
CDMTCS

Research

Report

Series

Surjective Functions on

Computably Growing Cantor

Sets

Peter Hertling

Department of Computer Science

University of Auckland

CDMTCS-063

October 1997

Centre for Discrete Mathematics and

Theoretical Computer Science

Surjective Functions on Computably Growing Cantor

Sets

Peter Hertling

Department of Computer Science, The University of Auckland,

Private Bag 92019, Auckland, New Zealand

Email: hertling@cs.auckland.ac.nz

Abstract

Every in�nite binary sequence is Turing reducible to a random one. This is

a corollary of a result of P�eter G�acs stating that for every co-r.e. closed set with

positive measure of in�nite sequences there exists a computable mapping which

maps a subset of the set onto the whole space of in�nite sequences. Cristian

Calude asked whether in this result one can replace the positive measure con-

dition by a weaker condition not involving the measure. We show that this is

indeed possible: it is su�cient to demand that the co-r.e. closed set contains a

computably growing Cantor set. Furthermore, in the case of a set with positive

measure we construct a surjective computable map which is more e�ective than

the map constructed by G�acs.

Keywords: Computable maps on in�nite sequences, co-r.e. closed sets, Cantor

sets, computability and measure

1 Introduction and Notation

Every in�nite binary random sequence is Turing reducible to random one. This was

proved independently by G�acs [G�acs 1986] and Ku�cera [Ku�cera 1985] by di�erent

methods. G�acs proved the following stronger result: for any set of in�nite binary

sequences which is co-r.e. closed (�0
1) and has positive measure there exists a com-

putable mapping which maps a subset of the set onto the whole space of in�nite

binary sequences. M�andoiu [M�andoiu 1993] extended this result to arbitrary alpha-

bets instead of the binary alphabet. Since there are co-r.e. closed sets with measure

zero which can nonetheless be mapped computably onto the whole space of in�nite

sequences, M�andoiu [M�andoiu 1993] and Calude [Calude 1994], Problem 10, asked

whether it is possible to replace the positive measure condition in G�acs's result by

a more general condition not involving the measure. We show that this is indeed

possible: for any co-r.e. closed set which contains a computably growing Cantor set

there is a computable mapping which maps a a subset of the set onto the space of all

sequences. Computably growing Cantor sets will be de�ned in the following section.

In the case of binary sequences and a co-r.e. closed set of positive measure, G�acs

constructed a surjective map which is e�ective in the following sense: after reading

1

n digits of a sequence on which the map is de�ned the algorithm for the map writes

at least n� 3 � pn � log2 n� c digits of the output sequence, where c is a constant.

We improve this by constructing for any " > 0 an algorithm which under the same

conditions writes at least n � (2 + ") �pn � log2 n � c digits, c a constant. For an

input alphabet with p symbols and an output alphabet with q symbols we obtain

for each " > 0 an algorithm which after reading n digits of a sequence on which the

map is de�ned writes at least logq p � n � (2 + ") logq p �
q
n logp n � c digits of the

output sequence.

In the following section we introduce the necessary notions, state the main result,

and show that it covers the known examples [M�andoiu 1993, Calude 1994] of co-r.e.

closed sets with measure zero. In Section 3 we prove the main theorem. In the

last section we show that our main theorem covers also the result by G�acs and

its strengthening by M�andoiu. Furthermore we construct the algorithm mentioned

above which is more e�ective than the algorithm of G�acs. This is done for arbitrary

input and output alphabets. We close this section by introducing some notation.

IN is the set of natural numbers, IR is the set of real numbers. An alphabet is

a �nite set with at least two elements. Alphabets are denoted by � and �. The

following notation is introduced for objects with respect to some �xed alphabet �,

but applies as well to any other alphabet. �� is the set of strings with digits from

�, �n is the set of strings of length n, �! = f� j � : IN ! �g is the set of in�nite
sequences. The length of a string x is denoted by jxj. By � we denote the empty

string. For a string x and a string or in�nite sequence y 2 �� [�!, xy is the

concatenation of x and y. For a string or an in�nite sequence x 2 �� [�! and

an integer number n � �1, x[0::n] denotes the initial segment of length n + 1 of x

(where x[0::n] = x if jxj � n+1). A string x 2 �� is a pre�x of a string or an in�nite

sequence y 2 �� [�! if y[0::jxj � 1] = x. This is denoted by x v y. For x 2 �� the

set [x] := fy 2 �� [�! j x v yg is the set of all strings and in�nite sequences y such

that x is a pre�x of y. We extend this to sets A � �� by [A] :=
S
x2A[x]. For n 2 IN

and a set A � �� [�! we de�ne A[n] := fx 2 �n j A \ [x] 6= ;g.
The lower case letters k; l;m; n; p; q; r; s; t denote numbers, letters v; w; x; y; z

from the end of the alphabet denote �nite strings, and greek letters �; �; denote

in�nite sequences, respectively. A subset of �� is called a language or simply a set.

The capital letters A;B;C are used to denote subsets of �� and boldface capital

letters A;B;C are used to denote subsets of �!. Functions on strings or natural

numbers are denoted by the letters f; g; h; F;G and once also by l. For sets X and Y ,

X � Y denotes that X is a subset of Y and f :� X ! Y denotes a possibly partial

function with values in Y whose domain dom f is a subset of X. If dom f = X we

also write f : X ! Y . By � we denote the usual product measure on �! given by

�([x] \�!) = j�j�jxj for all x 2 ��.

2 The Main Result

Let � and � be two �xed alphabets. Let f :� �� ! �� be a monotonic function, that

is, a function with x v y) f(x) v f(y) for all x; y 2 dom f . A string x 2 dom f is

called f -nonterminating i� there is a y 2 [x]\dom f with f(y) 6= f(x). The function

2

f :� �! ! �! induced by f is de�ned by

1. dom f :=
T
n[f

�1([�n])] = f� 2 �! j in�nitely many pre�xes v 2 �� of � are

f -nonterminatingg and by

2. f(�) 2 [f(x)] for all � 2 dom f and all pre�xes v 2 dom f with � 2 [v].

The (monotonic) function f :� �� ! �� is called approximable i� the set f(x; y) 2
�� � �� j x 2 dom f and y v f(x)g is recursively enumerable. A function f :�
�� ! �� is called a process i� it is total, monotonic, approximable, and the set

fx 2 dom f j x is f -nonterminatingg is recursively enumerable. A process can be

realized by a Turing machine with a one-way read-only input tape, a one-way write-

only output tape and one or more work tapes which, given an in�nite input string,

for any input tape head position writes as many digits as possible on the output

tape and moves the input tape head only when the string read so far turns out to

be nonterminal.

Lemma 2.1 For a function F :� �! ! �! the following conditions are equivalent:

1. There is a total, monotonic, computable f : �� ! �� with F = f .

2. There is a monotonic, computable f :� �� ! �� with F = f .

3. There is a process f : �� ! �� with F = f .

4. There is a monotonic, approximable f :� �� ! �� with F = f .

Proof. Every total, monotonic, computable function f : �� ! �� is a process. All

processes and all monotonic computable functions are approximable. Therefore it

is su�cient to prove the implication \4:) 1:". Let f :� �� ! �� be a monotonic

approximable function and h : IN! ����� be a computable function with h(IN) =

f(x; y) 2 �� � �� j x 2 dom f and y v f(x)g. De�ne a function g : �� ! �� by

g(x) := the longest string in

f�g [fy 2 �� j 9z 2 ��: z v x and (z; y) 2 h(f0; : : : ; jxjgg :

The function g is total, monotonic, computable and satis�es g = f . ut

If a function F :� �! ! �! satis�es one | and then all | of the conditions

in Lemma 2.1, then it is itself called computable. A subset C � �! is called co-r.e.

closed (or �0
1) i� there is an r.e. set B � �� with C = �! n [B].

De�nition 2.2 1. Let g : IN! IN be an increasing function and h : IN ! IN be

a function with h(n) � 2 for all n. A set A � �! is called a (g; h)-Cantor

set i� it is nonempty and for each n 2 IN and each x 2 A[g(n)] we have

j[x] \A[g(n+1)]j � h(n+ 1).

2. A set A � �! is called a computably growing Cantor set i� there is a com-

putable increasing function g : IN! IN such that A is a (g; 2)-Cantor set.

Our main technical result is the following

3

Theorem 2.3 Let g : IN ! IN and h : IN ! IN be two increasing computable

functions with g(0) = h(0) = 0. Let � and � be two alphabets, and C � �! be a

co-r.e. closed set which contains a (g; n 7! j�jh(n+1)�h(n))-Cantor set. Then there is

a process f : �� ! �� with

1. f(C \ dom f) = �!,

2. for all n 2 IN and all f -nonterminal strings x 2 �� with jxj � g(n) we have

jf(x)j � h(n).

This theorem will be proved in the following section.

Corollary 2.4 Let � and � be two alphabets, and C � �! be a co-r.e. closed

set which contains a computably growing Cantor set. Then there is a computable

function F :� �! ! �! with F (C \ domF) = �!.

Proof. Assume that ~g : IN ! IN is a computable increasing function and A � C is

a (~g; 2)-Cantor set. Let c 2 IN be a number with 2c � j�j. We de�ne two functions

g; h : IN! IN by g(0) := 0, g(n) := ~g(c � n) for n > 0, and h(n) := n for all n. The

functions g and h are computable, increasing and satisfy g(0) = h(0) = 0. The set

A is a (g; 2c)-Cantor set, hence a (g; n 7! j�jh(n+1)�h(n))-Cantor set. Thus, Theorem

2.3 gives the assertion. ut

In Section 4 we shall show that any co-r.e. set of in�nite sequences with positive

measure contains a computably growing Cantor set. There we shall also be concerned

with the e�ectivity of the surjective mapping as it is expressed by the second part

of the assertion in Theorem 2.3. If for an increasing function g : IN! IN we de�ne

the function ~g : IN! IN by ~g(n) := maxfk j g(k) � ng, then the second part of the

assertion in Theorem 2.3 can be formulated as

jf(x)j � h~g(jxj)

for all f -nonterminating strings x 2 ��.

M�andoiu [M�andoiu 1993] and Calude [Calude 1994] pointed out that there are

very simple co-r.e. closed sets of sequences with measure zero which can be mapped

onto the whole set of sequences. We close this section by showing that these cases

are also covered by Theorem 2.3. Assume that � = fa1; : : : ; apg contains at least

p � 3 elements. The set C := fa1; a2g! � �! is co-r.e. closed (because of C =

�! n [�� n fa1; a2g�]) and it has measure zero (with respect to the product measure

on �!). But it is obviously an (idIN; 2)-Cantor set. Hence, Corollary 2.4 can be

applied to it. Of course, a computable map F :� �! ! �! with F (C) = �! (where

� is any alphabet) can also easily be constructed directly.

3 Proof of the Main Theorem

This section contains the proof of Theorem 2.3. Let w0; w1; w2; : : : be a recursive

sequence of strings in �� with

C = �! n
[
k

[wk] :

4

For t 2 IN we de�ne

Ct := �! n
[
k<t

[wk] :

We shall construct a computable sequence (ft)t2IN of computable functions ft :�
�� ! �� with ft(Ct\dom ft) = �! and show that the function f : �� ! �� de�ned

by f(x) := the longest string in fft(y) j y v x; t 2 INg is well-de�ned and satis�es

the conditions stated in the theorem. For each t, the function ft will map a subset

of Ct bijectively onto �
!. With growing t cylinders [x] may be taken out of Ct, but

for each length jxj of strings x this can happen only �nitely many times. Therefore

the limit f exists and f maps a subset of C bijectively onto �!.

We use p := j�j and q := j�j. Let g : IN! IN and h : IN! IN be two computable

increasing functions with g(0) = h(0) = 0 and let A � C be a (g; n 7! qh(n+1)�h(n))-

Cantor set. The existence of A implies

pg(n+1)�g(n) � qh(n+1)�h(n) for all n: (1)

Everything else that we need aboutA is captured by the sets Dn
t de�ned for t; n 2 IN

by

Dn
t := fx 2 �g(n) j [x] \ �! � Ct or

([x] \Ct 6= ; and j[x] \Dn+1
t j � qh(n+1)�h(n))g :

Lemma 3.1 1. The sets Dn
t are well-de�ned for t; n 2 IN and the set f(t; n; x) 2

IN2 � �� j x 2 Dn
t g is recursive.

2. Dn
0 = �g(n) for all n.

3. Dn
t+1 � Dn

t for all t; n 2 IN.

4. If x 2 Dn
t , then j[x] \Dn+1

t j � qh(n+1)�h(n) for all t; n 2 IN.

5. � 2 D0
t for all t 2 IN.

Proof. 1. For jxj � maxfjwij j i < tg we have either [x] \ �! � Ct or [x] \Ct = ;.
Hence, the sets Dn

t are wellde�ned for g(n) � maxfjwij j i < tg. By the recursive

construction of Dn
t , all sets D

n
t are well-de�ned. For the same reason and because

the set f(t; x) 2 IN � �� j [x] \ �! � Ctg is recursive, also the set f(t; n; x) 2
IN2 � �� j x 2 Dn

t g is recursive.
2. This follows immediately from C0 = �!

3. This follows from Ct+1 � Ct for all t.

4. This follows from (1) and the de�nition of Dn
t .

5. We shall show that A[g(n)] � Dn
t for all t; n 2 IN. This gives the assertion

because A 6= ; and g(0) = 0 imply � 2 A[g(0)]. For the proof of A[g(n)] � Dn
t �x a

number t. We distinguish two cases.

First case: g(n) � maxfjwij j i < tg. Then x 2 A[g(n)] and A � C � Ct imply

[x] \Ct 6= ;. The assumption (�rst case) gives [x] \ �! � Ct. By the de�nition of

Dn
t we conclude x 2 Dn

t .

Second case: g(n) < maxfjwij j i < tg. Again x 2 A[g(n)] andA � C � Ct imply

[x] \Ct 6= ;. Furthermore, x 2 A[g(n)] implies by the de�nition of A that there are

5

at least qh(n+1)�h(n) strings y in [x]\A[g(n+1)]. By induction hypothesis (for n+1)

all of these strings lie in Dn+1
t . By de�nition of Dn

t we conclude x 2 Dn
t . ut

Now we shall construct a computable function

F : IN�
[
m

�g(m) !
[
m

�h(m)

with the following properties where we use ft(x) := F (t; x) and

Lnt := fx 2 �g(n) j jft(x)j = h(n)g

for all t; n 2 IN and x; y 2 Sm �g(m):

(I) ft(x) v ft+1(x),

(II) x v y) ft(x) v ft(y),

(III) jxj = g(n)) jft(x)j � h(n),

(IV) Lnt = fx 2 �g(n) j x is ft-nonterminalg,

(V) if x 2 Dn
t \Lnt , then ft maps [x]\Dn+1

t \Ln+1
t bijectively onto [ft(x)]\�h(n+1).

It will be clear from the construction that F is computable. First we de�ne f0(x)

for all x 2 Sm�g(m). We set

f0(�) := �

and for y 2 �g(n+1) we set x := y[0::g(n) � 1] and

f0(y) :=

8>>><
>>>:

the j-th string in [f0(x)] \ �h(n+1)

if x 2 Ln0 and y is the j-th string in [x] \ �g(n+1),

for some j with 1 � j � qh(n+1)�h(n);

f0(x) otherwise:

The function f0 is well-de�ned by (1). Now we �x a number t 2 IN and construct

ft+1. We set

ft+1(�) := � :

For y 2 �g(n+1) we set x := y[0::g(n) � 1] and distinguish three cases. We can

assume that ft has been constructed and also that ft+1(x) is de�ned already. We

may use the induction hypotheses (I) to (V).

1st case: y 2 Ln+1
t . Then we set

ft+1(y) := ft(y) :

2nd case: y 62 Ln+1
t and x 62 Dn

t+1 \ Lnt+1. Then we set

ft+1(y) := ft+1(x) :

6

3rd case: y 62 Ln+1
t and x 2 Dn

t+1 \ Lnt+1. Before we can de�ne ft+1(y) we need to

statements. Let k := j[x] \Dn+1
t+1 \ Ln+1

t j and l := qh(n+1)�h(n) � k. We claim

that

j([x] \Dn+1
t+1) n ([x] \Dn+1

t+1 \ Ln+1
t)j � l (2)

and

j([ft+1(x)] \ �h(n+1)) n ft([x] \Dn+1
t+1 \ Ln+1

t)j = l : (3)

Our assumption x 2 Dn
t+1 and Lemma 3.1.4 imply that there are at least

qh(n+1)�h(n) elements in [x]\Dn+1
t+1 . This proves (2). Claim (3) follows for k = 0

immediately from jft+1(x)j = h(n). Assume k 6= 0. This (to be more precise:

[x]\Ln+1
t 6= ;) and jft(x)j � h(n) (induction hypothesis (III)) imply that x is

ft-nonterminal. By induction hypothesis (IV) we obtain jft(x)j = h(n). Using

ft(x) v ft+1(x) (induction hypothesis (I)) and the assumption x 2 Lnt+1 we

conclude ft+1(x) = ft(x). Hence, using induction hypothesis (II) we obtain

ft([x] \Dn+1
t+1 \ Ln+1

t) � [ft(x)] \ �h(n+1) = [ft+1(x)] \ �h(n+1) :

Lemma 3.1.3 says Dn+1
t+1 � Dn+1

t . Hence, by induction hypothesis (V) the

function ft is injective on the set [x] \ Dn+1
t+1 \ Ln+1

t . Thus jf([x] \ Dn+1
t+1 \

Ln+1
t)j = k. This implies the claim (3). We have proved (2) and (3).

Now we can de�ne ft+1(y). Let z1; : : : ; zl be the lexicographically ordered list

of strings in ([ft+1(x)] \ �h(n+1)) n ft([x] \Dn+1
t+1 \ Ln+1

t) and let y1; : : : ; yl be

the �rst l strings (according to the lexicographical ordering) in ([x] \Dn+1
t+1) n

([x] \Dn+1
t+1 \ Ln+1

t). We de�ne

ft+1(y) :=

(
zj if y = yj for some j 2 f1; : : : ; lg;
ft+1(x) otherwise:

This ends the de�nition of F . It is clear that domF = IN�Sm�g(m), and that

F (IN � Sm�g(m)) � Sm �h(m). We have to check that F has the properties (I) to

(V). In the following proofs we may always assume by induction hypothesis that any

of these conditions is true for smaller values of t or for shorter strings x; y.

Proof of (I). We have ft(�) = � by construction for all t. Hence, (I) is true for x = �

and all t 2 IN. Fix numbers t; n 2 IN and a string y 2 �g(n+1). It is su�cient to

prove

ft(y) v ft+1(y):

This is clear by construction of ft+1 in the 1st case. Set x := y[0::g(n) � 1]. First,

we claim that our assumption y 62 Ln+1
t in the 2nd and 3rd case implies ft(y) =

ft(x). The assumption y 62 Ln+1
t implies jft(y)j � h(n). We have either jft(x)j =

h(n), in which case the induction hypothesis (II) implies ft(y) = ft(x), or we have

jft(x)j < h(n), in which case the induction hypothesis (IV) implies that x is not

ft-nonterminal, hence ft(y) = ft(x). We have proved the �rst claim: in the 2nd and

3rd case we have ft(y) = ft(x). By induction hypothesis (I) we have ft(x) v ft+1(x).

7

Finally, in the 2nd and 3rd case we have ft+1(x) v ft+1(y) by construction of ft+1.

Summarizing the last three statements gives

ft(y) = ft(x) v ft+1(x) v ft+1(y)

in the 2nd and 3rd case. ut

Proof of (II). For t = 0, Property (II) follows immediately from the de�nition of f0
and by induction. For general t �x numbers t; n 2 IN and a string y 2 �g(n+1) and

set x := y[0::g(n) � 1]. It is su�cient to prove

ft+1(x) v ft+1(y):

In the 2nd and 3rd case this follows immediately from the de�nition of ft+1(y). In

the 1st case we have

ft(x) v ft(y) = ft+1(y)

by induction hypothesis (II) and by the construction of ft+1. Hence it is su�-

cient to prove ft+1(x) = ft(x). Indeed, the 1st case assumption y 2 Ln+1
t and

jft(x)j � h(n) (induction hypothesis (III)) imply that x is ft-nonterminal. Using

the induction hypothesis (IV) we conclude jft(x)j = h(n). With ft(x) v ft+1(x) (in-

duction hypothesis (I)) and jft+1(x)j � h(n) (induction hypothesis (III)) we obtain

ft+1(x) = ft(x). ut

Proof of (III). For t = 0, Property (III) follows immediately from the de�nition of

f0 and by induction. For general t observe �rst that ft(�) = � for all t. Fix numbers

t; n 2 IN and a string y 2 �g(n+1) and set x := y[0::g(n)� 1]. It is su�cient to prove

jft+1(y)j � h(n+ 1):

In the 1st case in the de�nition of ft+1(y) this follows from ft+1(y) = ft(y) and from

jft(y)j � h(n) (induction hypothesis (III)), and in the 2nd and 3rd case this follows

from the de�nition of ft+1(y) and from jft+1(x)j � h(n) (induction hypothesis (III)).

ut

For the proof of (IV) we need an additional property:

(VI) Lnt+1 � Lnt [Dn
t+1 for all t; n 2 IN.

We shall prove it immediately after (IV).

Proof of (IV). For t = 0, Property (IV) follows immediately from the de�nition of

f0 and from jf0(x)j � h(n) for x 2 �g(n) (induction hypothesis (III)). For the case

of general t, �x numbers t; n 2 IN and a string x 2 �g(n). We wish to show

x 2 Lnt+1 () x is ft+1-nonterminal:

First we assume x 62 Lnt+1. Let y be an arbitrary string in [x] \ �g(n+1). Then

in the de�nition of ft+1(y) we are not in the 3rd case. Can the 1st case be valid?

No, because the 1st case condition y 2 Ln+1
t together with jft(x)j � h(n) (induction

8

hypothesis (III)) and the induction hypothesis (IV) would imply x 2 Lnt . This

and ft(x) v ft+1(x) (induction hypothesis (I)) and jft+1(x)j � h(n) (induction

hypothesis (III)) would imply x 2 Lnt+1 in contradiction to out assumption. Thus, in

the de�nition of ft+1(y) the 2nd case is valid. But then ft+1(y) = ft+1(x). So far we

have shown: if x 62 Lnt+1, then for all y 2 [x]\�g(n+1), ft+1(y) = ft+1(x). This implies

y 62 Ln+1
t+1 . By induction we obtain ft+1(z) = ft+1(x) for all z 2 [x] \ Sm�n �

g(m).

This means that x is not ft+1-nonterminal.

Secondly, we assume x 2 Lnt+1. If also x 2 Lnt , then by induction hypothesis

(IV) there is a string y 2 [x] \ Ln+1
t . Then ft+1(y) = ft(y) 2 �h(n+1) by de�nition

of ft+1(y) (1st case) and hence, x is ft+1-nonterminal. If x 62 Lnt , then by induction

hypothesis (VI) x 2 Dn
t+1. That is, we have x 2 Lnt+1\Dn

t+1. If [x]\Dn+1
t+1 \Ln+1

t 6= ;,
then for strings y in this set we obtain ft+1(y) = ft(y) 2 �h(n+1) by the 1st case. If

this set is empty, then according to the 3rd case there are strings y 2 [x] \ �g(n+1)

with ft+1(y) 2 �h(n+1). In any case x is ft+1-nonterminal. ut

Proof of (VI). The statement L0
t+1 � L0

t [D0
t+1 is obviously true for any t 2 IN

because L0
t = f�g = D0

t for all t. Now �x t; n 2 IN and a string y 2 Ln+1
t+1 . We have

to show that y 2 Ln+1
t or y 2 Dn+1

t+1 . Assume y 62 Ln+1
t . Set x := y[0::g(n) � 1].

In the construction of ft+1(y) either the 2nd or the 3rd case must be valid. But we

cannot have ft+1(y) = ft+1(x) because together with jft+1(x)j � h(n) (induction

hypothesis (III)) this would contradict y 2 Ln+1
t+1 . Hence, ft+1(y) must be de�ned

according to the second subcase of the 3rd case, that is, we have y = yj for some

yj 2 [x] \Dn+1
t+1 . We have shown: if y 2 Ln+1

t+1 n Ln+1
t , then y 2 Dn+1

t+1 . That was to

be shown. ut

Proof of (V). For t = 0, Property (V) follows immediately from Lemma 3.1.2, from

the de�nition of f0, and from jf0(x)j � h(n) for x 2 �g(n) (induction hypothesis

(III)). We �x numbers t; n 2 IN and �x a string x 2 Dn
t+1 \ Lnt+1. We have to

show that ft+1 maps [x] \ Dn+1
t+1 \ Ln+1

t+1 bijectively onto [ft+1(x)] \ �h(n+1). For

elements y 2 [x] \ Dn+1
t+1 \ Ln+1

t+1 the value ft+1(y) must be de�ned according to

the 1st case or the �rst subcase of the 3rd case (because of jft+1(x)j � h(n) by

induction hypothesis (III)). Hence, the set [x] \ Dn+1
t+1 \ Ln+1

t+1 splits into the set

[x] \Dn+1
t+1 \ Ln+1

t , on which ft+1 is de�ned according to the 1st case, and into the

set [x] \ Dn+1
t+1 \ Ln+1

t+1 n [x] \ Dn+1
t+1 \ Ln+1

t , on which ft+1 is de�ned according to

the �rst subcase of the 3rd case. In the discussion in the 3rd case we have seen

that ft (and hence ft+1) maps the set [x] \ Dn+1
t+1 \ Ln+1

t injectively into the set

[ft+1(x)] \ �h(n+1). The de�nition of ft+1 in the 3rd case ensures that indeed ft+1

maps the set [x] \Dn+1
t+1 \ Ln+1

t+1 bijectively onto the set [ft+1(x)] \ �h(n+1). ut

We have proved that F has all the properties (I) to (V). Properties (I), (II), and

(III) tell us that by

f(x) := the longest string in fft(y) j y v x and t 2 INg

a total function f : �� ! �� is wellde�ned. We claim that it proves the theorem.

By properties (I) and (II) f is monotonic. The function f is approximable

because F is computable. We claim that for any n 2 IN and any string x 2 �� with

9

g(n) � jxj < g(n+ 1)

jf(x)j � h(n) () x is f -nonterminal: (4)

Fix a string x 2 �� with length g(n) � jxj < g(n + 1). For the only-if part assume

that jf(x)j � h(n). By de�nition of f we have f(x) = f(x[0::g(n) � 1]) and there

must be a number t with ft(x[0::g(n) � 1]) = f(x[0::g(n) � 1]). By property (III)

we have jft(x[0::g(n) � 1])j = h(n) and by property (IV) the string x[0::g(n) � 1]

must be ft-nonterminal. Hence, also x is f -nonterminal. For the if part in claim

(4) assume that x is f -nonterminal. Then there must be a string y 2 [x] \ �� with

f(y) 6= f(x). By the de�nition of f we can assume that y 2 Sm�n+1�
g(m). For large

enough t we have f(x[0::g(n) � 1]) = ft(x) and f(y) = ft(y). Hence, x[0::g(n) � 1]

is ft-nonterminal. By property (IV) we conclude jft(x[0::g(n) � 1])j = h(n), and

hence also jf(x)j � jf(x[0::g(n) � 1])j = h(n). This ends the proof of the claim (4).

This claim implies that f is a process and that f satis�es the second assertion in

Theorem 2.3.

Finally we have to show that f(C \ dom f) = �!. Note that f is well-de�ned

because f is monotonic. We need a lemma about the sets

Mn
t := Lnt \Dn

t

for t; n 2 IN.

Lemma 3.2 Fix t; n 2 IN. If x 2Mn
t nMn

t+1, then x 62Mn
s for all s > t.

Proof. If x 2 Mn
t , then x 2 Lnt . By (I) and (III) x 2 Lnt+1. With x 62 Mn

t+1 we

conclude x 62 Dn
t+1. Lemma 3.1.3 implies x 62 Dn

s for any s > t. ut

Corollary 3.3 For each n 2 IN there is a t 2 IN with Mm
s =Mm

t for all s � t and

m � n.

Proof. The assertion follows from the last lemma and from the fact that each set

Mm
s is a subset of the �nite set �g(m). ut

We de�ne the function s : IN! IN by

s(n) := minft 2 IN jMm
r =Mm

t for all r � t and m � ng :

Property (III) implies that jf(x)j � h(m) for all x 2 �g(m), m 2 IN. Hence,

the function f coincides with fs(n+1) on the sets Mn
s(n+1)

and Mn+1
s(n+1)

and that

jf(x)j = h(n) for x 2Mn
s(n+1), for any n. By property (V), applied to s(n+ 1), for

each x 2Mn
s(n+1), the function f maps the set [x] \Mn+1

s(n+1)
bijectively onto the set

[f(x)]\�h(n+1). Note that Mn
s(n+1) =Mn

s(n). We claim that for each n the function

f maps the set �g(n) \
\
m�n

[Mm
s(m)] bijectively onto �h(n) : (5)

This is clear for n = 0 because g(0) = h(0) = 0 and M0
t = f�g for all t, especially

M0
s(0) = f�g. Assume that it is true for n. We have just seen that for each x 2

10

�g(n) \ Tm�n[M
m
s(m)] the function f maps [x] \ Mn+1

s(n+1)
bijectively onto the set

[f(x)] \ �h(n+1). This gives the claim (5) for n+ 1.

We de�ne B � �! by B :=
T
n[M

n
s(n)]. By (5), f maps B bijectively onto �!.

We claim that B � C. Let � 2 B. Then for every n, �[0::g(n)�1] 2Mn
s(n) � Dn

s(n).

Hence, [�[0::g(n)� 1]] \Cs(n) 6= ;, hence [�[0::g(n)� 1]] \C 6= ;. Since C is closed

we obtain � 2 C and thus B � C. This ends the proof of f(C \ dom f) = �!. We

have proved Theorem 2.3.

4 Surjective Mappings on Co-r.e. Closed Sets with Pos-

itive Measure

In this section we prove the following two results.

Proposition 4.1 Let � be a �nite alphabet. Every closed subset of �! with positive

measure contains a computably growing Cantor set.

Hence, we can apply Corollary 2.4 in order to obtain for any co-r.e. closed set

C � �! a computable map F with F (C \ domF) = �!. The following theorem

gives an e�ective version of such a map.

Theorem 4.2 Let � and � be two alphabets and set p := j�j and q := j�j. Let

C � �! be a co-r.e. closed set with positive measure. For every " > 0 there exist a

constant c and a process f : �� ! �� with f(C \ dom f) = �! and

jf(x)j � logq p � jxj � (2 + ") � logq p �
q
jxj � logp jxj � c

for all f -nonterminating x 2 �� n f"g.

Note that in the binary case j�j = j�j = 2 the loss of digits (2+")�
p
jxj � log2 jxj�c

is asymptotically smaller than the loss of digits 3 �
p
jxj � log2(x) + c in the process

constructed by G�acs. By introducing lower order terms one can certainly get rid of

the " in the highest order error term.

Remark 4.3 Before we start with the proof we give a very informal explanation

for the order �(
p
jxj � log2 jxj) of the error term. We consider the binary case.

Later we shall see that in order to obtain a (g; 2h(n+1)�h(n))-Cantor set we need

a function g which grows slightly faster than the function h. In fact, formula (6)

expresses roughly that 2g
0(n) grows at least as fast as �1

l0(n)
�2h0(n) where l is a positive

decreasing function. This implies that l0(n) is at least of the order 1=n. Hence g0

grows at least as fast as h0+c � log2 n, or, after integrating, g(n) grows at least as fast
as h(n)+ c �n log2 n. But h(n) should be as large as possible compared with g(n+1)

because every non-terminating string x with length g(n) � jxj < g(n+1) is mapped

to a string of length h(n). The di�erence between g(n+1) and g(n) is roughly g0(n).

Hence, we have to make g0(n)+c�n log2 n as small as possible compared with g(n+1).
This is the case if g0(n) is of the same order as n log2 n, hence if g(n) is of the order

n2 log2 n. Then the error term is just �(n log2 n) = �(
p
g(n+ 1) log2 g(n+ 1)).

11

Let � be an alphabet, p := j�j, C � �! a closed set with positive measure,

l : IN ! fx 2 IR j x � 0g a non-increasing function, and g : IN ! IN an increasing

function. We de�ne

Cfng := fx 2 �g(n) j �([x] \C) � l(n) � p�g(n)g

for each n 2 IN and

A :=
\
n

[Cfng] :

Lemma 4.4 1. The set A is a subset of C.

2. For each n we have A[g(n)] = �g(n) \Tm�n[C
fmg] .

Proof. 1. The setA is a subset of �!. If � 2 A, then for each n the set [�[0::g(n)�1]]
contains elements from C. We conclude � 2 C because C is closed. Thus, A � C.

2. For the proof of the inclusion \�" �x a number n, assume that A[g(n)] is

nonempty, �x a string x 2 A[g(n)], and �x a sequence � 2 [x] \A. For all m 2 IN

we see � 2 [Cfmg], hence �[0::g(m) � 1] 2 Cfmg. This implies for all m � n

x = �[0::g(n) � 1] 2 �g(n) \ [Cfmg] :

For the inclusion \�" we start with noticing that the assumption that the func-

tion l is non-increasing implies

x 2 Cfng) 9y 2 [x] \ Cfn+1g

for all n. By taking the limit we obtain

x 2 Cfng) 9� 2 [x] \
\
m�n

[Cfmg]

Assume that the set �g(n) \ Tm�n[C
fmg] is nonempty. Fix a string x 2 �g(n) \T

m�n[C
fmg]. We have just seen that there is a sequence � 2 [x] \Tm�n[C

fmg]. By

de�nition of x it is in [Cfmg] for all m 2 IN, hence in A. This implies x 2 A[g(n)].

This ends the proof of the second assertion of the lemma. ut

Let additionally h : IN! IN be an increasing function and q � 2 an integer.

Lemma 4.5 If l(0) � �(C) and for each n 2 IN and x 2 Cfng the set [x] \ Cfn+1g

contains at least qh(n+1)�h(n) strings, then A is a (g; n 7! qh(n+1)�h(n))-Cantor set.

Proof. By the last lemma A[g(0)] = �g(0)\ [Cf0g] = Cf0g. The condition l(0) � �(C)

implies Cf0g 6= ;, hence A 6= ;. If x 2 A[g(n)], then by the last lemma x 2 Cfng. By

assumption there are at least qh(n+1)�h(n) strings in [x]\Cfn+1g. By the last lemma

all of them lie in A[g(n+1)]. This shows that A is a (g; n 7! qh(n+1)�h(n))-Cantor

set. ut

From now on we assume that l(0) < 1.

12

Lemma 4.6 If l(0) � �(C) and for each n 2 IN

qh(n+1)�h(n) � l(n)� l(n+ 1)

1� l(n+ 1)
� pg(n+1)�g(n) ; (6)

then A is a (g; n 7! qh(n+1)�h(n))-Cantor set.

Proof. In the last lemma we have seen that l(0) � �(C) implies that A is nonempty.

Fix a number n and a string x 2 Cfng. Set k := j[x] \ Cfn+1gj. We estimate

l(n)p�g(n) � �([x] \C)
< k � p�g(n+1) + (pg(n+1)�g(n) � k) � l(n+ 1) � p�g(n+1)

= k(1� l(n+ 1))p�g(n+1) + l(n+ 1)p�g(n) :

Hence,

k >
l(n)� l(n+ 1)

1� l(n+ 1)
� pg(n+1)�g(n) ;

Thus, by our assumption there are at least qh(n+1)�h(n) strings in [x]\Cfn+1g. The

last lemma gives the assertion. ut

In order to prove Proposition 4.1 and Theorem 4.2 it remains to choose appro-

priate functions l, g, and h. We shall choose functions l : IN ! fx 2 IR j x > 0g,
g : IN! IN and h : IN! IN with the following properties:

(I) The function l is non-increasing and l(0) < �(C),

(II) g and h are increasing and computable and satisfy g(0) = h(0) = 0,

(III) the inequality (6) is true for all n 2 IN,

(IV) for every " > 0 there is a constant c such that

h(n) � logq(p) � (g(n+ 1)� (2 + ") �
q
g(n+ 1) logp(g(n+ 1))� c) (7)

for all n 2 IN.

Properties (I), (II), (III), Lemma 4.4.1, and Lemma 4.6 prove Proposition 4.1. The-

orem 4.2 follows from all four properties, Lemma 4.4.1, Lemma 4.6, and Theorem

2.3, because the process f constructed in Theorem 2.3 maps an f -nonterminating

string x with length g(n) � jxj < g(n+1) to a string f(x) with length jf(x)j = h(n).

We choose a constant c1 2 IN so large such that 0 < 1=LogLog c1 < �(C) and

de�ne l by

l(n) :=
1

LogLog(n+ c1)

where Log denotes the natural logarithm. We de�ne two functions G;H : fn 2 IN j
n � maxfp; qgg by

G(n) :=
1

2
n2 logp n+ n (logp n+ 2 logp Log n+ c2)

H(n) :=
1

2
n2 logq n

13

where c2 2 IN is a su�ciently large constant (this will be explained more precisely

below) and we choose two computable functions g; h : IN! IN with g(0) := h(0) := 0

and for n � 1

j � g(n) +G(n+maxfp; qg)j < 1 and j � h(n) +H(n+maxfp; qg)j < 1 : (8)

It is clear that there exist computable functions g and h with these properties.

We claim that these functions l, g, and h have all the desired properties. By

de�nition l is decreasing, l(0) < �(C), g(0) = h(0) = 0, and g and h are computable.

If follows also immediately from the de�nition that g and h are increasing. We show

that (6) is true for all n 2 IN. For n = 0 (6) means

qh(1) � l(0)� l(1)

1� l(1)
pg(1) :

This is obviously true if the constant c2 is su�ciently large. Now �x an integer n � 1

and set m := n+maxfp; qg+ 1. In view of (8) the inequality (6) is true if

qH(m)�H(m�1) � q2 � l(n)� l(n+ 1)

1� l(n+ 1)
pG(m)�G(m�1) � p�2 :

This is equivalent to

q2p2 � 1� l(n+ 1)

l(n)� l(n+ 1)

� pm�(log
p
m+2 log

p
Logm+c2)�(m�1)�(log

p
(m�1)+2 log

p
Log (m�1)+c2) :

Indeed, we obtain

q2p2 � 1� l(n+ 1)

l(n)� l(n+ 1)

� q2p2 � 1

l(n)� l(n+ 1)

� q2p2 � �1
l0(n+ 1)

= q2p2 � (n+ 1 + c1) � Log (n+ 1 + c1) � (LogLog (n+ 1 + c1))
2

� m � (Logm)2 � pc2
= plogpm+2 log

p
Logm+c2

� pm�(log
p
m+2 log

p
Logm+c2)�(m�1)�(log

p
(m�1)+2 log

p
Log(m�1)+c2) :

The �rst estimation is obvious and the second follows because the function l0 is

increasing. The next estimate is true for small n if c2 is large enough, and true for

large n because the term (n+1+c1) �Log (n+1+c1) �(LogLog (n+1+c1))
2 increases

slower than the term m � (Logm)2 = (n+1+maxfp; qg) � (Log (n+1+maxfp; qg))2.
The last estimate is again obvious. We have shown that (6) is true for all n if c2 is

chosen su�ciently large.

14

Finally we have to show that also (IV) is true, i.e. that for given " > 0 there is

a constant c such that (7) is true for all n. The inequality (7) is equivalent to

(2 + ") �
q
g(n+ 1) � logp(g(n+ 1)) + c � g(n+ 1)� logp(q)h(n) :

Since we can choose c as large as we wish it is su�cient to prove this for large n,

especially for n � 1. Since the function x 7!
q
x logp x does not grow faster than

x 7! x replacing g(n+1) by G(n+1+maxfp; qg) and h(n) by H(n+1+maxfp; qg)
changes the terms on both sides at most by a constant. Hence, it is su�cient to

show that there is a constant c such that for large n

(2 + ") �
q
G(n) � logp(G(n))) + c � G(n)� logp(q)H(n� 1) : (9)

Indeed, we obtain

(2 + ") �
q
G(n) � logp(G(n))) � (2 + ") �

q
1=2 � n �

q
logp n �

q
2 � logp n

= (2 + ") � n � logp n
and on the other hand

G(n)� logp(q)H(n� 1)

=
1

2
� (n2 logp n� (n� 1)2 logp(n� 1)) + n(logp n+ 2 logp Log n+ c2)

� 2 � n � logp n+ n(2 logp Log n+ c2) :

The last summand n(2 logp Log n + c2) is of lower order than n � logp n. Hence,

because of " > 0 we conclude that (9) is true for large n. This ends the proof of (7),

i.e. of property (IV). We have proved Proposition 4.1 and Theorem 4.2.

Acknowledgements

The author thanks Cristian Calude for interesting discussions on the subject of this

paper. He is supported by the DFG Research Grant No. HE 2489/2-1.

References

[Calude 1994] C. S. Calude. Information and Randomness, an Algorithmic Perspec-

tive. Springer-Verlag, Berlin, 1994.

[G�acs 1986] P. G�acs. Every sequence is reducible to a random one. Information and

Control, 70:186{192, 1986.

[Ku�cera 1985] A. Ku�cera. Measure, �0
1-classes and complete extensions of PA. In

H.-D. Ebbinghaus et al., editor, Recursion Theory Week, Proceedings, Oberwol-

fach 1984, volume 1141 of Lecture Notes in Math., pages 245{259, Berlin, 1985.

Springer-Verlag.

[M�andoiu 1993] I. M�andoiu. On a theorem of G�acs. Internat. J. Computer Math.,

48:157{169, 1993.

15

