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Abstract

In our previous papers [3,2] we have proved that there are nine types of finite relations
which are closed under a natural definition of feedback. In this note we prove that this
natural definition is the unique feedback which satisfies the axioms of a biflow over there
usual composition and sum.

1 Preliminaries

1.1 Finite Relations

For each nonnegative integer n we denote by [n] the set {1, 2, . . . , n}; in particular [0] = ∅.
Let S be a set of sorts. For a ∈ S∗ we denote by |a| the length of a and for each i ∈ [|a|]

we denote by ai ∈ S the ith letter of a. As we use the additive notation for the concatenation
of S∗ we write a = a1 + a2 + . . .+ a|a|.

For a, b ∈ S∗ let

RelS(a, b) = {(a, f, b) | f ⊆ [|a|]× [|b|], (i, j) ∈ f implies ai = bj}.

Throughout this paper we shall write shortly f instead of (a, f, b) ∈ RelS(a, b) and we shall
say that f is an S-sorted relation from a to b.

The basic operations of RelS are composition and sum. The composite
fg ∈ RelS(a, c) is defined for each f ∈ RelS(a, b) and g ∈ RelS(b, c) by

fg = {(i, j) | (∃k)(i, k) ∈ f and (k, j) ∈ g}.

The sum f + g ∈ RelS(a+ c, b+ d) is defined for each f ∈ RelS(a, b) and g ∈ RelS(c, d) by

f + g = f ∪ {(|a|+ i, |b|+ j) | (i, j) ∈ g}.

The following particular relations will be used in the sequel.

Identity
Ia = {(i, i) | i ∈ [|a|]} ∈ RelS(a, a).
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Block transposition

aXb = {(i, |b|+ i) | i ∈ [|a|]} ∪ {(|a|+ j, j) | j ∈ [|b|]} ∈ RelS(a+ b, b+ a).

Block identification

∨a = {(i, i) | i ∈ [|a|]} ∪ {(|a|+ i, i) | i ∈ [|a|]} ∈ RelS(a+ a, a).

Adding dummy elements to the target

>a = ∅ ∈ RelS(λ, a), where λ is the empty word.

Adding dummy elements to the source

⊥a = ∅ ∈ RelS(a, λ).

Block ramification(fork)

∧a = {(i, i) | i ∈ [|a|]} ∪ {(i, |a|+ i) | i ∈ [|a|]} ∈ RelS(a, a+ a).

Empty relation
0ab = ∅ ∈ RelS(a, b).

For each a ∈ S∗ and each nonnegative integer n we define inductively ∨na ∈ RelS(na, a) and
∧an ∈ RelS(a, na) by the following equalities:

∨0
a = >a ∧a0 = ⊥a

∨n+1
a = (Ia + ∨na)∨a ∧an+1 = ∧a(Ia + ∧an)

In [3] we have proved that each f ∈ RelS(a, b) may be represented as

f =

 |a|∑
j=1

∧ajmj

 f2

 |b|∑
i=1

∨nibi

 , (1)

where f2 is a bijection.
We have defined 16 types of finite relations xy-RelS using two parameters,

x ∈ {a, b, c, d} and y ∈ {α, β, γ, δ}; the indices mj and nj used in ( 1) satisfy the following
restrictions:

x restrictions y restrictions
a mj = 1 α ni = 1
b mj ≤ 1 β ni ≤ 1
c mj ≥ 1 γ ni ≥ 1
d none δ none

Hence by definition xy-RelS is the set of all relations having at least one representation of
the form (1) such that the indices mj and ni satisfy the above restrictions. Some of these
types of relations are well known, for example aδ-RelS represents functions and aα-RelS
denotes bijections (therefore we shall write in the sequel BiS instead of aα-RelS).

All 16 types of relations are closed under composition and sum.
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1.2 Algebraic Structures

We recall the definition of the algebraic structures which will be used subsequently in the paper.
Let B be a category whose objects form a monoid (M,+, 0) and such that for each a, b, c, d ∈M
a sum operation is given

+ : B(a, b)×B(c, d)→ B(a+ c, b+ d).

B is called a strict monoidal category (smc for short) if the following axioms are satisfied:

1. f + (g + h) = (f + g) + h
2. f + I0 = f = I0 + f
3. Ia + Ib = Ia+b

4. (f + g)(u+ v) = fu+ gv

An smc-morphism is a functor which is a monoid morphism on objects and preserves the sum.
Suppose that for every a, b ∈ M some distinguished morphisms aXb ∈ B(a + b, b + a) are

given. An smc is called symmetric (ssmc for short) if the following axioms are satisfied:

5. aXc(g + f)dXb = f + g for f : a→ b and g : c→ d
6. aX0 = Ia
7. aXb+c = (aXb + Ic)(Ib + aXc)

An ssmc-morphism is a smc-morphism H such that H(aXb) = H(a)XH(b).
Notice that xy-RelS is an ssmc for each x ∈ {a, b, c, d} and y ∈ {α, β, γ, δ}.
The concept of an xy-ssmc depends on the two parameters: x ∈ {a, b, c, d} and

y ∈ {α, β, γ, δ}. For each e ∈ M we will use the distinguished morphisms >e ∈ B(0, e),
⊥e ∈ B(e, 0), ∨e ∈ B(e+ e, e) and ∧e ∈ B(e, e+ e). The following table shows, for every value
of the parameters, which distinguished morphisms are involved:

x distinguished morphism y distinguished morphism

a none α none
b ⊥e β >e
c ∧e γ ∨e
d ⊥e and ∧e δ >e and ∨e

The axioms which are satisfied by the distinguished morphisms are chosen from the next table
for each xy case according to the following rule: select all axioms in which only the distinguished
morphisms corresponding to the xy case appear.

A. (∨a + Ia)∨a = (Ia + ∨a)∨a A◦. ∧a(∧a + Ia) = ∧a(Ia + ∧a)
B. aXa∨a = ∨a B◦. ∧aaXa = ∧a
C. (>a + Ia)∨a = Ia C◦. ∧a(⊥a + Ia) = Ia
D. ∨a⊥a = ⊥a +⊥a D◦. >a∧a = >a +>a

E. >a⊥a = I0
F. ∨a∧a = (∧a + ∧a)(Ia + aXa + Ia)(∨a + ∨a)
G. ∧a∨a = Ia

3



SV1. >0 = I0 SV1◦. ⊥0 = I0
SV2. >a+b = >a +>b SV2◦. ⊥a+b = ⊥a +⊥b
SV3. ∨0 = I0 SV3◦. ∧0 = I0
SV4. ∨a+b = (Ia + bXa + Ib)(∨a + ∨b) SV4◦. ∧a+b = (∧a + ∧b)(Ia + aXb + Ib)

An xy-morphism is a ssms-morphism which preserves the distinguished morphisms which are
involved.

Notice that xy-RelS is an xy-ssms for each x ∈ {a, b, c, d} and y ∈ {α, β, γ, δ}.
A biflow is an ssmc B endowed for each a, b, c ∈M with an unary operation

↑a : B(a+ b, a+ c)→ B(b, c)

called (left) feedback which satisfies the following axioms:

F1. f(↑ag)h = ↑a[(Ia + f)g(Ia + h)]
F2. ↑af + Id = ↑a(f + Id)
F3. ↑a+b[f(bXa + Id)] = ↑b+a[(bXa + Ic)f ] for f : a+ b+ c→ b+ a+ d
F4. ↑a↑bf = ↑b+af
F5. ↑aIa = I0
F6. ↑aaXa = Ia

A consequence of the above axioms is ↑0f = f .

1.3 Feedback and Relations

The feedback ↑s for s ∈ S is defined in RelS for f ∈RelS(s+ a, s+ b) by

↑sf = {(i, j) | (1 + i, 1 + j) ∈ f or {(1 + i, 1), (1, 1 + j)} ⊆ f}

This definition may be completed by induction on the length starting with ↑λf = f and using
F4. The next fact comes from [2].

Fact 1 xy-RelS is closed under ↑ if and only if xy ∈ {aα,dδ} or x = b or y = β.

The case aα was studied in [1]. The result in the next section covers the cases
aβ, bα, bβ, bγ, cβ, bδ, dβ and dδ.

2 Main result

Let xy ∈ {aα,dδ} or x = b or y = β. Let B be a biflow over an xy-ssmc which satisfies the

following axioms:
↑a∨a = ⊥a only for xy ∈ {bγ, bδ, dδ}
↑a∧a = >a only for xy ∈ {cβ, dβ, dδ}
↑a [(∧a + Ia) (Ia + aXa) (∨a + Ia)] = Ia only for xy = dδ

Fact 2 xy-RelS satisfies the above hypotheses.

Theorem 3 Let B be a biflow over an xy-ssmc which satisfies the above three axioms.

1) If H : xy-RelS → B is an xy-ssmc morphism then H preserves the feedback.

2) The biflow structure of xy-RelS is unique if its xy-ssmc structure is the above one.
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Proof 1) As the monoid of the objects of RelS is a free one it suffices to show H preserves ↑s
for each s ∈ S.

Let f ∈ xy-RelS(s+ a, s+ b) with s ∈ S and its standard writing (see [3]) :

f =

∧sm0
+
∑
j∈[|a|]

∧ajmj

 g
∨n0

s +
∑
i∈[|b|]

∨nibi

 .

As

H (↑sf) =

 ∑
j∈[|a|]

∧H(aj)
mj

H (
↑s
[(
∧sm0

+ I∑mjaj

)
g
(
∨n0
s + I∑nibi

)])∑
i∈[|b|]

∨niH(bi)


and

↑H(s)H(f) =

 ∑
j∈[|a|]

∧H(aj)
mj

 ↑H(s)H
((
∧sm0

+ I∑mjaj

)
g
(
∨n0
s + I∑nibi

))∑
i∈[|b|]

∨niH(bi)


it is sufficient to prove that H preserves the feedback only for the following relations:

f = (∧sm + Ia) g (∨ns + Ib)

where

- g ∈ BiS(ms+ a, ns+ b) and

- (Ims +>a) g
(
Ins +⊥b

)
∈ {0msns , Is + 0

(m−1)s
(n−1)s }.

The last property comes from the standard writing of f (see[3]).

This fact is proved by cases.

1. Case m = 0 (only for x ∈ {b, d}):

↑H(s)H(f) = ↑H(s)
[(
⊥H(s) + IH(a)

)
H(g)

(
∨nH(s) + IH(b)

)]
= ↑0

[
H(g)

(
∨nH(s)⊥H(s) + IH(b)

)]
= H (g (⊥ns + Ib)) = H (↑sf)

2. Case n = 0 (only for y ∈ {β, δ}) : dual.

3. Case m ≥ 1, n ≥ 1 and (Ims +>a) g
(
Ins +⊥b

)
= 0msns .

As there exist u ∈ BiS(a, ns+ c) and v ∈ BiS(ms+ c, b) such that

g = (Ims + u) (msXns + Ic) (Ins + v) ,

we deduce:

f = (Is + u) [(∧sm + Ins)msXns (∨ns + Ims) + Ic] (Is + v)
= (Is + u) [(Is + ∨ns ) sXs (Is + ∧sm) + Ic] (Is + v)
= [Is + u (∨ns + Ic)] (sXs + Ic) [Is + (∧sm + Ic) v]

thus

↑H(s)H(f) = H (u (∨ns + Ic))H ((∧sm + Ic) v) = H (u (∨ns∧sm + Ic) v) = H (↑sf) .
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4. Case m ≥ 1, n ≥ 1 and (Ims +>a) g
(
Ins +⊥b

)
= Is + 0

(m−1)s
(n−1)s .

4a. Case m = 1 or n = 1.
Notice that g = Is + h with h ∈ BiS((m− 1)s+ a, (n− 1)s+ b).
If m = 1 and n = 1 then f = Is + h hence ↑H(s)H(f) = H(h) = H (↑sf) .
If m = 1 and n > 1 (only for y ∈ {γ, δ}) then

f = (Is + h) [(Is + ∨n−1
s )∨s + Ib] = [Is + h (∨n−1

s + Ib)] (∨s + Ib)

therefore

↑H(s)H(f) = H (h (∨n−1
s + Ib))

(
↑H(s)∨H(s) + IH(b)

)
= H (h (∨n−1

s + Ib))
(
⊥H(s) + IH(b)

)
= H

(
h
(
⊥(n−1)s + Ib

))
= H (↑sf) .

For m > 1 and n = 1 (only for x ∈ {c, d}) the proof is dual.

4b. Case m > 1 and n > 1 (only for xy = dδ).
As there exist u ∈ BiS(a, (n− 1)s+ c) and v ∈ BiS((m− 1)s+ c, b) such that

g = (Ims + u)
(
Is + (m−1)sX(n−1)s + Ic

)
(Ins + v)

we deduce:

f = (Is + u)
[(
∧s
(
Is + ∧sm−1

)
+ I(n−1)s

) (
Is + (m−1)sX(n−1)s

)(
(Is + ∨n−1

s )∨s + I(m−1)s

)
+ Ic

]
(Is + v)

= (Is + u)
[
(∧s + ∨n−1

s ) (Is + sXs)
(
∨s + ∧sm−1

)
+ Ic

]
(Is + v)

= (Is + u (∨n−1
s + Ic)) [(∧s + Is) (Is + sXs) (∨s + Is) + Ic]

(
Is +

(
∧sm−1 + Ic

)
v
)

.
therefore

↑H(s)H(f) = H (u (∨n−1
s + Ic))

[
↑H(s)

((
∧H(s) + IH(s)

) (
IH(s) + H(s)XH(s)

)(
∨H(s) + IH(s)

))
+ IH(c)

]
H
((
∧sm−1 + Ic

)
v
)

= H
(
u
(
∨n−1
s ∧sm−1 + Ic

)
v
)

= H (↑sf) .

2) Suppose (xy-RelS, ·, l, +, X, ⇑) is a biflow. Notice that the three axioms from the
beginning of the second section hold. The proof for the last one is done by induction on the
length of a. For

h = ⇑a [(∧a + Ia) (Ia + aXa) (∨a + Ia)]

we deduce

h = ⇑2a [(∨a∧a + Ia) (Ia + aXa)]
= ⇑a⇑a [((∧a + ∧a) (Ia + aXa + Ia) (∨a + ∨a) + Ia) (Ia + aXa)]
= ⇑a [(∧a⇑a [(∧a + I2a) (Ia + aXa + Ia) (∨a + I2a)]∨a + Ia) aXa]
= ⇑a [(∧a (h+ Ia)∨a + Ia) aXa]
= (⇑aaXa)(∧a (h+ Ia)∨a)
= ∧a (h+ Ia)∨a.

From the last equality we deduce Ia ⊆ h which assure the proof for |a| ≤ 1. The proof for
the inductive step for s ∈ S is the following:

⇑a+s [(∧a+s + Ia+s) (Ia+s + a+sXa+s) (∨a+s + Ia+s)]

= ⇑a+s[(∧a +∧s + Ia+s)(Ia + aXs + Is+a+s)(Ia+s + a+sXa+s)(Ia + sXa + Is+a+s)(∨a +∨s + Ia+s)]

= ⇑s⇑a[(∧a +∧s + Ia+s)(I2a + 2sXa + Is)(Ia + aXa + Is + sXs)(I2a + aX2s + Is)(∨a +∨s + Ia+s)]
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= ⇑s[(∧s + Ia+s)(2sXa + Is)(Ia+s + sXs)(h+ Is+s+s)(aX2s + Is)(∨s + Ia+s)]

= aXs{⇑s[(∧s + sXa)(2sXa + Is)(Ia+s + sXs)(aX2s + Is)(∨s + aXs)]}sXa

= aXs{⇑s [(∧s + Is) (Is + sXs) (∨s + Is)] + Ia}sXa = Ia+s.

As 1xy−RelS : xy-RelS → (xy-RelS, ·, l, +, X, ⇑) is an xy-ssmc morphism, we deduce from
1) it preserves the feedback thus ↑=⇑ .
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3. V.E. Căzănescu and Gh. Ştefănescu, Classes of finite relations as initial abstract data types,
Discrete Math. 90 (1991) 233-265.

7


