all i; j � �IN(wk), and

if for each l 2 IN the set U is a subset of
Sf�Sn(uk) j huk; vk; wki 2 En(p) and �IN(vk) � lg.

Proposition 2.15 Fix numbers n;m � 1. There exists a computable functional H with the

following property: if U � IRn is an open set, if p is a sequence such that for each i the sequence

�1i p is a (�n; �m){tracking name for a continuous function fi : U ! IRm, and if q describes a

modulus of convergence for the sequence (fi)i on U , then Hhp; qi exists and is a (�n; �m){tracking
name for the limit function of the sequence (fi)i on U .

Proof. Assume that p and q are as in the proposition, and r is a �n{name for a point x 2 U .

Then for any l 2 IN we can �nd a word huk; vk; wki 2 En(q) such that �IN(vk) � l + 1 and

x 2 �Sn(uk). Then we de�ne i0 := �IN(wk). Using �1i0 p we can compute the value fi0(x)

with precision 2�l�1 and thus obtain a 2�l{approximation for limi!1 fi(x). Hence, there is a

computable functional G with the following property: if p and q are as in the proposition, and

r is a �n{name for a point x 2 U , then Ghp; q; ri exists and is a �m{name for the value of the

limit function at x. An application of the smn Theorem for � gives the desired functional H. 2

3 Open Sets and Closed Sets

We present a series of representations of open or closed subsets of Euclidean spaces IRn. The

representations for open sets will be grouped into four di�erent equivalence classes, depending on

how much information about an open set they deliver. By considering the sets with computable

names with respect to these representations we obtain a hierarchy of four computability classes

of open subset of IRn. One of them corresponds clearly to the class of recursively enumerable

subsets of IN, two correspond to the class of recursive subsets of IN, and for the last one it seems
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to be most appropriate to say that it lies in between, though closer to the class of r.e. sets. This

last class will be of greatest interest for us in connection with the E�ective Riemann Mapping

Theorem. We shall de�ne and compare the representations and give typical examples of sets

with computable names. In the end we relate the classes of sets with computable names to r.e.

or recursive sets of natural numbers.

The �rst three classes of representations (with further elements) have been studied by

Weihrauch, Kreitz [23] and Weihrauch, Brattka [22], who also give equivalent versions of the

following Theorems 3.2, 3.4, and 3.6. We give the proofs nevertheless since in [22] the represen-

tations are all formulated for closed sets and because seeing the reasons for the equivalences is

important for the further chapters. Several of the corollaries about open (or closed) sets with

computable names, i.e. about r.e. or recursive or birecursively open sets have also been obtained

by authors including Lacombe [13], Weihrauch, Kreitz [23], Ge, Nerode [3], Zhou [24], Mori,

Tsujii, and Yasugi [14].

We shall de�ne representations on the one hand by enumerating open spheres or points

and on the other hand by supplying information about the distance function or a modi�ed

characteristic function. For the motivation, consider a set U � IN of natural numbers and its

characteristic function �U : IN! f0; 1g with ��1U f1g = U . The set U is r.e. i� the function �U
is approximable from below, U is co-r.e. i� �U is approximable from above, and U is recursive

i� �U is computable. So the characteristic function of U gives us a \yes" or \no" answer if we

ask whether a point lies inside of U or not. We are dealing here with open subsets U of the

continuous space IRn. For a continuously varying input one cannot expect a discrete \yes" or

\no" decision. Instead it makes sense to smooth the characteristic function so that it tells us

how close a point is to lying outside of U . This leads to the modi�ed characteristic function or

modi�ed distance function cutdistIRnnU and also to the distance function distIRnnU itself. Later

we shall consider another, more symmetric variant.

We de�ne the usual distance function and a modi�ed distance function for an arbitrary closed

subset C � IRn by:

distC : IRn ! IR; distC(x) := d(C; x) = inf
y2C

d(y; x) ;

cutdistC : IRn ! IR; cutdistC(x) := minf1; d(C; x)g :

This means especially dist;(x) = 1 and cutdist;(x) = 1 for all x 2 IRn. The following four

representations are those which contain the least information among all the considered repre-

sentations for open sets.

De�nition 3.1 Let n � 1. We de�ne the representations �open, �closed�spheres;open, �dist;open,

and �cutdist;open of the set of open subsets of IRn by (where U � IRn is open):

�open(p) = U i� U =
[

w2En(p)

�Sn(w) ;

�closed�spheres;open(p) = U i� En(p) = fw 2 f0; 1g� j �Scn(w) � Ug ;
�dist;open(p) = U i� p is a (�n; �<){tracking name for the function distIRnnU ;

�cutdist;open(p) = U i� p is a (�n; �<){tracking name for the function cutdistIRnnU :

Theorem 3.2 Let n � 1. The representations �open, �closed�spheres;open, �dist;open, and �cutdist;open
are equivalent.
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Proof. \�open � �closed�spheres;open": Let p be a �open{name for an open set U � IRn. We have

to show that we can construct a �closed�spheres;open{name q for U . The name p can be considered

as a list of open dyadic spheres covering exactly U . An arbitrary closed, hence compact, dyadic

sphere is contained in U i� it is covered by �nitely many open spheres in this list. And for a

given closed dyadic sphere and a �nite set of open dyadic spheres one can decide whether the

closed sphere is covered by the open spheres. Therefore, we can, using p, enumerate all closed

dyadic spheres contained in U . Hence, we can construct a �closed�spheres;open{name q for U .

\�closed�spheres;open � �dist;open": We show that there is a computable functional G with the

following property: if p is a �closed�spheres;open{name for an open set U and q a �n{name for

a point x 2 IRn, then Ghp; qi exists and is a �<{name for d(IRn n U; x). Applying the smn

Theorem for � to this functional will then yield a computable functional F which transforms

any �closed�spheres;open{name for any open set into a �dist;open{name for the same set.

Given a �closed�spheres;open{name p for an open set U and a �n{name q for a point x 2 IRn, we

have to compute a list containing exactly all dyadic rational numbers # with # < d(IRn n U; x).
We can construct such a list when we can �nd arbitrarily good dyadic approximations from

below for d(IRn nU; x). Without any further computation we can already enumerate all negative

dyadic rationals. In case x 62 U these already give a �<{name for d(IRn nU; x). In order to take

also the case x 2 U into account we sweep through all closed spheres Sc(�; #) listed by p and

compute lower bounds for the numbers #�d(�; x) with higher and higher precision. These lower

bounds are always lower bounds for d(IRn nU; x). In case x 2 U the supremum of these bounds

is d(IRn n U; x) because q lists all closed dyadic spheres contained in U , hence also spheres with

midpoint � arbitrarily close to x and with radius # arbitrarily close to d(IRn n U; x) if this is
�nite, and with # arbitrarily large if U = IRn.

\�dist;open � �cutdist;open": This is clear.

\�cutdist;open � �open": Using a �cutdist;open{name for an open set U we can approximate

cutdist(IRn nU; x) for an arbitrary point x 2 IRn from below. We obtain a list of dyadic spheres

contained in U whose union covers U by going through all dyadic points � 2 IRn and all dyadic

rationals # 2 (0; 1) and approximating cutdist(IRn n U; �) from below. As soon as # turns out

to be a lower bound for cutdist(IRn n U; �), the sphere S(�; #) is added to the list. 2

From the Computable Points Lemma (Lemma 2.12) and from Lemma 2.13 we conclude that

for an open subset U � IRn the following conditions are equivalent.

1. There is an r.e. set A of binary words with U =
S
w2A �Sn(w).

2. The set fw 2 f0; 1g� j �Scn(w) � Ug is recursively enumerable, i.e. the set of all closed

dyadic spheres contained in U is recursively enumerable.

3. The function distIRnnU is (�n; �<){computable.

4. The function cutdistIRnnU is (�n; �<){computable.

A set U � IRn with one (and then all) of these properties is called a recursively enumerable open

or r.e. open set. Then its complement is called a co-r.e. closed set.

We de�ne four corresponding equivalent representations for closed subsets of IRn.

De�nition 3.3 Let n � 1. We de�ne the representations �closed, �open�spheres;closed, �dist;closed,

and �cutdist;closed of the set of closed subsets of IRn by (where C � IRn is closed):

�closed(p) = C i� �1i p 2 dom�n [ f(#### : : :)g for all i, and the set
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f�n(�1i p) j i 2 IN; �1i p 2 dom �ng is a dense subset of C ;

�open�spheres;closed(p) = C i� En(p) = fw 2 f0; 1g� j �Sn(w) \ C 6= ;g ;
�dist;closed(p) = C i� p is a (�n; �>){tracking name for the function distC ;

�cutdist;closed(p) = C i� p is a (�n; �>){tracking name for the function cutdistC :

Theorem 3.4 Let n � 1. The four representations �closed, �open�spheres;closed, �dist;closed, and

�cutdist;closed are equivalent.

Proof. \�closed � �open�spheres;closed": Given a �n{name q of a point and a word w such that

the point lies in the sphere �Sn(w), one can detect this by computing the point with su�cient

precision. Hence, given a �closed{name for a closed C, which is a list of �n{names for points in

a dense subset of C, we can compute a list which contains all dyadic spheres intersecting C by

adding a dyadic sphere �Sn(w) to the list as soon as one of the points in the list described by p

turns out to lie in �Sn(w).

\�open�spheres;closed � �dist;closed": The proof is similar to the proof of \�closed�spheres;open �
�dist;open" in Theorem 3.2.

\�dist;closed � �cutdist;closed": This is clear.

\�cutdist;closed � �closed": Assume that a �cutdist;closed{name for a closed set C is given. We have

to compute a list of �n{names for points which form a dense subset of C. We obtain this list by

doing the following for each dyadic point � 2 IRn and each m 2 IN. We approximate cutdistC(�)

from above. If 2�m turns out to be larger than cutdistC(�), then we set �0 := � and compute

a sequence �1; �2; : : : of dyadic points �i with j�i�1 � �ij < 2�m�i and cutdistC(�i) < 2�m�i for

i = 1; 2; : : :. Such a sequence exists and we can �nd such a sequence, and from such a sequence

we can easily compute a �n{name for its limit. The set of these limits is a dense subset of C.

Note that this algorithm works also in case C = ;, since in that case we do not �nd any such

limit number, but also obtain a correct output sequence by requiring that the algorithm pads

the output appropriately with symbols #. 2

A �closed{computable closed set C � IRn is called r.e. closed. Its complement is called co{r.e.

open. In the same way as above one can deduce various characterizations of r.e. closed sets by

using the Computable Points Lemma. We do not formulate them explicitly. A set A � IN of

natural numbers is recursive i� it is r.e. and co-r.e. We shall de�ne the notion of recursiveness

for open or closed subsets of IRn such that the same holds for these sets. They will be the sets

with computable names with respect to the following representations.

By combining the above representations for open sets and for closed sets we obtain represen-

tations which contain more information. The same holds, if we o�er more information about the

distance functions. For example, we can de�ne the following three equivalent representations

for open sets.

De�nition 3.5 Let n � 1. We de�ne the representations �rec, �dist;rec, �cutdist;rec of the set of

open subsets of IRn by:

�rechp; qi = U i� �open(p) = U and �closed(q) = IRn n U ;

�dist;rec(p) = U i� p is a (�n; �){tracking name for the function distIRnnU ;

�cutdist;rec(p) = U i� p is a (�n; �){tracking name for the function cutdistIRnnU :
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Theorem 3.6 Let n � 1. The representations �rec, �dist;rec, and �cutdist;rec are equivalent.

Proof. This follows from Theorem 3.2, Theorem 3.4, and from the de�nition of � and �. 2

A �rec{computable open set U � IRn is called recursively open. Then its complement is

called recursively closed. By de�nition, an open set U is recursively open i� it is r.e. open and

its complement is r.e. closed, and if and only if its distance function distIRnnU is computable.

The last property corresponds to the property of the set IRn nU being \located" in constructive

analysis, compare Bishop and Bridges [2].

In the following we consider two more classes of representations of open subsets of IRn. They

are obtained by considering not just information about the open set itself and perhaps about

its complement but also information about its closure or its boundary. But note that by the

following Lemma the possible information about an open set and its closure is not completely

independent.

Lemma 3.7 Let n � 1. The operation \map an open subset U � IRn to its closure" is

(�open; �closed){computable.

Proof. Given a �open{name for an open set U � IRn we can according to Theorem 3.2 compute

a list containing all closed dyadic spheres in U . The centers of these spheres constitute a dense

subset of the closure of U . Hence, we can compute a �closed{name for the closure of U . 2

Especially, by the Computable Points Lemma, the closure of an r.e. open set is r.e. closed.

We start with a representation which is obtained by combining �open{information about an

open set with �closed{information about the boundary. The boundary @M of an arbitrary set

M � IRn is the (closed) set fx 2 IRn j for every " > 0, S(x; ")\M 6= ; and S(x; ")\(IRnnM) 6= ;g.
It turns out that this information can also be expressed via the distance functions. We de�ne

the following three equivalent representations for open sets. Right now there does not seem to

be a motivation to study this type of information about an open set, but we shall see later that

it plays an essential role in connection with the E�ective Riemann Mapping Theorem.

De�nition 3.8 Let n � 1. We de�ne the representations �open;@ , �dist;open;@ , �cutdist;open;@ of

the set of open subsets of IRn by:

�open;@hp; qi = U i� �open(p) = U and �closed(q) = @U ;

�dist;open;@hp; qi = U i� p is a (�n; �<){tracking name for the function distIRnnU and

q is a (�n; �){tracking name for the restricted function distIRnnU jU ;
�cutdist;open;@ hp; qi = U i� p is a (�n; �<){tracking name for the function cutdistIRnnU and

q is a (�n; �){tracking name for the restricted function cutdistIRnnU jU :

Theorem 3.9 Let n � 1. The representations �open;@ , �dist;open;@ , and �cutdist;open;@ are equiva-

lent.

Proof. \�open;@ � �dist;open;@": If hp; qi is a �open;@{name for an open set U , then by Theorem 3.2

from p we can compute a (�n; �<){tracking name p0 for the function distIRnnU . Furthermore we

have to show that we can compute a (�n; �){tracking name for the restricted function distIRnnU jU .
By the smn Theorem for � it is su�cient to show that given additionally a �n{name r for a
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point x 2 U , we can compute a �{name for distIRnnU jU (x). But using p0 we can compute a �<{

name for distIRnnU (x). And according to Theorem 3.4, by using q we can compute a �>{name for

dist@U (x). But because we can assume x 2 U we have distIRnnU jU (x) = distIRnnU (x) = dist@U (x).

And from a �<{name and a �>{name for this value we can obtain a �{name for it.

\�dist;open;@ � �open;@": According to Theorem 3.2 we can compute a �open{name for an open

set U if we are given a �dist;open;@{name hp; qi for it. We have to show that we can also compute a

�closed{name for @U . According to Theorem 3.4 and by the smn Theorem for � it is su�cient to

show that, given such a hp; qi and a �n{name r for a point z 2 IRn, we can compute a �>{name

for dist@U (z). Indeed, using p and Theorem 3.2, we can �nd a list of dyadic points � which is

dense in U (the centers of all closed dyadic spheres in U). Using q and r, for each of these � we

can compute a �{name for

d(�; z) + distIRnnU (�) = d(�; z) + dist@U (�) :

From all these �{names we can also compute a �>{name for the in�mum of these values, taken

over all �. This in�mum is the correct value dist@U (z).

\�dist;open;@ � �cutdist;open;@": This is clear.

\�cutdist;open;@ � �dist;open;@": We give only the idea. For a given point z (which can be

assumed to be in U) one computes a dyadic complex number � 2 S(z0; 2
�n) \ U and a dyadic

rational # with # < cutdistIRnnU (z) < # + 2�n for some large n. If # is close to 1 or identical

to 1, one computes also the value cutdistIRnnU (�) for all dyadic points in S(�0; #) with high

precision. If all these values turn out to be close to 1, one extends the search to dyadic complex

number still further away from z0 but inside U . Repeating this one will �nd larger and larger

lower bounds for distIRnnU (z). Either they converge to in�nity (then U = IRn) or in this way

we eventually �nd a � with cutdistIRnnU (�) strictly smaller than 1. Then we have an upper

bound for the distance of z from IRn nU and can compute it with arbitrary precision by always

computing cutdistIRnnU (�) for dyadic rationals � of which we know that they are in U . 2

We do not explore all other possible combinations of information about an open set and

its complement, boundary, closure. We formulate only one more class of representations. We

shall not need it in the later sections, but it is interesting especially in connection with the last

representations. The following representations give di�erent possibilities to provide an amount

of information about open sets which is equivalent to combining �rec{information about the open

set and about the complement of its closure. Therefore we shall also use the following symmetric

distance functions for an arbitrary closed set C � IRn:

symdistC : IRn ! IR; symdistC(x) :=

(
d(C; x) = d(@C; x) if x 62 C

�d(@C; x) if x 2 C ;

cutsymdistC : IRn ! IR; cutsymdistC(x) :=

(
minf1; symdistC(x)g if x 62 C

maxf�1; symdistC(x)g if x 2 C :

The function symdistC measures for a point x how far it is away from C if it is not in C, and

how far it is inside C, if it is inside. On the boundary of C it takes the value zero. We de�ne

�ve equivalent representations for open sets.

De�nition 3.10 Let n � 1. We de�ne representations �birec, �open;@;birec, �rec;birec, �symdist;birec,

�cutsymdist;birec of the set of open subsets of IRn by:

�birechp; q; ri = U i� �open(p) = U and �closed(q) = @U
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and �open(r) = IRnn closure of U ;

�open;@;birechp; qi = U i� �open;@(p) = U and �open;@(q) = IRnn closure of U ;

�rec;birechp; qi = U i� �rec(p) = U and �rec(q) = IRnn closure of U ;

�symdist;birec(p) = U i� p is a (�n; �){tracking name for the function symdistIRnnU

�cutsymdist;birec(p) = U i� p is a (�n; �){tracking name for the function cutsymdistIRnnU :

Theorem 3.11 Let n � 1. The representations �birec, �open;@;birec, �rec;birec, �symdist;birec, and

�cutsymdist;birec are equivalent.

Proof. \�symdist;birec � �cutsymdist;birec": This is clear.

\�symdist;birec � �rec;birec": From a (�n; �){tracking name for the function symdistIRnnU one

can easily compute (�n; �){tracking names for the functions distIRnnU and distclosure of U . Ac-

cording to Theorem 3.6 they can be used to obtain �rec{names for U and IRnn closure of U .
\�rec;birec � �open;@;birec": This follows from Theorem 3.6 and Theorem 3.9.

\�open;@;birec � �birec": This is trivial.

\�birec � �symdist;birec": Assume that a �birec{name hp; q; ri and a �n{name s for a point x 2
IRn are given. We have to compute a �{name for symdistIRnnU (x). First, according to Theorem

3.9 we can compute a (�n; �){tracking name p0 for the function distIRnnU jU , and according

to Lemma 3.7 and Theorem 3.6, we can compute a (�n; �){tracking name r0 for the function

distclosure of U . Given a number n, in �nitely many steps we can �nd either a point in @U which

has distance less than 2�n from x, or we �nd a dyadic sphere in U which contains x, or we �nd

a dyadic sphere in (IRnn closure of U) which contains x. In the �rst case we have determined

that jsymdistIRnnU (x)j is at most 2�n, in the other two cases we can compute a �{name for

symdistIRnnU (x), using p
0 or r0.

Applying the smn Theorem for � to this algorithm gives the reduction. 2

A �birec{computable open set U � IRn is called birecursively open. Then its complement is

called birecursively closed. Using the Computable Points Lemma we also obtain statements of

the type \rec=r.e.+complement r.e.": the following three statements are equivalent for an open

set U � IRn.

1. U is birecursively open.

2. The set U and the complement of the closure of U are r.e. open, and the boundary @U of

U is r.e. closed (note that these three sets are disjoint and their union is IRn).

3. The open set U and the complement of the closure of U have the following property: they

are r.e. open and their boundary is r.e. closed.

Now we compare the di�erent classes of representations with each other. For two represen-

tations  and � we write  < � i�  � � and � 6� . For set S and T we write S � T i� S � T

and T 6� S.

Theorem 3.12 Let n � 1. Then �birec < �rec < �open;@ < �open and

fU � IRn j U is birecursively openg
� fU � IRn j U is recursively openg
� fU � IRn j U is r.e. open and @U is r.e. closedg
� fU � IRn j U is r.e. openg :
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Proof. The reducibilities �birec � �rec � �open;@ � �open follow immediately from the de�nitions,

from Theorem 3.6, and from Theorem 3.9. Because of the Computable Points Lemma these

reducibilities induce the inclusions in the second part of the assertion. The negative statements

about the reducibilities follow from the Computable Points Lemma and from the fact that the

inclusions are proper. This is shown by the following typical examples of open sets in each class.

We formulate them for dimension n = 1. For n > 1 one can take the product of these sets

with IRn�1. For completeness sake we also give a birecursively open set. We use an injective

total recursive function a : IN ! IN such that its range fai j i 2 INg is not recursive, e.g.

equal to the halting problem fi j 'i(i) existsg. It is of course recursively enumerable. We set

bi :=
P

m�i 2
�am for each i 2 IN, and b := limi!1 bi. The real number b is contained in the

interval (0; 2). It is �<{computable, but not �{computable, i.e. not a computable real number.

M1 := (0; 2);

M2 :=
[
i2IN

(bi � 2�ai�i; bi);

M3 :=
[
i2IN

(bi � 2�ai�1; bi);

M4 := (0; b) :

The set M1 is obviously birecursively open.

The set M2 is recursively open but not birecursively open. It is not birecursively open

because otherwise the distance d(M2; 2) = 2� b would be a computable real number. But this

is not the case since b is �<{computable but not �{computable. The set M2 is recursively open

because its distance function distIRnM2
is a computable function. Namely, for a given �{name for

a real number x and a given k we can compute d(IRnSm�k(bm�2�am�m; bm); x) with arbitrary

precision, e.g. with precision 2�k�1, and because of

jdistIRnM2
(x)� d(IR n

[
m�k

(bm � 2�am�m; bm); x)j � 2�k�2

we obtain distIRnM2
(x) with precision 2�k�1 + 2�k�2 < 2�k.

The set M3 is r.e. open and its boundary is r.e. closed, but M3 is not recursively open. It is

clear that M3 is r.e. open and that its boundary @M3 = fbg[fbi j i 2 INg[fbi�2�ai�1 j i 2 INg
is r.e. closed. We show that the set M3 is not recursively open. Let us assume that M3 is

recursively open. Then its distance function distIRnM3
is a computable function. We shall show

that for any k we can compute b with precision 2�k. This, of course, contradicts the fact that b

is not a computable real number.

Indeed, for any k 2 IN and any � 2 (0; 2) \ 2�k�3 � IN we can compute a dyadic rational #k;�
with jd(IRnM3; �)�#k;� j < 2�k�4. Let �0 be the either the largest number � 2 (0; 2)\2�k�3 � IN
such that #k;� > 2�k�4 or, if no such � exists, set �0 to be any dyadic number in M3. In any

case �0 2 M3. We can compute the unique n0 with �0 2 (bn0 � 2�an0�1; bn0). We claim that

am � k + 1 for all m > n0. If there were an m > n0 with am � k, then there were also a

� 2 (bm � 2�am�1; bm) \ 2�k�3 � IN with

#k;� > d(IR nM3; �)� 2�k�4 > 2�k�3 � 2�k�4 = 2�k�4 :
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Since this � would be larger than �0 we would have a contradiction. Therefore am � k + 1 for

all m > n0. We conclude

b = bn0 +
X
j>n0

2�aj � bn0 + 2�k :

Hence, the computed number bn0 is a 2
�k{approximation for b.

Finally, the set M4 is obviously r.e. open, but its boundary @M4 = f0; bg is not r.e. closed.
Otherwise we could �nd computable points in this boundary arbitrarily close to b. This would

imply that b itself is a computable real number. 2

We conclude this section by relating the introduced notions of being r.e. open, r.e. closed,

recursively open or closed, and so on with the classical notions for subsets of IN. For a subset

A � IN we consider two operations which map this set to a subset of IR. We directly consider

the set A as a (closed) subset of IR, and we consider the open set UA :=
S
n2A S(n; 1=4). We see

that the following conditions are equivalent for a subset A � IN:

1. A � IN is r.e.,

2. A � IR is r.e. closed,

3. UA is r.e. open,

4. UA is r.e. open and its boundary @UA is r.e. closed.

Also the following conditions are equivalent for A � IN:

1. A � IN is recursive,

2. IN n A is recursive,

3. IR n A is r.e. open and its boundary @(IR n A) = A is r.e. closed,

4. IR n A is recursively open,

5. IR n A is birecursively open,

6. UA is recursively open,

7. UA is birecursively open.

Therefore we consider the notions of being r.e. open or of being r.e. closed as corresponding to

recursive enumerability, while the notions of recursive open{ or closedness and birecursiveness

correspond to recursiveness for subsets of IN. For the property of being r.e. open and having an

r.e. closed boundary one might say that it lies in between these notions or that it is very strong

version of being r.e.
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4 Results from Computable Complex Analysis

In this section we show several results from computable complex analysis which we shall need for

the proof of the E�ective Riemann Mapping Theorem and which are of independent interest. We

start with e�ective versions of two elementary results about analytic functions: computability

of the derivative and computability of the analytic branch of the square root function for a

simply connected open set and a starting point. Then we prove an e�ective version of the Open

Mapping Theorem and conclude that the inverse of a conformal mapping can be computed if the

mapping is given. Afterwards we show a result which does not seem to have a direct counterpart

in classical, non-e�ective complex analysis. It can be considered as a stronger version of the

E�ective Open Mapping Theorem for conformal mappings. We conclude with an e�ective version

of a lemma by Bishop and Bridges [2] related to Harnack's Theorem.

From now on, in this section and the two following sections, we shall always identify the set

of complex numbers C = fz = x+ iy j x; y 2 IRg with the real plane IR2. Computability on C is

therefore introduced via the representation �2. Following Ahlfors [1] we call a subset U � C a

region i� it is nonempty, open, and connected. We assume that every holomorphic function has

an open domain of de�nition. A holomorphic function is called conformal i� it is injective. But

note that the term \conformal" has mainly a geometric meaning. For this and other notions

from complex analysis the reader is referred to Ahlfors [1] or any other textbook on complex

analysis.

At �rst we show a uniform version of the fact that the derivative of a computable holomorphic

function is also a computable function, see Pour{El and Richards [15].

Proposition 4.1 There exists a computable functional Der with the following property: if p is a

�open{name for an open set U � C and q is a (�2; �2){tracking name for a holomorphic function

f : U ! C, then Derhp; qi exists and is a (�2; �2){tracking name for the derivative f 0 : U ! C.

Proof. We show that there exists a computable functional G with the following property: if p

and q are as above and r is a �2{name for a point z 2 U , then Ghp; q; ri exists and is a �2{name

for f 0(z). Applying the smn Theorem for � to G yields the desired functional Der.

Assume that p, q and r are given and describe an open set U , a holomorphic function

f : U ! C and a point z 2 U . Using p and r we can �nd a closed dyadic sphere Sc(�; #) (that

means: � 2 ID+ iID and # 2 ID) contained in U which contains z in its interior. Using q we can

compute the integral Z
@S(�;#)

f(~z)

z � ~z
d~z

with arbitrary precision, i.e. we can compute a �2{name for it, compare Weihrauch [21]. Division

by 2�i is computable. Hence, by Cauchy's integral formula we can compute a �2{name for f 0(z).

2

We shall need to compute analytic branches of the square root function on simply connected

regions. We formulate a uniform version. The same can be done for analytic branches of the

logarithm. For a simply connected region U which contains a positive real number z0 and not

the point 0 we denote the uniquely de�ned analytic branch of the square root function on U

which gives the positive square root for z0 by
p U;z0 .
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Proposition 4.2 There is a computable functional Sqrt with the following property: if p is a

�open{name for a simply connected region U with 0 62 U and q is a �2{name for a positive real

number z0 2 U (that means: q is a �2{name for z0 as a complex number), then Sqrthp; qi exists
and is a (�2; �2){tracking name for

p U;z0.

Proof. Let p; q be given as described and let r be a �2{name for a point z 2 U . Using p and r

we can �nd a �nite list of dyadic complex points �1; : : : ; �l such that the piecewise linear path 

leading from z0 over the sequence of points �i to z is contained in U . Using q we can compute

a �2{name for

z1 := log(z0) +

Z


1

z
dz

where log denotes the real logarithm. Then we can also compute a �2{name for ez1=2. This is

just the value
p
z
U;z0 .

We have shown that there is a computable functional which, given p and q as in the theorem

and a �2{name for a point z 2 U , computes a �2{name for
p
z
U;z0 . Applying the smn Theorem

for � gives the computable functional Sqrt. 2

The Open Mapping Theorem (see e.g. Ahlfors [1, p. 132]) asserts that the image of an open

set under a nonconstant holomorphic mapping is open as well.

Theorem 4.3 (E�ective Open Mapping Theorem) There exists a computable functional

F with the following property: if p is a �open{name for an open set U � C and q is a (�2; �2){

tracking name for a nonconstant holomorphic function f with U � dom f , then F hp; qi is de�ned
and a �open{name for f(U).

By applying the Computable Points Lemma we see

Corollary 4.4 If a set U � C is r.e. open and f is a computable holomorphic function with

U � dom f , then also f(U) is r.e. open.

Proof of Theorem 4.3. We assume that a �open{name p for an open set U � C and a (�2; �2){

tracking name q for a nonconstant holomorphic function are given. We have to describe a

computable functional F which, using these data, computes a �open{name r for the set f(U).

By Theorem 3.2 we can compute a �closed�spheres;open{name for U . By reading this name we

obtain a list

Sc(�0; #0);Sc(�1; #1);Sc(�2; #2); : : :

containing all closed spheres Sc(�; #) with � 2 ID + i � ID and # 2 ID which are contained in U .

Note that this list is either in�nite or empty, namely empty when the set U is empty. We show

how to construct a new list of open spheres which are contained in f(U) and cover f(U). For

each pair of numbers (i; n) we shall either add a sphere to the new list (then a �S2{name can

be appended to the so-far written pre�x of r) or we add nothing to the list (then the symbol

# can be appended to the so-far written pre�x of r). It is clear that r, de�ned by this process,

will be a �open{name for U .

For each pair (i; n) of numbers we do the following. If Sc(�i; #i) does not exist, i.e. if the

list above is empty, then we add nothing to the new list. Let us assume that Sc(�i; #i) exists.

Using q we can compute the minimum minz2@S(�i;#i) jf(z) � f(�i)j of the continuous function
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z 7! jf(z) � f(�i)j on the compact boundary @S(�i; #i) of the sphere S(�i; #i) with arbitrary

precision (compare Weihrauch [21, Theorem 6.8]). We compute a natural number l with

min
z2@S(�i;#i)

jf(z)� f(�i)j 2 ((l � 1) � 2�n; (l + 1) � 2�n) :

If l � 6, then we add nothing to the new list. If l � 7, then, using q again, we compute a dyadic

complex number � (that means: � 2 ID + i � ID) with

j� � f(�i)j < 2�n ;

we set �hi;ni := � and we add the sphere S(�hi;ni; 2
1�n) to the new list. This ends the description

of the algorithm F for computing r.

We have to show that the new list of spheres really covers exactly the set f(U). We shall

show:

1. For any i; n, if �hi;ni exists, then S(�hi;ni; 2
1�n) � f(S(�i; #i)).

2. For every point z0 2 U there exists a pair (i; n) with f(z0) 2 S(�hi;ni; 2
1�n).

Fix a pair (i; n) of numbers and assume that �hi;ni exists. Let z1 2 S(�hi;ni; 2
1�n). Then for

z2 2 @S(�i; #i)

jf(z2)� z1j � jf(z2)� f(�i)j � jf(�i)� �hi;nij � j�hi;ni � z1j > 6 � 2�n � 2�n � 21�n = 3 � 2�n :

If there were no point ~z 2 S(�i; #i) with f(~z) = z1, then z 7! 1
f(z)�z1

would de�ne a holomorphic

mapping on an open neighborhood of Sc(�i; #i). By the maximum principle (e.g. Ahlfors [1, p.

134]) the maximum of the absolute value of this function on Sc(�i; #i) would be taken on the

boundary @S(�i; #i). But we have

jf(�i)� z1j � jf(�i)� �hi;nij+ j�hi;ni � z1j < 2�n + 21�n = 3 � 2�n < min
z22@S(�i;#i)

jf(z2)� z1j :

Hence, there exists a number ~z 2 S(�i; #i) with f(~z) = z1. This proves the �rst claim.

For the second claim �x a point z0 2 U . Since the function f is holomorphic and nonconstant

there exists a dyadic number #0 such that the closed sphere Sc(z0; #
0) is contained in U and does

not contain any number z 6= z0 with f(z) = f(z0). Especially, there is a natural number n with

9 � 2�n < min
z2@S(z0;#0)

jf(z0)� f(z)j :

Let � > 0 be so small that also Sc(z0; #
0 + �) � U . The function f is uniformly continuous on

Sc(z0; #
0 + �) � U . Therefore, there exists a positive �0 < � with jf(z1) � f(z2)j < 2�n for all

z1; z2 2 Sc(z0; #
0 + �) with jz1 � z2j � �0. Let � 0 be a complex dyadic number in S(z0; �

0). Since

Sc(� 0; #0) � U there is an index i with �i = � 0 and #i = #0. We see

7 � 2�n < min
z2@S(�i;#i)

jf(�i)� f(z)j :

Hence, �hi;ni exists and we obtain

jf(z0)� �hi;nij � jf(z0)� f(�i)j+ jf(�i)� �hi;nij < 2�n + 2�n = 21�n :
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We have shown f(z0) 2 S(�hi;ni; 2
1�n). 2

If a holomorphic function f : U ! C (where U � C is open) is injective, then its inverse

f�1 : f(U) ! C is also holomorphic. Hence, then f : U ! f(U) and f�1 : f(U) ! U are

conformal bijections.

Theorem 4.5 There exists a computable functional Inverse with the following property: if p is a

�open{name for an open set U � C and q is a (�2; �2){tracking name for an injective holomorphic

function f : U ! C, then Inversehp; qi is de�ned and a (�2; �2){tracking name for the inverse

function f�1 : f(U)! C.

Proof. We shall describe a computable functional G which on input hp; q; ri computes a �2{

name for f�1(z) if p and q are names as in the theorem and r is a �2{name for a number

z 2 f(U). An application of the smn Theorem for � yields the desired computable functional

Inverse.

Let p be a �open{name for an open set U � C, let q be a (�2; �2){tracking name for an injective

holomorphic function f : U ! C, and let r be �2{name for a point z 2 f(U). It is su�cient to

show that for arbitrary n 2 IN we can �nd a dyadic sphere with radius less than 2�n containing

f�1(z). Indeed, using p we can by Theorem 3.2 compute a �closed�spheres;open{name for U . Using

this name we can compute a list (S(�i; #i))i of spheres with dyadic center �i and dyadic radius

#i < 2�n which cover exactly U . By the E�ective Open Mapping Theorem, just proved, for each

of these spheres S(�i; #i) we can compute a list (S(�i;j; #i;j))j of open spheres covering exactly

f(S(�i; #i)). Eventually, we will �nd a pair (i; j) such that the sphere S(�i;j; #i;j) contains z.

Then S(�i; #i) contains f
�1(z). Thus, for arbitrary n we can �nd a sphere with dyadic center

and dyadic radius less than 2�n which contains f�1(z). This ends the proof. 2

Hence, if U is r.e. open and f : U ! C is a computable conformal mapping, then also

f�1 : f(U)! C is a computable conformal mapping.

Now we shall prove a stronger version of the E�ective Open Mapping Theorem for conformal

mappings. First, we formulate a non-e�ective consequence of the Koebe 1
4 Theorem about the

distance functions distCnU and distCnf(U) of an open set U and its image f(U) under a conformal

mapping f .

Lemma 4.6 Let U � C be a proper, open subset of C and f : U ! C be a conformal mapping.

Then f(U) � C is also proper and for every u 2 U

1

4
� jf 0(u)j � d(C n U; u) � d(C n f(U); f(u)) � 4 � jf 0(u)j � d(C n U; u) :

Proof. First assume that f(U) = C. Then f would be a conformal bijection between U and C.

This would imply U = C in contradiction to our assumption. Hence, f(U) � C.

We �x a point u 2 U and de�ne r := d(C n U; u). Because of r 6= 0, f 0(u) 6= 0 (this holds

true because f is injective) and z 2 S(0; 1) () rz + u 2 S(u; r) we can de�ne a function

g : S(0; 1)! C by

g(z) :=
1

r � f 0(u) � (f(rz + u)� f(u))
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for all z 2 S(0; 1). The function g is conformal and satis�es g(0) = 0 and g0(0) = 1. Hence, the

Koebe 1
4
Theorem (compare Bishop and Bridges [2, Ch. 5, Theorem 7.14], Henrici [8]) implies

S(0;
1

4
) � g(S(0; 1)) :

This is equivalent to

S(f(u);
r � jf 0(u)j

4
) � f(S(u; r)) :

Using S(u; r) � U we conclude S(f(u);
r�jf 0(u)j

4
) � f(U), hence

r � jf 0(u)j
4

� d(C n f(U); f(u)) :

That is the left inequality.

For the right inequality we notice that the set V := f(U) is open and the inverse function

f�1 : f(U) ! C is a conformal mapping. By substituting V , f�1, and the point v := f(u) for

U , f , and u in the left inequality, we read

1

4
� j(f�1)0(v)j � d(C n V; v) � d(C n f�1(V ); f�1(v)) = d(C n U; u) :

Using (f�1)0(v) = 1
f 0(u)

we obtain

d(C n V; v) � 4 � jf 0(u)j � d(C n U; u) :

That is the right inequality. 2

Theorem 4.7 There exists a computable functional F with the following property: if p is a

�open;@{name for an open set U � C and q is a (�2; �2){tracking name for an injective holomor-

phic function f with U � dom f , then F hp; qi is de�ned and a �open;@{name for f(U).

Applying the Computable Points Lemma yields the following corollary.

Corollary 4.8 If U � C is an r.e. open set with an r.e. closed boundary and f : U ! C is

a computable conformal mapping, then also f(U) is r.e. open and its boundary @f(U) is r.e.

closed.

Proof of Theorem 4.7. By Theorem 3.9 it is su�cient to show that a computable functional

exists which computes a �dist;open;@{name for f(U), given the input p and q as above. Such a

name consists of two components: a (�2; �<){tracking name for the distance function distCnf(U)
and a (�2; �){tracking name for the restricted distance function distCnf(U)jf(U), restricted to

f(U). By the E�ective Open Mapping Theorem we can compute a �open{name r
(1) for f(U),

and hence by Theorem 3.9 we can compute the �rst component, a (�2; �<){tracking name r(2)

for the distance function distCnf(U). It is now su�cient to show that there is a computable

functional G which computes a (�2; �>){tracking name r(3) for the restricted distance function

distCnf(U)jf(U), since using r(2) and r(3) one can easily compute the desired second component,

a (�2; �){tracking name for the restricted distance function distCnf(U)jf(U).
We shall show that there is a computable functional H which on input: a �open;@{name p

for an open set U � C, a (�2; �2){tracking name q for an injective holomorphic function f with
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U � dom f , and a �2{name r for a complex number z, computes a �>{name for d(C n f(U); z)
if z is an element of f(U). Applying the smn Theorem for � to H gives the desired computable

functional G.

We do not need to specify what H does if z is not an element of f(U). So assume that p, q

and r are given as described and that z 2 f(U). By Theorem 3.2 and using p we can compute

an in�nite list

Sc(�0; #0);Sc(�1; #1);Sc(�2; #2); : : :

containing exactly all closed dyadic spheres contained in U . This list is in�nite because we can

already assume that z 2 f(U) and hence U 6= ;. For each i we do the following, using the name

q for f :

1. We compute a �{name for the absolute value of the derivative f 0(�i), according to Propo-

sition 4.1. Note that f 0(�i) 6= 0 since f is injective on U .

2. We compute a �-name for d(f(�i); z).

3. We compute a �{name for d(C n U; �i).

4. Using these three names we compute a �{name q(i) for

ai := 4 � jf 0(�i)j � d(C n U; �i) + d(f(�i); z) :

Using all these names q(i) we can compute a �>{name s for the in�mum a := infi2IN ai and set

Hhp; q; ri := s.

In order to show the correctness of the algorithm we have to show only a = d(Cnf(U); z). We

distinguish the cases U = C and U 6= C. In the �rst case we have d(CnU; �i) =1 for all i, hence

ai = 1 for all i, hence a = 1. Since f(U) is a conformal image of U we also have f(U) = C,

and hence d(C n f(U); z) =1. Thus, in the �rst case U = C we have a =1 = d(C n f(U); z).
In the second case U 6= C each of the distances d(C nU; �i) is �nite, hence each ai is �nite, hence

a is a real number. Also, the conformal image f(U) of U 6= C is a proper subset of C. Hence,

d(C n f(U); z) is a real number. A triangle inequality and the right inequality of Lemma 4.6

yield

d(C n f(U); z) � d(C n f(U); f(�i)) + d(f(�i); z) � ai

for all i, hence d(Cnf(U); z) � a. Fix a real number " > 0 and a complex number z0 2 Cnf(U)
with d(C n f(U); z) = d(z0; z). The set f~z 2 U j d(z0; f(~z)) < "g is open and nonempty.

Therefore there is a sphere Sc(�i; #i) in this set. For this i, a triangle inequality yields

d(C n f(U); z) = d(z0; z) � d(f(�i); z)� d(z0; f(�i)) > d(f(�i); z)� " ;

and the left inequality of Lemma 4.6 yields

d(f(�i); z) = ai � 4 � jf 0(�i)j � d(C n U; �i)
� ai � 4 � 4 � d(C n f(U); f(�i))
� ai � 16 � d(z0; f(�i))
> ai � 16 � " :
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We have shown that for every " > 0 there exists an index i with ai � d(C n f(U); z) + 17 � ". We

conclude d(C n f(U); z) � infi2IN ai = a. This ends the proof of a = d(C n f(U); z) and of the

theorem. 2

We end this section with a result which will be needed in the last part of the proof of the

Riemann mapping theorem. It is related to Harnack's Theorem. For the proof we need the

following consequence of Poisson's integral formula, see Bishop and Bridges [2].

Lemma 4.9 (Bishop and Bridges [2, Ch. 5, Proposition 7.2]) Let R be a positive real number,

z0 2 C, and f :� C ! C be a function which is holomorphic on a neighborhood of Sc(z0; R).

Then for any z 2 S(z0; R)

jf(z)j � jf(z0)j �
R� jzj
R+ jzj +maxfjf(z)j j z 2 Sc(z0; R)g �

2 � jzj
R+ jzj :

Actually, we use only the following corollary.

Corollary 4.10 Let R be a positive real number, z0 2 C, and f :� C! C be a function which

is holomorphic on a neighborhood of Sc(z0; R) and with maxfjf(z)j j z 2 Sc(z0; R)g � 1. Then

for any z 2 Sc(z0; R=2)

jf(z)j � 1

3
� jf(z0)j+

2

3
:

Proof. For z 2 Sc(z0; R=2) one has by the lemma:

jf(z)j � jf(z0)j �
R� jzj
R+ jzj +

2jzj
R+ jzj

= 1� (1� jf(z0)j) �
R� jzj
R+ jzj

� 1� (1� jf(z0)j) �
R�R=2

R+R=2

=
1

3
� jf(z0)j+

2

3
:

2

We use the following representation �>K of compact subsets of IR2 (more generally, of IRn)

taken from Weihrauch and Brattka [22]:

�>K(w#p) = K i� K � �S2(w) and �open(p) = IR2 nK:

The following proposition is a translation of Corollary 7.3 in Ch. 5 of Bishop and Bridges [2]. It

is related to Harnack's Theorem, compare Henrici [8].

Proposition 4.11 Given a �open{name p for a region U � C and a �>K{name q for a compact

subset K � U , one can compute a number n 2 IN such that

maxfjf(z)j j z 2 Kg � 3n � 1

3n
+

1

3n
�minfjf(z)j j z 2 Kg

for all holomorphic functions f : U ! C with supfjf(z)j j z 2 Ug � 1.
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Proof. For a region U we set F(U) := ff : U ! C j f is holomorphic and jf(z)j � 1g for all

z 2 Ug.
First, we show the following: given a �open{name p for a region U and two dyadic complex

numbers �0 and � in U we can compute a number m such that

jf(�)j � 3m � 1

3m
+

1

3m
� jf(�0)j

for all f 2 F(U). First, we compute a dyadic number #0 with Sc(�0; 2#0) � U . Then, since U is

connected, we can use p and Theorem 3.2 in order to �nd a �nite list of pairs (�1; #1); : : : ; (�l; #l)

such that � 2 S(�l; #l) and for each i 2 f1; : : : ; lg

�i 2 S(�i�1; #i�1) and Sc(�i; 2#i) � U :

We claim that m := l + 1 has the demanded property. By Corollary 4.10 one obtains via

induction jf(�i)j � 3i�1
3i

+ 1
3i
� jf(�0)j for all i 2 f1; : : : ; lg and �nally also

jf(�)j � 3l+1 � 1

3l+1
+

1

3l+1
� jf(�0)j :

This proves the �rst claim.

Given valid p and q, we can compute a �nite set of pairs (�1; #1); : : : ; (�l; #l) such that the

union of the spheres S(�j; #j) covers K and even each of the larger spheres S(�j; 3�#j) is contained
in U . For any two i; j 2 f1; : : : ; lg letm(i; j) be a number as computed according to the algorithm

described in the �rst step of the proof. We claim that n := 2 + maxfm(i; j) j i; j 2 f1; : : : ; lgg
has the desired property.

Indeed, let z0; z1 2 K be two numbers in K. Let i0; i1 2 f1; : : : ; lg be indices with z0 2
S(�i0 ; #i0) and z1 2 S(�i1 ; #i1). Then Sc(z0; 2 � #i0) � U . By applying Corollary 4.10 we obtain

jf(�i0)j � 1
3
jf(z0)j+ 2

3
and jf(z1)j � 1

3
jf(�i1)j+ 2

3
. Together with jf(�i1)j � 3m(i0;i1)�1

3m(i0;i1)
+ 1

3m(i0;i1)
�

jf(�i0)j we obtain
jf(z1)j �

3n � 1

3n
+

1

3n
� jf(z0)j :

This proves the claim because z0 and z1 are arbitrary elements of K. 2

5 The E�ective Riemann Mapping Theorem

We formulate several e�ective versions of the Riemann Mapping Theorem as described in the

introduction, among them the main result of the paper.

Form now on we denote by D = S(0; 1) � C the unit disk in the complex plane. If z is a

complex number and we write z > 0, then this means that z is a positive real number.

Theorem 5.1 There exist computable functionals F and G with the following properties:

1. If p is a �open;@{name for a simply connected region U which is a proper subset of the

complex plane, and q is a �2{name for a point z0 2 U , then F hp; qi exists and is a

(�2; �2){tracking name for the unique conformal bijection f : D ! U with f(0) = z0 and

f 0(0) > 0.
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2. If p is a (�2; �2){tracking name for a conformal mapping f de�ned on D, then G(p) is

de�ned, �21G(p) is a �open;@{name for the proper, simply connected region f(D), and �22G(p)

is a �2{name for the point f(0).

This is the main result of the paper. It will be proved in the following section. We have

formulated the �rst part with the conformal bijection mapping D onto U . By Theorem 4.5

we could also formulate it using the inverse mapping. It is also worthwhile to remember that

Theorem 3.9 gives other representations of open sets which are equivalent to �open;@ .

If we forget about the point which is supposed to correspond to 0 in the unit disk and de�ne

two representations �0open;@ and �conf of proper, simply connected regions by

�0open;@ := the restriction of �open;@ to names of proper, simply connected regions � C,

�conf(p) = f(D) i� p is a (�2; �2){tracking name for a conformal mapping f on D;

then we can express the most important aspects of Theorem 5.1 compactly as follows.

Corollary 5.2 The representations �0open;@ and �conf of proper, simply connected regions are

equivalent.

Proof. Given a �0open;@{name p of a proper, simply connected region U � C we can immediately

compute a name q for a point z0 2 U . Applying the functional F from Theorem 5.1 to p and

q we can compute a �conf{name for U . The other reduction follows immediately from the other

part of Theorem 5.1. 2

This corollary expresses that the topological information contained in a �0open;@{name for a

simply connected region, that is, enumerating a covering sequence of open spheres in the set

and a dense sequence of points in its boundary, is equivalent to the geometric information which

describes a conformal bijection of the set with the unit disk.

Let us consider the simply connected regions and functions with computable names. We call

a �nite string v a program for an open set U (or a closed set C or a function de�ned on the

unit disk) if v is a ��open{name for U (resp. a ��closed{name for C resp. if 'v is a (�
2; �2){tracking

name for the function), compare De�nition 2.11.

Corollary 5.3 If U is a nonempty, proper, r.e. open, connected, and simply connected subset of

C, its boundary @U is r.e. closed, and z0 2 U is a computable point, then the unique conformal

bijection f : D ! U with f(0) = z0 and f 0(0) > 0 is computable. Given programs for U as an

r.e. open set, for @U as an r.e. closed set, and of z0, one can compute a program of f .

Proof. This follows from the �rst part of Theorem 5.1, from Lemma 2.12 and from Lemma

2.13. 2

By forgetting the point corresponding to 0 and taking also the inverse statement into con-

sideration we can characterize which subsets of the complex plane are computably isomorphic

to the unit disk and obtain the theorem stated in the introduction.

Theorem 5.4 For a subset U � C of the complex plane the following two statements are equiv-

alent:
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1. U is a nonempty, proper, r.e. open, connected, simply connected subset of C and its bound-

ary @U is r.e. closed.

2. There exists a computable conformal bijection f from D onto U .

Furthermore, there exists an algorithm which computes a program for a conformal bijection of

the unit disk onto U if it is given a program for such a set U as an r.e. open set and a program

for its boundary as an r.e. closed set. Also an algorithm performing the inverse task exists.

Proof. The assertion follows from Corollary 5.2, from Lemma 2.12 and from Lemma 2.13. 2

One should bare in mind that by Theorem 4.5 also the inverse of a computable conformal

mapping is computable. Using Theorem 3.9 and the Computable Points Lemma one can ob-

tain further e�ective topological properties which are equivalent to the two e�ective properties

above that the set is r.e. open and its boundary is r.e. closed. One combination corresponds

to constructive conditions formulated by Bishop and Bridges [2]. They formulate their main

result with a property called \mappability", but they show that for a simply connected region

U it is equivalent to a property called \maximal extent property". This can be translated into

the language of computability as the condition that U is a proper subset of C and that the

restricted distance function distCnU jU , restricted to U , is computable (to be precise: for this

property they use the distance induced by the embedding of C into the Riemann sphere). The

picture is complete when one additionally interprets constructive openness by r.e. openness.

Theorem 5.4 answers a problem posed by Pour{El and Richards [15, Problem 5]. It is

interesting that the answer to their problem is given by a class of sets which lies strictly between

the class of proper, r.e. open, simply connected regions and proper, recursively open, simply

connected regions, as we shall see immediately.

Zhou [24, Problem 5.4] asked whether the image f(D) of the unit disk D under a computable

conformal mapping f on D is a recursively open set. Theorem 5.4 and the following proposition

show that this is not the case. The proposition shows that the proper hierarchy considered in

Theorem 3.12 for arbitrary dimension n � 1 is still proper in dimension 2 if we restrict ourselves

to proper, simply connected regions. Let R denote the set of proper, simply connected regions

in the complex plane.

Proposition 5.5

fU 2 R j U is birecursively openg
� fU 2 R j U is recursively openg
� fU 2 R j U is r.e. open and @U is r.e. closedg
� fU 2 R j U is r.e. openg:

Proof. The inclusions follow from Theorem 3.12. That they are proper is shown by the following

counterexamples. For i = 2; 3; 4, we de�ne

~Mi := fz = x+ iy j 0 < x < 2 and 0 < y < 1g [ fz = x+ iy j x 2Mi and 0 < y < 10g
where the sets M2, M3, and M4 are the typical one-dimensional examples of sets de�ned in

the proof of Theorem 3.12. The sets ~Mi are proper, simply connected regions. The set ~M2 is

recursively open but not birecursively open, ~M3 is r.e. open and has an r.e. closed boundary,

but it is not recursively open, and the set ~M4 is r.e. open but its boundary is not r.e. closed. 2
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6 Proof of the E�ective Riemann Mapping Theorem

In this section we shall prove Theorem 5.1. At the end of the section we make two remarks

about the proof.

First we prove the second assertion of Theorem 5.1. It is well known that f(D) is a proper,

simply connected region if f is a conformal mapping on D. The work which still needs to be

done has been done already in the proof of Theorem 4.7. Let H be a computable functional

whose existence was proved in Theorem 4.7, let q be a computable �open;@{name for the unit

disk D, and let r be a computable �2{name for the point 0 2 C. We de�ne the functional G by

G(p) := hHhq; pi; �p(r)i :

The functional G is computable by the utm Theorem for �. It has the properties stated in the

second part of Theorem 5.1. Thus, the second part of Theorem 5.1 is proved.

We come to the �rst part of Theorem 5.1, to the construction of the conformal bijection

of the unit disk onto a proper, simply connected region U , given only topological information

about U (the uniqueness follows from the Schwarz Lemma).

We split the construction of the functional F into two steps.

1. We show that there is computable functional F1 with the following property: if p is a

�open;@{name for a proper simply connected region U � C and q is a �2-name for a point

z0 2 U , then F hp; qi exists and is a (�2; �2){tracking name for a conformal mapping

f : U ! C so that f(U) is a proper subset of the unit disk D, that f(z0) = 0 and that

f 0(z0) > 0.

2. We show that there is computable functional F2 with the following property: if p is a

�open;@{name for a simply connected region U which contains the point 0 and is a proper

subset of the unit disk D, then F2(p) exists and is a (�
2; �2){tracking name for a conformal

mapping f : U ! C with f(U) = D, with f(0) = 0 and with f 0(0) > 0.

Before we prove the existence of the two functionals F1 and F2 we show how to obtain

the �nal computable functional F of the �rst part of Theorem 5.1 from them. Let H be

a computable functional whose existence was proved in Theorem 4.7, let Comp denote the

computable functional from Corollary 2.10, and let Inverse denote the computable functional

from Theorem 4.5. Assuming that we have F1 and F2 with the properties above, we de�ne the

functional F by

F hp; qi := Inverse � ComphF2 �Hhp; F1hp; qii; F1hp; qii :

It is clear that F is computable. Given names p and q as in the �rst part of Theorem 5.1 we

�rst compute F1hp; qi, which is a name for a conformal mapping f1 on U = �open;@(p), then

F2 �Hhp; F1hp; qii, which is a name for a conformal bijection f2 from f1(U) onto D, then a name

for their composition f2 � f1 and �nally a name for the inverse mapping f := (f2 � f1)�1, which
is the desired conformal bijection from D onto U with f(0) = z0 and f 0(0) > 0.

We come to the �rst step, to the construction of the computable functional F1. It is su�cient

to describe how F1 works for valid input. Let p be a �open;@{name for a proper, simply connected

region U and let q be a �2{name for a point z0 2 U . The geometric idea is the following:
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we compute a point not in U (actually a point in the boundary @U), shift it to 0, take an

appropriate square root. Then the complement of the image contains an open set. By shifting

again appropriately and inverting we obtain a conformal image of U which is contained in some

bounded disk. Shifting a third time and multiplying with a suitable factor gives a conformal

image of U which is a proper subset of the unit disk. Furthermore we can achieve that the given

point z0 is mapped to zero and the overall mapping has positive derivative in z0.

We show that the sketched construction above can be performed e�ectively. Using �22p (the

\@{component" of the �open;@{name for U) we can compute a �2{name r(1) of a point in the

boundary @U of U . Let z1 := �2(r(1)) be this point. Using q we can compute a �2{name r(2) for

� := jz0 � z1j and a �2{name r(3) for a real number � with z0 � z1 = � � ei� . The mapping

h1 : C! C with h1(z) := e�i� � (z � z1)

is a conformal mapping. The image V := h1(U) is a simply connected region with 0 = h1(z1) 62 V

and � = h1(z0) 2 V . Therefore the analytic branch
p V;�

according to Proposition 4.2 of the

square root function on V is well-de�ned. The function
p V;�

is injective on V because applyingp V;�
and then squaring gives the identity on V . Furthermore,

if z 2
p
V
V;�

, then the symmetric point �z is not contained in
p
V
V;�

. (1)

Assume on the contrary that there is complex number z 2
p
V
V;�

with �z 2
p
V
V;�

. Then by

the injectivity of
p V;�

there are di�erent numbers z2 6= z3 in V with
p
z2

V;� = z = �pz3V;�.
But squaring gives z2 = z3, a contradiction.

We have
p
�
V;�

=
p
� 2

p
V
V;�

. Therefore, (1) tells us �p� 62
p
V
V;�

. Hence, the function

h2 : V ! C with

h2(z) := 1=(
p
z
V;�

+
p
�)

is well-de�ned. It is a conformal mapping. Therefore the set h2(V ) is a conformal image of V ,

hence a simply connected region. We claim that it is contained in a bounded disk and that we

can compute a radius of such a disk (using the names p, q and the already computed names r(1),

r(2), and r(3)).

First let us go back to the function h1. Using the �
2{names r(1) for z1 and r(3) for � we can

compute a (�2; �2){tracking name r(4) for the function h1 (by the smn Theorem for �). Applying

the computable functional of Theorem 4.7 to the �open;@{name p for U and to r(4) gives us a

�open;@{name r
(5) for V . The computable functional of Proposition 4.2, applied to r(5) and r(2)

yields a (�2; �2){tracking name r(6) for
p V;�

. Applying the functional of Theorem 4.7 to r(5)

and r(6) yields a �open;@{name r
(7) for the set

p
V
V;�

. From r(2), the already computed �2{name

for � we can also compute a �2{name r(8) for
p
�. Using r(8) and the �rst component of r(7)

we can compute a dyadic number � > 0 with S(
p
�; �) �

p
V
V;�

. Now we can apply (1) and see

that S(�p�; �) \
p
V
V;�

= ;. This implies h2(V ) � S(0; ��1).

Now we only have to shift the set and to multiply it by a scalar so that the image of z0 lands

in 0, the derivative of the overall function f1 is positive in z0, and the whole set is mapped to a

proper subset of S(0; 1). We de�ne f1 : U ! C by

f1(z) :=
�

2
� ei� � jh

0
2(�)j
h02(�)

� (h2h1(z)� h2(�)) :
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It is clear that this mapping is conformal and satis�es f1(z0) = 0 2 f1(U). We see

f1(U) � S(��

2
� ei� � jh

0
2(�)j
h02(�)

� h2(�);
1

2
) � D

and

f 01(z0) =
�

2
� ei� � jh

0
2(�)j
h02(�)

� h02(�) � h01(z0) =
�

2
� jh02(�)j > 0 :

We claim that, using the input p and q, we can compute a (�2; �2){tracking name for f1.

Using the �2{name r(8) for
p
� and the (�2; �2){tracking name r(6) for

p V;�
, we can also

compute a (�2; �2)-tracking name r(9) for h2. Using this name and the �2{name r(2) for � we

can compute a �2{name r(10) for h02(�) according to Proposition 4.1. We summarize: from

the input p and q we have we have computed the rational number �, we have computed �2-

names for �, for �, and for h02(�), and we have computed (�2; �2){tracking names for h1 and h2.

By Corollary 2.10 and because the elementary functions addition, subtraction, multiplication,

division, absolute value and exponentiation are computable, we can compute a (�2; �2){tracking

name for f1. This �nishes the �rst step of the construction.

We come to the second step of the construction, to the construction of the computable

functional F2. We shall show that every set in the following class of sets

S := fU � C j 0 2 U; U � D; U 6= D; U is open, connected, and simply connectedg :

can be mapped e�ectively by a conformal mapping f : U ! D with f(0) = 0 and f 0(0) > 0

onto the unit disk D, if a �open;@{name for the set is given. The conformal mapping f will be

obtained as the limit of a sequence of functions which are compositions of certain dilating maps,

called Koebe maps.

For the de�nition of the Koebe maps we need automorphisms of the unit disk D. For z0 2 D

the mapping

�z0 : D ! D with �z0(z) :=
z � z0

z0z � 1
for z 2 D

is a conformal automorphism of D which interchanges the points 0 and z0, that is, �z0(0) = z0
and �z0(z0) = 0. The following lemma is obvious.

Lemma 6.1 There exists a computable functional G1 with the following property: if p is a

�2{name of a point z0 2 D, then G1(p) is de�ned and a (�2; �2){tracking name for �z0.

For the de�nition of the Koebe map and the �rst three statements of the following lemma we

�x a set U 2 S and a point z0 2 D nU . Let � := jz0j and � be a real number with z0 = � � e�i� .
We de�ne the Koebe map �U;z0 : U ! C by

�U;z0(z) := e�i� �
�
�p� �

p ��(ei�U);� � ��
��

ei�z
�
:

Lemma 6.2 1. The map �U;z0 is a well-de�ned conformal function with �U;z0(0) = 0 and

�U;z0(U) 2 S.

2. �0U;z0(0) =
1+�
2
p
�
is a real number greater than 1.
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3. d(C n U; 0) < d(C n �U;z0(U); 0).

4. There exists a computable functional G2 with the following property: if p is a �open{name

for a set U 2 S and q is a �2{name for a point z0 2 D n U , then G2hp; qi is de�ned and a

(�2; �2){tracking name for �U;z0.

Proof. The �rst three statements are pure complex analysis and the proofs can be found in

various sources. We give the proofs nevertheless for completeness sake.

1. By z 7! ��(e
i� � z) a conformal automorphism of D is de�ned. Hence, the set ��(e

i�U)

is an open connected, simply connected subset of D with � = ��(e
i� � 0) 2 ��(e

i�U) and

0 = ��(e
i� � z0) 62 ��(e

i�U). Therefore the analytic branch
p ��(e

i�U);�
of the square root

function introduced in Proposition 4.2 is well de�ned on ��(e
i�U). It maps the set ��(e

i�U)

into D. Since the mapping z 7! e�i� � �p�(z) is a conformal isomorphism of D, we conclude

that �U;z0 is a conformal mapping on U with �U;z0(U) � D. The image �U;z0 is open, connected

and simply connected, it contains the point 0 = �U;z0(0) but not the point e
�i� � p�. Hence,

�U;z0(U) 2 S.
2. Straightforward computation yields:

�0U;z0(0) = e�i� � �0p�(
p
�) � 1

2 � p� � �
0
�(0) � ei� =

1 + �

2 � p� :

From � 2 (0; 1) one deduces immediately 1+�
2�
p
�
> 1.

3. Let square : C! C denote the squaring function square(z) := z2. The function

� : D ! D with �(z) := e�i� � (�� � square � �p�)(ei� � z)

satis�es �(0) = 0 and is not a rotation. Therefore, by the Schwarz Lemma (see e.g. Ahlfors [1])

j�(z)j < jzj for all z 2 D n f0g : (2)

Since for any ~z 2 D the function �~z is its own inverse, we see

� � �U;z0(z) = z

for all z 2 U . Let us �x a point z1 2 @�U;z0(U) with jz1j = d(C n �U;z0(U); 0). Then z1 2
D. We choose a sequence (~zn)n of points in U with limn �U;z0(~zn) = z1. We can assume

that the sequence (~zn)n converges itself since it is bounded and we can switch to a converging

subsequence. The limit z2 := limn ~zn does not lie in U since otherwise by continuity of �U;z0 we

had z1 = �U;z0(z2) 2 �U;z0(U). On the other hand we have � � �U;z0(~zn) = ~zn for all n. Hence,

by continuity of � we obtain �(z1) = z2. With (2) we obtain jz2j < jz1j. We conclude

d(C n U; 0) � jz2j < jz1j = d(C n �U;z0(U); 0) :

4. Assume that a �open{name p for a set U 2 S and a �2{name q for a point z0 2 D n U are

given. Using the functional G1 from Lemma 6.1 we can compute a (�2; �2){tracking name for

the function which assigns to each number z 2 D the value ��(e
i� �z). According to the E�ective

Open Mapping Theorem we can use this name and p in order to compute a �open{name for the set

��(e
i�U). Now we can apply the functional of Proposition 4.2 to this name and to a �2{name for
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�, computed from q, and compute a (�2; �2){tracking name for the analytic branch
p ��(e

i�U);�

of the square root function on ��(e
i�U). Finally, using the functional G1 from Lemma 6.1 we

can also compute a (�2; �2){tracking name for �p�. We have now (�2; �2){tracking names for

the three functions in the middle of the de�nition of the Koebe function and, by using q, also

for the rotations z 7! ei�z and z 7! e�i�z. We can compute a (�2; �2){tracking name for the

composition of these functions by Corollary 2.10. This proves the assertion. 2

The third property of Koebe maps is the reason why they are useful for our purpose: they

are dilating maps. By choosing the point z0 2 D n U as close as possible to the center 0 of the

disk D one can achieve that the dilation of the Koebe map �U;z0 is large, i.e. the ratio between

the inner radius d(C n �U;z0(U); 0) and d(C n U; 0) of U is large enough so that by iterating this

process the images of U form a sequence of sets in S whose inner radii tend to 1. We shall see

that the composition of all of these maps tends to a conformal mapping of U onto D.

In general, it is impossible to compute a point z0 2 D nU which is really as close as possible

to 0, that is, satis�es jz0j = d(C n U; 0). But it is su�cient to have a point z0 2 D n U with

jz0j < 1
2 � (1 + d(C n U; 0)).

Lemma 6.3 There exists a computable functional G3 with the following property: if p is a

�open;@{name for a set U 2 S, then G3(p) is de�ned and a (�2; �2){tracking map for a Koebe

map �U;zU , where zU is a point in D n U with jzU j < 1
2 � (1 + d(C n U; 0)).

Proof. Assume that a �open;@{name p for a set U 2 S is given. By Theorem 3.9 we can compute

a �dist;open;@{name for U . Using this we can compute the inner radius d(C n U; 0) of U with

arbitrary precision. On the other hand, using the @{part �22p of p we can compute a sequence of

points which form a dense subset of the boundary @U of U . Since we know the inner radius of

U we can especially compute a �2{name q for a point zU 2 @U with jzU j < 1
2 � (1 + d(C n U; 0)).

Applying the functional G2 of Lemma 6.2.4 to �21p and q yields a (�2; �2){tracking name for a

Koebe map with the desired properties. 2

We come to the iteration. For p 2 �! we de�ne two sequences (p(n))n and (q
(n))n of sequences

in �! by

p(0) := p;

q(n) := G3(p
(n));

p(n+1) := Hhp(n); q(n)i

where G3 is the computable functional from Lemma 6.3 and H is the computable functional

from Theorem 4.7.

Furthermore, using the functional Comp from Corollary 2.10 we de�ne

r(0) := q(0); r(n+1) := Comp(q(n+1); r(n)):

Then the functional G4 with

G4(p) := hr(0); r(1); r(2); : : :i
is computable.
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From now on we assume that p is a �open;@{name for a set U 2 S. Then we can de�ne for

each n 2 IN:

Un := �open;@(p
(n));

�n := the Koebe map which is (�2; �2){tracked by q(n);

fn := �n � : : : � �0
= the function which is (�2; �2){tracked by r(n):

By the lemmata shown in this section the sets Un are elements of S and the functions fn are

conformal bijections from U onto Un+1 with fn(0) = 0 and f 0n(0) > 0. We wish to show that

the functions fn converge towards a conformal bijection f from U onto D and that from p we

can compute a (�2; �2){tracking name for f . First we show

Lemma 6.4 The inner radii d(C n Un; 0) of the sets Un tend to 1 for n tending to in�nity.

Proof. For each n 2 IN the function z 7! fn(z � d(C n U; 0)) maps D into D and 0 to 0. By the

Schwarz Lemma we conclude

f 0n(0) � 1=d(C n U; 0) :
Let zn be the point with �n = �Un;zn . Then by Lemma 6.2.2

f 0n(0) = �0n(0) � : : : � �00(0) =
1 + jznj
2
pjznj � : : : �

1 + jz0j
2
pjz0j :

Each of the factors
1+jznj

2
p
jznj

is greater than 1 by Lemma 6.2.2. Hence, due to the last inequality

the factors
1+jznj

2
p
jznj

must tend to 1 for n tending to in�nity. Since the function h : (0; 1] ! IR

with h(x) := 1+x
2
p
x
is strictly decreasing on the interval (0; 1] and takes the value h(1) = 1 at the

point 1, also limn!1 jznj = 1. Our choice jznj < 1
2(1 + d(C n Un; 0)) �nally implies that also

limn!1 d(C n Un; 0) = 1. 2

Thus, according to this lemma and Lemma 6.2.3 the sequence (d(C n Un; 0))n of inner radii

is an increasing sequence of positive real numbers with limit 1. We claim that the functions fn
converge locally uniformly and that, given p, we can compute a modulus of convergence in the

sense of Proposition 2.15.

Lemma 6.5 There exists a computable functional G5 with the following property: if p is a

�open;@{name for a set U 2 S, then G5(p) exists and describes a modulus of convergence in the

sense of Proposition 2.15 for the sequence (fn)n of functions fn on U , de�ned as above.

For the proof we follow closely Bishop and Bridges [2]. We shall need Proposition 4.11 and

the following lemma. For the proof the reader is referred to Bishop and Bridges [2].

Lemma 6.6 (Bishop and Bridges [2, Chapter 5, Corollary 7.5]) Let b 2 (0; 1) and let U � D be

an open set with S(0; b) � U . Furthermore let g : U ! C be a conformal mapping with g(0) = 0,

with g0(0) > 0, and with S(0; b) � g(U) � D. Then

jg(z) � zj � 3 �
p
1� b

b2 � jzj
for all z 2 S(0; b2).
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Proof of Lemma 6.5. Let p be a �open;@{name for a set U 2 S, let p(n), Un, and fn be derived

from p as above. We show that we can create a list of triples (w;m; l) of strings w and numbers

m; l such that all pairs (w;m) with �Sc2(w) � U and m 2 IN occur as the �rst two components

of triples in this list and for each triple (w;m; l) in the list

jfj(z)� fk(z)j < 2�m

for all j > k � l and all z 2 �Sc2(w). Indeed, using p and Theorem 3.2 we can create a list of

all w with �Sc2(w) � U . We must show that for any such w and any m we can �nd a suitable

number l.

First, using w, we can compute a �>K{name for the compact set K := f0g[ �Sc2(w), which is
contained in U . From this name and from p we can compute a number n 2 IN with jfi(z)j � 3n�1

3n

for all i 2 IN and z 2 K, by Proposition 4.11 (remember that fi(0) = 0 for all i). We set a := 3n�1
3n

and choose a rational number b with

a < b2 < 1 and 3 �
p
1� b

b2 � a
< 2�m :

Using the �open;@{names p
(n) for the sets Un we can by Theorem 3.9 compute the inner radii

d(C n Un; 0) with arbitrary precision. Since they tend to 1 for n tending to in�nity we can �nd

a number l with d(C n Ul; 0) � b. We claim that this number has the demanded property.

Since the sequence of inner radii is increasing we have d(CnUk; 0) � b for all k � l. Therefore,

if j > k � l, then we can apply Lemma 6.6 to the set Uk and the function �j � : : : � �k+1 and

obtain for any z 2 K

jfj(z) � fk(z)j = j�j � : : : � �k+1 � fk(z)� fk(z)j � 3 �
p
1� b

b2 � jfk(z)j
� 3 �

p
1� b

b2 � a
< 2�m :

2

The non-e�ective content of Lemma 6.5 already tells us that the sequence (fn)n of functions

converges locally uniformly on U . By theorems of Weierstrass and Hurwitz the limit of a locally

uniformly converging sequence of conformal functions exists and is a conformal function again.

Let f be the conformal limit of the functions fn. Since fn(U) = Un+1 � D for all n, also

f(U) � D. Since fn(0) = 0 and f 0n(0) > 0 we conclude f(0) = 0 and f 0(0) > 0. Furthermore,

since the inner radii d(C nUn; 0) tend to 1, we have f(U) = D. Thus, f is a conformal bijection

from U onto D. Finally, let H be the computable functional of Proposition 2.15 for n = m = 2.

We de�ne the functional F2 by

F2(p) := HhG4(p); G5(p)i :

Then F2 is computable and F2(p) is a (�
2; �2){tracking name for f . This ends the construction

of the functional F2 of the second step of the total construction. We have proved Theorem 5.1.

We conclude this section with two remarks on the proof. In the construction of the conformal

mapping we have used only Koebe maps. There are many other possible families of suitable

maps, compare Henrici [8] and Remmert [17]. Others might be better for complexity theoretic

reasons.
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Theorem 4.7 was essential for the classically simple direction of the Riemann Mapping Theo-

rem: for going from information about the conformal mapping to topological information about

the set. But we have used it also in the main construction and have applied it to Koebe functions

and the square root function. This application was not really necessary since for the square root

function and the Koebe maps one can obtain direct estimates, see Bishop and Bridges [2].

7 Conclusion

We have formulated several e�ective versions of the Riemann Mapping Theorem. The strongest

version showed that certain topological information | essentially enumerating a covering set

of open spheres in the set and a dense set of points in the boundary | about a proper simply

connected region is equivalent to geometric information about a conformal bijection between

this set and the unit circle in the complex plane. This also gave a characterization of those

proper simply connected regions for which there exists a computable conformal bijection onto

the unit disk.

We conclude with several open problems. In preparation for the results about the Riemann

Mapping Theorem we analyzed various types of information about open subsets of Euclidean

spaces and derived computability classes of open sets. These types of information and these

classes should be analyzed more thoroughly. Also, e�ective complex analysis could be developed

more systematically and broader along the lines of the results of Section 4. For the E�ective

Riemann Mapping Theorem itself, one can aim for generalizations to multiply connected regions

or Riemann surfaces, thus, going further along the suggestions by Pour{El and Richards [15,

Problem 5]. Another interesting problem is to analyze the computational complexity of the

transformations in the E�ective Riemann Mapping Theorem.
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