

CDMTCS Research Report Series

Feedback for Relations

Virgil Emil Căzănescu Faculty of Mathematics Bucharest University

CDMTCS-066 November 1997

Centre for Discrete Mathematics and Theoretical Computer Science

Feedback for Relations*

Virgil Emil Căzănescu, Bucharest University, Faculty of Mathematics Email: vec@funinf.math.unibuc.ro

Abstract

In our previous papers [3,2] we have proved that there are nine types of finite relations which are closed under a natural definition of feedback. In this note we prove that this natural definition is the unique feedback which satisfies the axioms of a biflow over there usual composition and sum.

1 Preliminaries

1.1 Finite Relations

For each nonnegative integer n we denote by [n] the set $\{1, 2, ..., n\}$; in particular $[0] = \emptyset$.

Let S be a set of sorts. For $a \in S^*$ we denote by |a| the length of a and for each $i \in [|a|]$ we denote by $a_i \in S$ the i^{th} letter of a. As we use the additive notation for the concatenation of S^* we write $a = a_1 + a_2 + \ldots + a_{|a|}$.

For $a, b \in S^*$ let

$$\mathsf{Rel}_{S}(a,b) = \{(a,f,b) \mid f \subseteq [|a|] \times [|b|], (i,j) \in f \text{ implies } a_{i} = b_{j}\}.$$

Throughout this paper we shall write shortly f instead of $(a, f, b) \in \operatorname{Rel}_S(a, b)$ and we shall say that f is an S-sorted relation from a to b.

The basic operations of $\operatorname{\mathsf{Rel}}_S$ are *composition* and *sum*. The composite $fg \in \operatorname{\mathsf{Rel}}_S(a,c)$ is defined for each $f \in \operatorname{\mathsf{Rel}}_S(a,b)$ and $g \in \operatorname{\mathsf{Rel}}_S(b,c)$ by

$$fg = \{(i,j) \mid (\exists k)(i,k) \in f \text{ and } (k,j) \in g\}.$$

The sum $f + g \in \operatorname{Rel}_S(a + c, b + d)$ is defined for each $f \in \operatorname{Rel}_S(a, b)$ and $g \in \operatorname{Rel}_S(c, d)$ by

$$f + g = f \cup \{ (|a| + i, |b| + j) \mid (i, j) \in g \}.$$

The following particular relations will be used in the sequel.

Identity

$$\mathsf{I}_{a} = \{(i,i) \mid i \in [|a|]\} \in \mathsf{Rel}_{S}(a,a).$$

^{*}This wark was partially supported by the Centre for Discrete Mathematics and Theoretical Computer Science, Auckland, New Zealand.

Block transposition

$${}^{a}\mathsf{X}^{b} = \{(i, |b| + i) \mid i \in [|a|]\} \cup \{(|a| + j, j) \mid j \in [|b|]\} \in \mathsf{Rel}_{S}(a + b, b + a).$$

Block identification

$$\forall_a = \{(i,i) \mid i \in [|a|]\} \cup \{(|a|+i,i) \mid i \in [|a|]\} \in \mathsf{Rel}_S(a+a,a).$$

Adding dummy elements to the target

 $\top_a = \emptyset \in \mathsf{Rel}_S(\lambda, a)$, where λ is the empty word.

Adding dummy elements to the source

$$\perp^a = \emptyset \in \operatorname{\mathsf{Rel}}_S(a, \lambda).$$

Block ramification(fork)

$$\wedge^{a} = \{(i,i) \mid i \in [|a|]\} \cup \{(i,|a|+i) \mid i \in [|a|]\} \in \mathsf{Rel}_{S}(a, a+a).$$

Empty relation

$$0_b^a = \emptyset \in \operatorname{Rel}_S(a, b).$$

For each $a \in S^*$ and each nonnegative integer n we define inductively $\bigvee_a^n \in \mathsf{Rel}_S(na, a)$ and $\wedge_n^a \in \mathsf{Rel}_S(a, na)$ by the following equalities:

In [3] we have proved that each $f \in \operatorname{Rel}_S(a, b)$ may be represented as

$$f = \left(\sum_{j=1}^{|a|} \wedge_{m_j}^{a_j}\right) f_2\left(\sum_{i=1}^{|b|} \vee_{b_i}^{n_i}\right),\tag{1}$$

where f_2 is a bijection.

We have defined 16 types of finite relations xy-Rel_S using two parameters, $x \in \{a, b, c, d\}$ and $y \in \{\alpha, \beta, \gamma, \delta\}$; the indices m_j and n_j used in (1) satisfy the following restrictions:

x	restrictions	y	restrictions
a	$m_j = 1$	α	$n_i = 1$
b	$m_j \leq 1$	β	$n_i \leq 1$
c	$m_j \ge 1$	γ	$n_i \ge 1$
d	none	δ	none

Hence by definition xy-Rel_S is the set of all relations having at least one representation of the form (1) such that the indices m_j and n_i satisfy the above restrictions. Some of these types of relations are well known, for example $a\delta$ -Rel_S represents functions and $a\alpha$ -Rel_S denotes bijections (therefore we shall write in the sequel Bi_S instead of $a\alpha$ -Rel_S).

All 16 types of relations are closed under composition and sum.

1.2**Algebraic Structures**

We recall the definition of the algebraic structures which will be used subsequently in the paper. Let B be a category whose objects form a monoid (M, +, 0) and such that for each $a, b, c, d \in M$ a sum operation is given

$$+: B(a,b) \times B(c,d) \to B(a+c,b+d).$$

B is called a *strict monoidal category* (*smc* for short) if the following axioms are satisfied:

1. f + (g + h) = (f + g) + h2. $f + I_0 = f = I_0 + f$ $3. \quad \mathbf{I}_a + \mathbf{I}_b = \mathbf{I}_{a+b}$ $4. \quad (f+g)(u+v) = fu + gv$

An smc-morphism is a functor which is a monoid morphism on objects and preserves the sum.

Suppose that for every $a, b \in M$ some distinguished morphisms ${}^{a}X^{b} \in B(a + b, b + a)$ are given. An *smc* is called *symmetric* (*ssmc* for short) if the following axioms are satisfied:

5.
$${}^{a}\mathsf{X}^{c}(g+f){}^{d}\mathsf{X}^{b} = f+g \text{ for } f: a \to b \text{ and } g: c \to d$$

6. ${}^{a}\mathsf{X}^{0} = \mathsf{I}_{a}$
7. ${}^{a}\mathsf{X}^{b+c} = ({}^{a}\mathsf{X}^{b} + \mathsf{I}_{c})(\mathsf{I}_{b} + {}^{a}\mathsf{X}^{c})$

An ssmc-morphism is a smc-morphism H such that $H({}^{a}X^{b}) = {}^{H(a)}X^{H(b)}$.

Notice that xy-Rel_S is an ssmc for each $x \in \{a, b, c, d\}$ and $y \in \{\alpha, \beta, \gamma, \delta\}$.

The concept of an xy-ssmc depends on the two parameters: $x \in \{a, b, c, d\}$ and $y \in \{\alpha, \beta, \gamma, \delta\}$. For each $e \in M$ we will use the distinguished morphisms $\top_e \in B(0, e)$, $\perp^e \in B(e,0), \forall_e \in B(e+e,e) \text{ and } \wedge^e \in B(e,e+e).$ The following table shows, for every value of the parameters, which distinguished morphisms are involved:

x	distinguished morphism	y	distinguished morphism
a	none	α	none
b	\bot^e	β	\top_e
c	\wedge^e	γ	\vee_e
d	\perp^e and \wedge^e	δ	$ op_e$ and ee_e

The axioms which are satisfied by the distinguished morphisms are chosen from the next table for each xy case according to the following rule: select all axioms in which only the distinguished morphisms corresponding to the xy case appear.

A.
$$(\vee_a + \mathbf{I}_a)\vee_a = (\mathbf{I}_a + \vee_a)\vee_a$$
 A°. $\wedge^a(\wedge^a + \mathbf{I}_a) = \wedge^a(\mathbf{I}_a + \wedge^a)$
B. ${}^a\mathbf{X}{}^a\vee_a = \vee_a$ B°. $\wedge^{aa}\mathbf{X}{}^a = \wedge^a$
C. $(\top_a + \mathbf{I}_a)\vee_a = \mathbf{I}_a$ C°. $\wedge^a(\bot^a + \mathbf{I}_a) = \mathbf{I}_a$
D. $\vee_a \bot^a = \bot^a + \bot^a$ D°. $\top_a \wedge^a = \top_a + \top_a$
E. $\top_a \bot^a = \mathbf{I}_0$
F. $\vee_a \wedge^a = (\wedge^a + \wedge^a)(\mathbf{I}_a + {}^a\mathbf{X}{}^a + \mathbf{I}_a)(\vee_a + \vee_a)$
G. $\wedge^a\vee_a = \mathbf{I}_a$

G.

$$\begin{array}{lll} \mathsf{SV1.} & \top_0 = \mathsf{I}_0 & \mathsf{SV1^\circ}. & \bot^0 = \mathsf{I}_0 \\ \mathsf{SV2.} & \top_{a+b} = \top_a + \top_b & \mathsf{SV2^\circ}. & \bot^{a+b} = \bot^a + \bot^b \\ \mathsf{SV3.} & \lor_0 = \mathsf{I}_0 & \mathsf{SV3^\circ}. & \land^0 = \mathsf{I}_0 \\ \mathsf{SV4.} & \lor_{a+b} = (\mathsf{I}_a + {}^b\mathsf{X}^a + \mathsf{I}_b)(\lor_a + \lor_b) & \mathsf{SV4^\circ}. & \land^{a+b} = (\land^a + \land^b)(\mathsf{I}_a + {}^a\mathsf{X}^b + \mathsf{I}_b) \end{array}$$

An xy-morphism is a ssms-morphism which preserves the distinguished morphisms which are involved.

Notice that xy-Rel_S is an xy-ssms for each $x \in \{a, b, c, d\}$ and $y \in \{\alpha, \beta, \gamma, \delta\}$. A *biflow* is an ssmc B endowed for each $a, b, c \in M$ with an unary operation

$$\uparrow^a: B(a+b,a+c) \to B(b,c)$$

called (left) *feedback* which satisfies the following axioms:

 $\begin{array}{ll} \mathsf{F1.} & f(\uparrow^a g)h = \uparrow^a[(\mathsf{I}_a + f)g(\mathsf{I}_a + h)]\\ \mathsf{F2.} & \uparrow^a f + \mathsf{I}_d = \uparrow^a(f + \mathsf{I}_d)\\ \mathsf{F3.} & \uparrow^{a+b}[f({}^b\mathsf{X}^a + \mathsf{I}_d)] = \uparrow^{b+a}[({}^b\mathsf{X}^a + \mathsf{I}_c)f] & \text{for } f: a+b+c \to b+a+d\\ \mathsf{F4.} & \uparrow^a \uparrow^b f = \uparrow^{b+a}f\\ \mathsf{F5.} & \uparrow^a \mathsf{I}_a = \mathsf{I}_0\\ \mathsf{F6.} & \uparrow^{aa}\mathsf{X}^a = \mathsf{I}_a \end{array}$

A consequence of the above axioms is $\uparrow^0 f = f$.

1.3 Feedback and Relations

The feedback \uparrow^s for $s \in S$ is defined in Rel_S for $f \in \text{Rel}_S(s+a,s+b)$ by

$$\uparrow^{s} f = \{(i,j) \mid (1+i,1+j) \in f \text{ or } \{(1+i,1),(1,1+j)\} \subseteq f\}$$

This definition may be completed by induction on the length starting with $\uparrow^{\lambda} f = f$ and using F4. The next fact comes from [2].

Fact 1 xy-Rel_S is closed under \uparrow if and only if $xy \in \{a\alpha, d\delta\}$ or x = b or $y = \beta$.

The case $a\alpha$ was studied in [1]. The result in the next section covers the cases $a\beta, b\alpha, b\beta, b\gamma, c\beta, b\delta, d\beta$ and $d\delta$.

2 Main result

Let $xy \in \{a\alpha, d\delta\}$ or x = b or $y = \beta$. Let B be a biflow over an xy-ssmc which satisfies the $\uparrow^a \lor_a = \bot^a$ only for $xy \in \{b\gamma, b\delta, d\delta\}$ following axioms: $\uparrow^a \land^a = \top_a$ only for $xy \in \{c\beta, d\beta, d\delta\}$ $\uparrow^a [(\land^a + I_a) (I_a + {}^aX^a) (\lor_a + I_a)] = I_a$ only for $xy = d\delta$

Fact 2 xy-Rel_S satisfies the above hypotheses.

Theorem 3 Let B be a biflow over an xy-ssmc which satisfies the above three axioms.

- 1) If $H: xy-\text{Rel}_S \to B$ is an xy-ssmc morphism then H preserves the feedback.
- 2) The biflow structure of xy-Rel_S is unique if its xy-ssmc structure is the above one.

Proof 1) As the monoid of the objects of Rel_S is a free one it suffices to show H preserves \uparrow^s for each $s \in S$.

Let $f \in xy$ -Rel_S(s + a, s + b) with $s \in S$ and its standard writing (see [3]) :

$$f = \left(\wedge_{m_0}^s + \sum_{j \in [|a|]} \wedge_{m_j}^{a_j}\right) g\left(\vee_s^{n_0} + \sum_{i \in [|b|]} \vee_{b_i}^{n_i}\right) \,.$$

As

$$H\left(\uparrow^{s}f\right) = \left(\sum_{j \in [|a|]} \wedge_{m_{j}}^{H(a_{j})}\right) H\left(\uparrow^{s}\left[\left(\wedge_{m_{0}}^{s} + \mathsf{I}_{\sum m_{j}a_{j}}\right)g\left(\vee_{s}^{n_{0}} + \mathsf{I}_{\sum n_{i}b_{i}}\right)\right]\right) \left(\sum_{i \in [|b|]} \vee_{H(b_{i})}^{n_{i}}\right)$$

 and

$$\uparrow^{H(s)}H(f) = \left(\sum_{j \in [|a|]} \wedge_{m_j}^{H(a_j)}\right) \uparrow^{H(s)}H\left(\left(\wedge_{m_0}^s + \mathsf{I}_{\sum m_j a_j}\right)g\left(\vee_s^{n_0} + \mathsf{I}_{\sum n_i b_i}\right)\right)\left(\sum_{i \in [|b|]} \vee_{H(b_i)}^{n_i}\right)$$

it is sufficient to prove that H preserves the feedback only for the following relations:

$$f = (\wedge_m^s + \mathsf{I}_a) g (\vee_s^n + \mathsf{I}_b)$$

where

- $g \in Bi_S(ms + a, ns + b)$ and

-
$$(\mathsf{I}_{ms} + \top_a) g (\mathsf{I}_{ns} + \bot^b) \in \{ \theta_{ns}^{ms}, \mathsf{I}_s + \theta_{(n-1)s}^{(m-1)s} \}.$$

The last property comes from the standard writing of f (see[3]).

This fact is proved by cases.

1. Case m = 0 (only for $x \in \{b, d\}$):

$$\uparrow^{H(s)}H(f) = \uparrow^{H(s)} \left[\left(\bot^{H(s)} + \mathsf{I}_{H(a)} \right) H(g) \left(\lor_{H(s)}^{n} + \mathsf{I}_{H(b)} \right) \right]$$

$$= \uparrow^{0} \left[H(g) \left(\lor_{H(s)}^{n} \bot^{H(s)} + \mathsf{I}_{H(b)} \right) \right]$$

$$= H\left(g \left(\bot^{ns} + \mathsf{I}_{b} \right) \right) = H\left(\uparrow^{s} f\right)$$

2. Case n = 0 (only for $y \in \{\beta, \delta\}$) : dual.

3. Case $m \ge 1$, $n \ge 1$ and $(I_{ms} + T_a) g (I_{ns} + \bot^b) = 0_{ns}^{ms}$. As there exist $u \in Bi_S(a, ns + c)$ and $v \in Bi_S(ms + c, b)$ such that

$$g = \left(\mathsf{I}_{ms} + u\right)\left({}^{ms}\mathsf{X}^{ns} + \mathsf{I}_{c}\right)\left(\mathsf{I}_{ns} + v\right),$$

we deduce:

$$\begin{split} f &= (\mathsf{I}_s + u) \left[(\wedge_m^s + \mathsf{I}_{ns})^{ms} \mathsf{X}^{ns} \left(\vee_s^n + \mathsf{I}_{ms} \right) + \mathsf{I}_c \right] \left(\mathsf{I}_s + v \right) \\ &= (\mathsf{I}_s + u) \left[\left(\mathsf{I}_s + \vee_s^n \right)^s \mathsf{X}^s \left(\mathsf{I}_s + \wedge_m^s \right) + \mathsf{I}_c \right] \left(\mathsf{I}_s + v \right) \\ &= \left[\mathsf{I}_s + u \left(\vee_s^n + \mathsf{I}_c \right) \right] \left({}^s \mathsf{X}^s + \mathsf{I}_c \right) \left[\mathsf{I}_s + \left(\wedge_m^s + \mathsf{I}_c \right) v \right] \end{split}$$

thus

$$\uparrow^{H(s)}H(f) = H\left(u\left(\vee_s^n + \mathsf{I}_c\right)\right)H\left(\left(\wedge_m^s + \mathsf{I}_c\right)v\right) = H\left(u\left(\vee_s^n \wedge_m^s + \mathsf{I}_c\right)v\right) = H\left(\uparrow^s f\right)\,.$$

4. Case
$$m \ge 1$$
, $n \ge 1$ and $(\mathsf{I}_{ms} + \top_a) g \left(\mathsf{I}_{ns} + \bot^b\right) = \mathsf{I}_s + 0^{(m-1)s}_{(n-1)s}.$

4a. Case m = 1 or n = 1. Notice that $g = I_s + h$ with $h \in Bi_S((m-1)s + a, (n-1)s + b)$. If m = 1 and n = 1 then $f = I_s + h$ hence $\uparrow^{H(s)}H(f) = H(h) = H(\uparrow^s f)$. If m = 1 and n > 1 (only for $y \in \{\gamma, \delta\}$) then

$$f = \left(\mathsf{I}_{s} + h\right)\left[\left(\mathsf{I}_{s} + \lor_{s}^{n-1}\right)\lor_{s} + \mathsf{I}_{b}\right] = \left[\mathsf{I}_{s} + h\left(\lor_{s}^{n-1} + \mathsf{I}_{b}\right)\right]\left(\lor_{s} + \mathsf{I}_{b}\right)$$

therefore

$$\uparrow^{H(s)}H(f) = H\left(h\left(\vee_{s}^{n-1}+\mathsf{I}_{b}\right)\right)\left(\uparrow^{H(s)}\vee_{H(s)}+\mathsf{I}_{H(b)}\right)$$

$$= H\left(h\left(\vee_{s}^{n-1}+\mathsf{I}_{b}\right)\right)\left(\bot^{H(s)}+\mathsf{I}_{H(b)}\right)$$

$$= H\left(h\left(\bot^{(n-1)s}+\mathsf{I}_{b}\right)\right) = H\left(\uparrow^{s}f\right).$$

$$m > 1 \text{ and } n = 1 \text{ (only for } x \in \{c, d\}) \text{ the proof is dual}$$

For m > 1 and n = 1 (only for $x \in \{c, d\}$) the proof is dual.

4b. Case m > 1 and n > 1 (only for $xy = d\delta$). As there exist $u \in Bi_S(a, (n-1)s + c)$ and $v \in Bi_S((m-1)s + c, b)$ such that

$$g = (\mathbf{I}_{ms} + u) \left(\mathbf{I}_{s} + {}^{(m-1)s} \mathbf{X}^{(n-1)s} + \mathbf{I}_{c} \right) \left(\mathbf{I}_{ns} + v \right)$$

we deduce:

$$\begin{split} f &= (\mathsf{I}_{s}+u) \left[\left(\wedge^{s} \left(\mathsf{I}_{s} + \wedge^{s}_{m-1} \right) + \mathsf{I}_{(n-1)s} \right) \left(\mathsf{I}_{s} + ^{(m-1)s} \mathsf{X}^{(n-1)s} \right) \\ & \left(\left(\mathsf{I}_{s} + \vee^{n-1}_{s} \right) \vee_{s} + \mathsf{I}_{(m-1)s} \right) + \mathsf{I}_{c} \right] \left(\mathsf{I}_{s} + v \right) \\ &= (\mathsf{I}_{s}+u) \left[\left(\wedge^{s} + \vee^{n-1}_{s} \right) \left(\mathsf{I}_{s} + ^{s} \mathsf{X}^{s} \right) \left(\vee_{s} + \wedge^{s}_{m-1} \right) + \mathsf{I}_{c} \right] \left(\mathsf{I}_{s} + v \right) \\ &= (\mathsf{I}_{s}+u \left(\vee^{n-1}_{s} + \mathsf{I}_{c} \right)) \left[\left(\wedge^{s} + \mathsf{I}_{s} \right) \left(\mathsf{I}_{s} + ^{s} \mathsf{X}^{s} \right) \left(\vee_{s} + \mathsf{I}_{s} \right) + \mathsf{I}_{c} \right] \left(\mathsf{I}_{s} + \left(\wedge^{s}_{m-1} + \mathsf{I}_{c} \right) v \right) \,. \end{split}$$

therefore

$$\uparrow^{H(s)} H(f) = H \left(u \left(\vee_{s}^{n-1} + \mathsf{I}_{c} \right) \right) \left[\uparrow^{H(s)} \left(\left(\wedge^{H(s)} + \mathsf{I}_{H(s)} \right) \left(\mathsf{I}_{H(s)} + {}^{H(s)} \mathsf{X}^{H(s)} \right) \right. \\ \left(\vee_{H(s)} + \mathsf{I}_{H(s)} \right) \right) + \mathsf{I}_{H(c)} \right] H \left(\left(\wedge_{m-1}^{s} + \mathsf{I}_{c} \right) v \right) \\ = H \left(u \left(\vee_{s}^{n-1} \wedge_{m-1}^{s} + \mathsf{I}_{c} \right) v \right) = H \left(\uparrow^{s} f \right) .$$

2) Suppose (xy-Rel_S, \cdot , I, +, X, \uparrow) is a biflow. Notice that the three axioms from the beginning of the second section hold. The proof for the last one is done by induction on the length of a. For

$$h = \Uparrow^{a} \left[\left(\wedge^{a} + \mathsf{I}_{a} \right) \left(\mathsf{I}_{a} + {}^{a} \mathsf{X}^{a} \right) \left(\lor_{a} + \mathsf{I}_{a} \right) \right]$$

we deduce

$$h = \Uparrow^{2a} \left[\left(\bigvee_{a} \wedge^{a} + \mathsf{I}_{a} \right) \left(\mathsf{I}_{a} + {}^{a} \mathsf{X}^{a} \right) \right]$$

$$= \Uparrow^{a} \Uparrow^{a} \left[\left(\left(\wedge^{a} + \wedge^{a} \right) \left(\mathsf{I}_{a} + {}^{a} \mathsf{X}^{a} + \mathsf{I}_{a} \right) \left(\bigvee_{a} + \bigvee_{a} \right) + \mathsf{I}_{a} \right) \left(\mathsf{I}_{a} + {}^{a} \mathsf{X}^{a} \right) \right]$$

$$= \Uparrow^{a} \left[\left(\wedge^{a} \Uparrow^{a} \left[\left(\wedge^{a} + \mathsf{I}_{2a} \right) \left(\mathsf{I}_{a} + {}^{a} \mathsf{X}^{a} + \mathsf{I}_{a} \right) \left(\bigvee_{a} + \mathsf{I}_{2a} \right) \right] \lor_{a} + \mathsf{I}_{a} \right) {}^{a} \mathsf{X}^{a} \right]$$

$$= \Uparrow^{a} \left[\left(\wedge^{a} \left(h + \mathsf{I}_{a} \right) \lor_{a} + \mathsf{I}_{a} \right) {}^{a} \mathsf{X}^{a} \right]$$

$$= (\Uparrow^{aa} \mathsf{X}^{a}) \left(\wedge^{a} \left(h + \mathsf{I}_{a} \right) \lor_{a} \right)$$

$$= \wedge^{a} \left(h + \mathsf{I}_{a} \right) \lor_{a}.$$

From the last equality we deduce $I_a \subseteq h$ which assure the proof for $|a| \leq 1$. The proof for the inductive step for $s \in S$ is the following:

$$\begin{split} & \left(\left(\wedge^{a+s} + \mathsf{I}_{a+s} \right) \left(\mathsf{I}_{a+s} + {}^{a+s} \mathsf{X}^{a+s} \right) \left(\vee_{a+s} + \mathsf{I}_{a+s} \right) \right] \\ &= & \left(\wedge^{a+s} + \mathsf{I}_{a+s} \right) \left(\mathsf{I}_{a} + {}^{a} \mathsf{X}^{s} + \mathsf{I}_{s+a+s} \right) \left(\mathsf{I}_{a+s} + {}^{a+s} \mathsf{X}^{a+s} \right) \left(\mathsf{I}_{a} + {}^{s} \mathsf{X}^{a} + \mathsf{I}_{s+a+s} \right) \left(\vee_{a} + \vee_{s} + \mathsf{I}_{a+s} \right) \right] \\ &= & \left(\wedge^{a} + \wedge^{s} + \mathsf{I}_{a+s} \right) \left(\mathsf{I}_{2a} + {}^{2s} \mathsf{X}^{a} + \mathsf{I}_{s} \right) \left(\mathsf{I}_{a} + {}^{a} \mathsf{X}^{a} + \mathsf{I}_{s} + {}^{s} \mathsf{X}^{s} \right) \left(\mathsf{I}_{2a} + {}^{a} \mathsf{X}^{2s} + \mathsf{I}_{s} \right) \left(\vee_{a} + \vee_{s} + \mathsf{I}_{a+s} \right) \right] \end{split}$$

$$= \Uparrow^{s} [(\wedge^{s} + \mathsf{I}_{a+s})({}^{2s}\mathsf{X}^{a} + \mathsf{I}_{s})(\mathsf{I}_{a+s} + {}^{s}\mathsf{X}^{s})(h + \mathsf{I}_{s+s+s})({}^{a}\mathsf{X}^{2s} + \mathsf{I}_{s})(\vee_{s} + \mathsf{I}_{a+s})] \\ = {}^{a}\mathsf{X}^{s} \{\Uparrow^{s} [(\wedge^{s} + {}^{s}\mathsf{X}^{a})({}^{2s}\mathsf{X}^{a} + \mathsf{I}_{s})(\mathsf{I}_{a+s} + {}^{s}\mathsf{X}^{s})({}^{a}\mathsf{X}^{2s} + \mathsf{I}_{s})(\vee_{s} + {}^{a}\mathsf{X}^{s})]\}^{s}\mathsf{X}^{a} \\ = {}^{a}\mathsf{X}^{s} \{\Uparrow^{s} [(\wedge^{s} + \mathsf{I}_{s})(\mathsf{I}_{s} + {}^{s}\mathsf{X}^{s})(\vee_{s} + \mathsf{I}_{s})] + \mathsf{I}_{a}\}^{s}\mathsf{X}^{a} = \mathsf{I}_{a+s}.$$

As $\mathbf{1}_{xy-\text{Rel}_S} : xy-\text{Rel}_S \to (xy-\text{Rel}_S, \cdot, I, +, X, \uparrow)$ is an xy-ssmc morphism, we deduce from 1) it preserves the feedback thus $\uparrow=\uparrow$.

References

1. V.E. Căzănescu and Gh. Ștefănescu, A formal representation of flowchart schemes, An. Univ. București, Mat.-Inf., **37**(2) (1988) 33-51.

2. V.E. Căzănescu and Gh. Ștefănescu, A formal representation of flowchart schemes II, *Stud. Cerc. Mat.*, **41**(3) (1989) 151-167.

3. V.E. Căzănescu and Gh. Ștefănescu, Classes of finite relations as initial abstract data types, *Discrete Math.* **90** (1991) 233-265.