
CDMTCS

Research

Report

Series

Disjunctive Sequences: An

Overview

Cristian S. Calude

Department of Computer Science

University of Auckland

Auckland, New Zealand

Lutz Priese

Universit�at Koblenz-Landau, Germany

Ludwig Staiger

Martin-Luther-Universit�at

Halle-Wittenberg, Germany

CDMTCS-063

October 1997

Centre for Discrete Mathematics and

Theoretical Computer Science



Disjunctive Sequences: An Overview∗

Cristian S. Calude,† Lutz Priese,‡ Ludwig Staiger§

Abstract

Following Jürgensen and Thierrin [21] we say that an infinite sequence is dis-
junctive if it contains any (finite) word, or, equivalently, if any word appears in the
sequence infinitely many times. “Disjunctivity” is a natural qualitative property; it is
weaker, than the property of “normality” (introduced by Borel [1]; see, for instance,
Kuipers, Niederreiter [24]). The aim of this paper is to survey some basic results
on disjunctive sequences and to explore their role in various areas of mathematics
(e.g. in automata-theoretic studies of ω-languages or number theory). To achieve
our goal we will use various instruments borrowed from topology, measure-theory,
probability theory, number theory, automata and formal languages.

1 Notation and Definitions

Let IN be the set of positive integers. The number of elements of a finite set S is
denoted by card(S). For any finite set (alphabet) X let X∗ denote the free monoid of
words (including the empty word ε) over X, and Xω the set of (infinite) sequences over
X. Words on X are denoted by u, v, w; sequences over X are denoted by x,y, z. For
W ⊆ X∗ the submonoid generated by W is denoted W ∗, and W ω is the set of infinite
sequences formed by concatenating members of W ; finally, let X∞ = X∗∪Xω. A subset
W ⊆ X∗ is called a language; an ω-language is a subset of Xω. For w ∈ X∗ and γ ∈ X∞
the concatenation of w and γ is written wγ. This defines in an obvious way a product
WΓ of sets W ⊆ X∗ and Γ ⊆ X∞: WΓ = {wγ | w ∈ W,γ ∈ Γ}. For the sake of brevity
we shall write wB, w∗ and wω instead of {w}B, {w}∗ and {w}ω, respectively. By |w| we
denote the length of the word w ∈ X∗. The set of all initial words (prefixes) of γ ∈ X∞
is

A(γ) = {w ∈ X∗ | ∃γ′ ∈ X∞ wγ′ = γ}.
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The set of all subwords (factors, infixes) of γ ∈ X∞ is

T(γ) = {w ∈ X∗ | ∃v ∈ X∗ ∃γ′ ∈ X∞ vwγ′ = γ},

and the set of all suffixes of γ ∈ X∞ is

S(γ) = {γ′ ∈ X∞ | ∃w ∈ X∗, wγ′ = γ}.

For B ⊆ X∞ put

A(B) =
⋃
γ∈B

A(γ), T(B) =
⋃
γ∈B

T(γ), S(B) =
⋃
γ∈B

S(γ),

and let w v γ denote w ∈ A(γ). For W ⊆ X∗ the δ-limit of W , W δ, consists of all
infinite sequences of Xω that contain infinitely many prefixes in W ,

W δ = {x ∈ Xω |A(x) ∩W is infinite}.

The adherence of B ⊆ X∞ is defined by

adhB = (A(B))δ.

Obviously, adhB = {x ∈ Xω |A(x) ⊆ A(B)} holds true.
For γ ∈ X∞ we denote by γ[k] the prefix of γ of length k and by γ[k, `] the infix from

the k-th to the `-th letter of γ, i.e., γ = γ[k− 1]γ′ implies γ[k, `] = γ′[`− k+ 1]; γ[0] = ε.
For B ⊆ X∞ we define the state B/w of B generated by the word w ∈ X∗ as

B/w = {b |wb ∈ B}. A set B is called finite-state if its set of states {B/w |w ∈ X∗} is
finite.

A finite-state language W ⊆ X∗ is also called regular.1 An ω-language F is called
regular provided there is an n ∈ IN and 2n regular languages Wi, Vi (1 ≤ i ≤ n) such
that

F =
n⋃
i=1

WiV
ω
i . (1)

Similarly, an ω-language F is called context-free provided there is an n ∈ IN and 2n
context-free languages Wi, Vi (1 ≤ i ≤ n) such that the equation (1) holds true.

Since a nonempty ω-language of the form W ω is either W ω = {w}ω = {wω}, for some
w ∈ W , or, otherwise, is of the cardinality of the continuum, every at most countable
regular or context-free ω-language only consists of ultimately periodic sequences.

The Baire-metric ρ on X∞ is defined by

ρ(γ, γ′) = inf {(cardX)−|w| |w ∈ A(γ) ∩A(γ′)}.

Notice that this metric ρ satisfies the ultra-metric inequality ρ(γ, γ′) ≤ max{ρ(γ, γ′′),
ρ(γ′, γ′′)}; it defines a topology on X∞ where the open sets are of the form UXω ∪V for
U, V ⊆ X∗ and the closed sets are of the form adhU ∪V for U, V ⊆ X∗. However, in this
paper we deal mainly with Xω. We consider Xω as a topological (ultra-metric) space
with the topology induced from X∞. Thus, open sets in Xω are of the form UXω and
closed sets of the form adhU , where U ⊆ X∗. In addition, a set E in Xω is closed if and

1In fact, regularity of W ⊂ X∗ is usually defined in a different way, but it is well known that a
language W is regular if and only if it is finite state.
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only if E = adhU for some U ⊆ X∗, if and only if E = adhE. E is clopen in Xω, that is,
simultaneously open and closed, if and only if E = UXω for some finite set U ⊆ X∗. The
open balls in (Xω, ρ) are the sets of the form wXω, w ∈ X∗. They are simultaneously
closed. The ball wXω has diameter diam(wXω) = (cardX)−|w|, hence Xω is a Cantor
space induced by the basis {wXω |w ∈ X∗}. Since X is finite, this topological space
is homeomorphic to the Cantor discontinuum, hence compact. The topological closure
C(K) of any subset K ⊆M of some topological space M is the smallest closed subset of
M containing K. Thus, C(K) = adhK holds in Xω for K ⊆ Xω.

Having defined open and closed sets in Xω, we proceed to the next classes of Borel’s
hierarchy (cf. Kuratowski [25]): F is the set of closed subsets of Xω, G is the set of open
subsets of Xω, Fσ is the set of countable unions of closed subsets of Xω, Gδ is the set of
countable intersections of open subsets of Xω, Fσδ is the set of countable intersections
of sets in Fσ, and Gδσ is the set of countable unions of sets in Gδ.

A sequence x ∈ Xω is called disjunctive if every word in X∗ appears as a subword in
x, that is, T(x) = X∗. Equivalently, x ∈ Xω is disjunctive if every word in X∗ appears
infinitely often as a subword in x.

Let b ≥ 2 be an integer and put Xb = {0, 1, . . . , b − 1}. To any sequence
x0x1 . . . xn . . . ∈ Xω

b one can associate the real number

vx =
∞∑
i=0

xib
−i−1.

Conversely, the base–b expansion sb(x) of the real number x in the interval [0, 1) is the
unique infinite sequence x0x1 . . . xn . . . ∈ Xω

b containing infinitely many digits different
from b− 1 such that vx = x. With the above choice of the metric % in the Cantor space
(Xω

b , %) we have |vx − vy| ≤ %(x,y). Let Ib,w ⊆ [0, 1] denote the largest open interval
contained in the real image of the ball wXω

b . Then Ib,w = (vx, vy) where x = w0ω

and y = w(b − 1)ω. Moreover, F ∩ wXω
b = ∅ implies that the real image of F ⊆ Xω

b ,
{vx |x ∈ F}, is disjoint from Ib,w.

Finally, a real number x ∈ [0, 1) is disjunctive to base b if sb(x) ∈ Xω
b is disjunctive;

x is absolutely disjunctive in case it is disjunctive to any base.

2 Examples

Consider first the alphabet Xb. Champernowne’s sequence [12] over X is defined by
concatenating all words over Xb in some recursive order, say in the quasi-lexicographical
one:2

01 · · · (b− 1)0001 · · · 0(b− 1)1011 · · · (b− 1)(b− 1)000001 · · · (2)

Champernowne proved that for b = 10 the above sequence is normal3 in the scale of ten,
so it is disjunctive. In fact, (2) is normal in every base bn, n ≥ 2. It is not known whether
this sequence is normal in any scale from bn, n ≥ 2.

A related example is due to Copeland and Erdös [13]: the sequence of primes

23571113171923 · · ·
2Words are arranged in increasing order of their length; words having the same length are arranged

lexicographically.
3Normality was introduced by Borel [1]; see also Kuipers, Niederreiter [24]).
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is normal in the scale of ten, so it is disjunctive.
Not every disjunctive sequence is normal: for example, take the sequence

0w000w1000w20000 · · ·wn0n · · · ,

where w0w1w2 · · ·wn · · · is Champernowne’s sequence over the alphabet Xb and 0n ab-
breviates the word of length n containing only zeros.

The following result, due to Istrate and Păun [20], can be used to generate many
disjunctive sequences.

Lemma 2.1. Let (an)n be a strictly increasing sequence of positive integers such that

lim
n→∞

an+1

an
= 1, (3)

and let b ≥ 2 be a base. If we denote by bn the base–b expansion of an, then the infinite
sequence obtained by concatenating b1, b2, . . . , bn, . . . (in this order) is disjunctive over
Xb.

Proof. Pick a word w ∈ X∗b and assume, without loss of generality, that w does not
start with 0. Let w be the base–b expansion of m. In view of (3) there exists an integer
nw ≥ 1 such that for all n ≥ nw,

an+1

an
<
m+ 1
m

.

For every positive integer k define ik = max{n | an < mbk} ∪ {0} and notice that for all
k,

aik < mbk ≤ aik+1.

Furthermore, limk→∞ ik =∞. For ik > nw, maik+1 < aik(m+ 1), so

mbk ≤ aik+1 < aik(m+ 1)/m < (m+ 1)bk,

hence
mbk ≤ aik+1 < (m+ 1)bk.

To conclude, the base–b expansion of aik+1 starts with w, so the sequence is disjunctive
over X. 2

As an example take an = n, for all n, and b = 2. The resulting sequence is

0110111001011101111000 · · ·

If w0w1w2 · · ·wn · · · is Champernowne’s binary sequence 0100011011000001 · · ·, then the
above sequence is exactly 11w01w11w2 · · ·.

Consider now an infinite sequence

x = x0x1 · · · ∈ {0, 1}ω

and, following von Mises [51], define a new infinite sequence

y = y0y1 · · · ∈ {0, 1, 2}ω
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by the formula

yi =
{
x0, if i = 0,
xi−1 + xi, if i > 1.

The sequence y is not disjunctive, even if x was chosen disjunctive: an infinity of words
do not appear in y, for example, the words 02 or 20. A seemingly minor change in the
above example makes a major change;4 define:

z = z0z1 · · · ∈ {0, 1}ω

by

zi =
{
x0, if i = 0,
xi−1 ⊕ xi, if i ≥ 1.

If x is disjunctive, then so is z. Indeed, the words 00, 01, 10, and 11 are transformed
into 0, 1, 1, 0, respectively. Assume that x is transformed into y. If x ends with 0, then
x0 transforms to y0, and x1 reduces to y1; if x ends in 1, then x0 goes in y1 and x1 goes
in y0. A proof by induction shows that z is disjunctive provided x is disjunctive.

We finish this section with a uniform way to construct disjunctive sequences. Consider
a recursive bijection S : IN→ X∗ and surjective function f : IN→ IN. The sequence

S(f(0))S(f(1)) · · ·S(f(n)) · · · (4)

is disjunctive. Conversely, if x = x0x1 · · ·xn · · · is disjunctive, then we can
find a strictly increasing sequence of non-negative integers (ti)i≥0 such that x =
S(t0)S(0)S(t1)S(1) · · ·S(tn)S(n) · · ·, so the formula (4) works for the function f(0) =
t0, f(1) = 0, f(2) = t1, f(3) = 1, . . ..

3 The ω-Language of Disjunctive Sequences

In this section we will present a few simple properties of the ω-language of all disjunctive
sequences over X, D = {x |T(x) = X∗}.

3.1 Basic properties

From the very definition of disjunctive sequences we obtain

D =
⋂

w∈X∗
X∗wXω. (5)

Lemma 3.1. The ω-language D is finite-state but not regular.

Proof. Since wx ∈ D if and only if x ∈ D, the ω-language D satisfies D/w = D, for all
w ∈ X∗. Thus D has only a single state. Next, D is nonempty and does not contain an
ultimately periodic sequence wvω. Following (1) the ω-language D cannot be regular. 2

4This transformation was suggested by A. Szilard; here ⊕ stands for the sum modulo 2. Szilard’s
transformation also preserves random sequences, cf. Calude and Jürgensen [7].
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We turn our attention to recursion theoretic properties ofD. To this end we introduce
the first classes of the arithmetical hierarchy of ω-languages. As usual we say that an
ω-language E ⊆ Xω is Π1-definable provided E is representable in the form

E = {x ∈ Xω | ∀w(w v x⇒ w ∈WE)}, (6)

where WE ⊆ X∗ is a recursive language, and we say that an ω-language F ⊆ Xω is
Π2-definable provided F is representable in the form

F = {x ∈ Xω | ∀w(w ∈ X∗ ⇒ ∃u(u v x ∧ (w, u) ∈MF ))}, (7)

where MF is a recursive subset of X∗ ×X∗.
It is well-known that in Cantor’s topology, Π1-definable ω-languages are closed sets

and Π2-definable ω-languages are Gδ-sets.

Lemma 3.2. The ω-language of all disjunctive sequences D is Π2-definable.

Proof. We have D = {x ∈ Xω | ∀w∃v(vw v x)}. So it suffices to put MD =
{(w, vw) |w, v ∈ X∗} in (7). 2

Thus we have seen that D is a Gδ-set. For Gδ-sets we have the following characteri-
zation via languages (cf. Thomas [50]).

Theorem 3.3. In Cantor’s topology, a subset F ⊆ Xω is a Gδ-set if and only if there
is a language W ⊆ X∗ such that F = W δ.

The preceding theorem explains also why we called W δ the δ-limit of the language W .
In Staiger [44], Proposition 7.6, it is shown that an ω-language F ⊆ Xω is Π2-

definable if and only if there is a recursive language W ⊆ X∗ such that F = W δ. In case
of D we can construct WD explicitly.

Proposition 3.4. Let

WD = {wx |w ∈ X∗ ∧ x ∈ X ∧ ∃n(n ≤ |w|+ 1 ∧T(wx) ⊇ Xn ∧T(w) 6⊇ Xn)}.

Then WD is a recursive language and D = W δ
D.

Proof. It is obvious that WD is recursive. Let x be a sequence such that T(x) = X∗.
Then for every n ≥ 1 there is a shortest prefix wn v x such that T(wn) ⊇ Xn. Thus
{wn |n ≥ 1} is an infinite subset of WD. The converse implication follows from the
observation that if u, v ∈ WD and u < v, then Xm ⊆ T(u) implies Xm ⊆ T(v), and
there is an n ∈ IN satisfying T(u) 6⊇ Xn ⊆ T(v). 2

We conclude this part by showing that in Cantor’s topology D is not an Fσ-set. To
this end we quote Theorem 21 from Staiger [42].

Theorem 3.5. If F ⊆ Xω is finite-state and simultaneously an Fσ- and a Gδ-set,
then F is regular.

Combining Theorem 3.5 with Lemmas 3.1 and 3.2 we get:

Proposition 3.6. In Cantor’s topology, D is not an Fσ–set.

We continue by deriving two topological characterizations of D.
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3.2 A metric related to languages

The first topology is related to the well-known fact that every Gδ-set of a complete
metric space is a complete metric space itself (cf. Kuratowski [25]). We use here the
construction presented in Staiger [45].

As we have seen in Theorem 3.3, in Cantor’s topology a Gδ-set is of the form U δ for
some U ⊆ X∗. We use this language U to define a new metric %U on Xω which makes
U δ a closed set in the metric space (Xω, %U):

%U(x,y) =

{
0 , if x = y,
(cardX)1−card A(x)∩A(y)∩U , otherwise.

(8)

This metric, in some sense, resembles the metric % of the Cantor’s space; in fact, % = %X∗ .
In analogy with C(F ) we denote by CU(F ) the smallest closed (with respect to %U)
subset of Xω containing F . A point x ∈ CU(F ) is called an isolated point of F provided
∃ε(ε > 0∧∀y(y ∈ F ∧y 6= x⇒ %U(x,y) > ε)). A point x ∈ CU(F ) which is not isolated
is called a cluster point of F .5

Theorem 3.7. Let U ⊆ X∗. Then U δ is closed in (Xω, %U).

Proof. It suffices to show that every point x /∈ U δ is isolated. Let card A(x)∩U = n <
∞. From the definition of %U we have %U(x,y) ≥ (cardX)1−n for all y ∈ Xω. 2

In case of D we can prove even more:

Theorem 3.8. In the space (Xω, %WD
) the ω-language D equals both the set of its

cluster points and the set of cluster points of the whole space Xω.

Proof. From the preceding proof we know that every point of Xω \D is an isolated point
in (Xω, %WD

). Thus in view of Theorem 3.7 it remains to show that no point of D = W δ
D

is isolated. Let x ∈ D. Then for every w v x we have also wx ∈ D. Thus (wx)w∈A(x)∩WD

is an infinite subfamily of D such that inf{%WD
(x, wx) |w ∈ A(x) ∩WD} = 0. 2

3.3 The topology of forbidden words

Next we introduce the second topology T related to disjunctive sequences. Since this
topology is not a metric one, we introduce it by its set of open sets.

Let OT = {X∗WXω |W ⊆ X∗}. This family OT is closed under finite intersections
and arbitrary unions, thus it may be considered as the set of open sets for a topology on
Xω.

An ω-language F ⊆ Xω avoids words of a language W ⊆ X∗ provided F ⊆ Xω \
X∗WXω, that is, no word w ∈ W occurs as a subword (infix) of an ω-word x ∈ F .
Therefore, the complements of open sets in our topology T are characterized by the
fact that their ω-words do not contain subwords from W . Thus T will be called the

5It should be mentioned that every set of isolated points in a metric space is open.

7



topology of “forbidden” words. In particular, sets open in this topology are also open in
the Cantor’s topology of Xω.6

Sets closed in the topology of forbidden words can be characterized in a similar way
as closed sets in Cantor’s topology.

Theorem 3.9. Let F ⊆ Xω. Then the following conditions are equivalent:

1. F is closed in the topology of forbidden words.

2. F is closed in Cantor’s topology and ∀w(w ∈ X∗ ⇒ F ⊇ F/w).

3. F is closed in Cantor’s topology and A(F ) = T(F ).

4. ∀x(A(x) ⊆ T(F )⇒ x ∈ F ).

Proof. “1 . ⇒ 2 ”: As we noticed above, every ω-language closed in the topology of
forbidden words is also closed in Cantor’s topology. Let w ∈ X∗ and F = Xω \X∗WXω.
Then F/w = Xω \ (X∗WXω)/w, and the assertion follows from the obvious inclusion
(X∗WXω)/w ⊇ X∗WXω.

“2 .⇒ 3 .” follows from the identity A(
⋃
w∈X∗ F/w) = T(F ).

The implication “3 .⇒ 4 .” is obvious.

Finally, we show that Condition 4 implies F = Xω \ X∗ · (X∗ \ T(F )) · Xω. Since
X∗ \T(F ) = X∗ · (X∗ \T(F )) ·X∗ it suffices to prove that F = Xω \ (X∗ \T(F )) ·Xω.

The inclusion F ⊆ Xω \ (X∗ \ A(F )) · Xω ⊆ Xω \ (X∗ \ T(F )) · Xω follows from
A(F ) ⊆ T(F ). To prove the converse inclusion let x /∈ F Then in view of Condition 4
there is a prefix w < x such that w /∈ T(F ). Consequently, x ∈ (X∗ \T(F )) ·Xω. 2

The additional requirements in conditions 2 and 3 are, however, not equivalent in
general. The following example shows that there is an ω-language (necessarily not closed
in Cantor’s topology) which satisfies A(F ) = T(F ), but not the condition ∀w(w ∈ X∗ ⇒
F ⊇ F/w).

Example 3.10. Let F = (X2)∗bbaω ∪ X(X2)∗aabω. Then A(F ) = T(F ) = X∗, but
F/a 6⊆ F .

If the language of forbidden patterns W ⊆ X∗ is regular, then the ω-language FW =
Xω\X∗WXω is a regular ω-language. In connection with (1) this yields as a consequence
the following generalization of a result of El-Zanati and Transue [16].

Theorem 3.11. Let W ⊆ X∗ be a regular language. If FW is uncountable, then FW
contains a set homeomorphic to {a, b}ω, more precisely, a subset of the form w{u, v}ω,
where u 6= v and |u| = |v| > 0.

We continue with some more examples. The first is an example of a countable regular
ω-language FW which requires an infinite set of forbidden patterns.

6Recall that open sets in Cantor’s topology are ω-languages of the form WXω, where W ⊆ X∗, and
closed sets are characterized by the their initial word languages, that is, F ⊆ Xω is closed if and only if
A(x) ⊆ A(F ) implies x ∈ F .
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Example 3.12. Let X = {a, b} and W = ba∗b. Then FW = Xω\X∗WXω = a∗baω∪aω
is a countable ω-language. It is clear that FW 6= FV , for any finite language V ⊆ X∗.

Though the regularity of W implies the regularity of FW this same relation is not true
for context-free languages and ω-languages.

Example 3.13. Let X = {a, b} and W = {bb} ∪ {baibajb | j 6= i+ 1}. Clearly, W is a
deterministic context-free language, and FW = a∗({ηi | i ∈ IN} ∪ {ηi,j | i, j ∈ IN ∧ i ≤ j})
where ηi = baibai+1b · · · and ηi,j = baibai+1 · · · bajbaω. Since FW is countable but does
not consist entirely of ultimately periodic ω-words, the equation (1) shows that FW is not
context-free.

Finally, we discuss characterizations of disjunctive sequences and the ω-language D
by means of the topology of forbidden words. From (5) we obtain immediately:

Proposition 3.14. In the topology of forbidden words, D is the smallest nonempty
Gδ-set.

Proposition 3.15. A sequence x ∈ Xω is disjunctive if and only if the set {x} is
dense in Xω in the topology of forbidden words.

Proof. A set F ⊆ Xω is dense in Xω in case Xω is the smallest closed set containing F ,
that is, Xω \ F does not contain a nonempty open set. Since x ∈ Xω is disjunctive, we
have T(x) = X∗, and therefore {x} ∩X∗wXω 6= ∅ for all w ∈ X∗. 2

Above we mentioned, the topology of forbidden words is not a metric topology. Propo-
sition 3.15 gives evidence of this fact, because in any metric topology every finite set is
closed.

4 How Large is the ω-language of Disjunctive Sequences?

In this section we study the size of our set D. Appropriate size measures for sets in
Cantor’s space are topological density (Baire category) and (product) measure. It turns
out that in both cases the ω-language of disjunctive sequences is a large set. Its com-
plement Xω \D can be characterized using regular ω-languages. Therefore, we consider
category and measure especially for regular and finite-state ω-languages. Moreover, for
these ω-languages, density and the appearance of subwords are closely related.

4.1 Density and Baire category

A set F is nowhere dense in E ⊆ Xω provided C(E \ C(F )) = C(E), that is, if C(F ) does
not contain a nonempty subset of the form E∩wXω. This condition can be reformulated
as follows.

Lemma 4.1. A set F ⊆ Xω is nowhere dense in E if and only if for every v ∈ A(E)
there is a w ∈ X∗ such that vw ∈ A(E) and vwXω ∩ F = ∅.

9



Cast in the language of prefixes, Lemma 4.1 asserts that F is not nowhere dense in
E 6= ∅ if and only if there is a w ∈ A(E) such that E/w ⊆ C(F )/w. From the following
equations

C(E \ C(F )) = C(C(E) \ C(F )) (9)
C(E \ C(F )) = C(E \ (C(F ) ∩ E)) (10)

we see that F is nowhere dense in E if and only if F is nowhere dense in C(E) and if
and only if C(F ) ∩ E is nowhere dense in E.

A subset F ⊆ Xω is called nowhere dense if it is nowhere dense in Xω. As usual we
call a set F of first Baire category (in E) if it is a countable union of sets nowhere dense
(in E).

In this section we consider the density of finite-state ω-languages F ⊆ Xω in so-called
ω-power languages W ω.

We obtain the following version of Lemma 4.1.

Corollary 4.2. Let W ⊆ X∗ be a nonempty language. Then F is nowhere dense in
W ω if and only if for every v ∈W ∗ there is a w ∈W ∗ such that vwXω ∩ F = ∅.

Using again the language of prefixes, F is not nowhere dense in an ω-power W ω if and
only if there is a w ∈W ∗ such that W ω/w ⊆ C(F )/w.

It turns out that for finite-state ω-languages density in ω-powers is closely related to
the appearence of subwords. To this end we present some results of Staiger [47].

Lemma 4.3. Let F be finite-state and let W ⊆ X∗ be nonempty. Then the following
conditions are equivalent:

1. F is nowhere dense in W ω.

2. ∀w(w ∈W ∗ ⇒ F/w is nowhere dense in W ω).

3. ∀v(v ∈ X∗ ⇒ (C(F ) ∩ C(W ω))/v is nowhere dense in W ω).

Proof. The implication 2 .→ 1 . is obvious.

Since v ∈W ∗ implies C(W ω) ⊆ C(W ω)/v, the implication 3 .→ 2 . follows.

In order to prove the remaining 1 . → 3 . assume (C(F ) ∩ C(Wω))/v to be not nowhere
dense in W ω. Then there is a w ∈W ∗ such that (C(F ) ∩ C(W ω))/v · w ⊇Wω/w ⊇W ω.
Define u := v · w. Thus C(W ω)/u ⊇ C(W ω) and C(F )/u ⊇ C(W ω)

Since F is finite-state, there are n, k ≥ 1 such that F/un = F/un+k. Hence
C(W ω) ⊆ C(F )/u implies C(W ω)/un+k−1 ⊆ C(F )/un+k = C(F )/un. Finally observe
that C(W ω)/un ⊆ C(W ω)/un+k−1 ⊆ C(F )/un, what proves our assertion. 2

As a consequence of Lemma 4.3 we show that finite-like-state ω-languages which are
nowhere dense in ω-power sets have patterns, that is subwords appearing in the ω-power
set W ω and do not appear in the finite-state ω-language F .

Lemma 4.4. Let F be finite-state, and let W ⊆ X∗ be a nonempty language.

10



1. F is nowhere dense in W ω if and only if there is a w ∈W ∗ such that C(F )∩C(W ω) ⊆
C(W ω) \W ∗wXω.

2. If F ⊆ C(W ω) then F is nowhere dense in W ω if and only if there is a u ∈W ∗ such
that F ⊆ C(W ω) \X∗uXω.

Proof. 1. If F is finite-state and nowhere dense in W ω then according to Lemma 4.3
the set F ′ =

⋃
u∈W∗ F/u as a finite union of sets nowhere dense in W ω is again nowhere

dense in W ω. Hence, there is a w ∈ W ∗ such that F ′ ∩ wXω = ∅. Assume now that
F ∩W ∗wXω 6= ∅. Then there is some v ∈W ∗ such that F ∩vwXω = v(F/v)∩vwXω 6= ∅,
which contradicts the fact that F ′ ⊇ F/v and wXω are disjoint.

To prove the converse implication, suppose F to be not nowhere dense in W ω, that is,
according to Lemma 4.3 and Corollary 4.2 there is some u ∈ W ∗ such that C(F )/uw ⊇
C(W ω)/w ⊇ C(W ω), for some w ∈ W ∗. Hence, A(F ) ⊇ vW ∗ and there is no v ∈ W ∗

with F ∩ uwvXω = ∅.
2. In view of Lemma 4.3 from C(F ) ⊆ C(W ω) we deduce that F ′′ =

⋃
u∈X∗ F/u is also

nowhere dense in W ω provided F is nowhere dense in W ω. Now the proof proceeds as in
1. The converse implication of the second part is an immediate consequence of the first
part. 2

The followng results comes from Staiger [41]:

Corollary 4.5. A finite-state set F ∈ Xω is nowhere dense if and only if there is a
w ∈ X∗ such that F ⊆ (X |w| \ {w})ω.

Proof. Obviously, (X |w|\{w})ω is nowhere dense. On the other hand, if F is finite-state
and nowhere dense then Lemma 4.4 states that F ⊆ Xω \ X∗wXω for some w ∈ X∗.
Now our assertion follows from Xω \X∗wXω ⊆ (X |w| \ {w})ω. 2

Finally, we introduce the set R0 as the union of all finite-state nowhere dense sets:

R0 =
⋃

w∈X∗
(Xω \X∗wXω) =

⋃
w∈X∗

(X |w| \ {w})ω.

The set R0 is, therefore, the complement of the set of all disjunctive ω-words over
X, that is R0 = Xω \ D. From Corollary 4.5 it is clear that R0 is a countable union
of nowhere dense sets, hence meager or of the first Baire category. Consequently, D
is a residual set. The set R0, and hence its complement D, prove to be useful in the
considerations of product measures.

4.2 Product measure and category

In this section we present a connection between measure and density for regular ω-
languages (cf. also Staiger [41]) the proof of which makes use of the complement of the
set of all disjunctive ω-words, Xω \D = R0. To this end we introduce non-degenerated
product measures µ̄ on Xω as follows.
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We start with a probability measure µ : X → (0, 1] on the alphabet X and extend
it via µ(wv) = µ(w)µ(v) to a Bernoulli measure on X∗. The product measure µ̄ derived
from µ is the σ-additive measure on Xω which satisfies µ̄(wXω) = µ(w).

Due to the requirement µ(x) > 0, for all x ∈ X, every nonempty open subset of
(Xω, %) has non-null measure. We obtain a first property.

Property 4.6. If µ̄ is a non-degenerated product measure on Xω, then µ̄(R0) = 0.

Proof. Obviously, µ̄((X |w| \ {w})ω) = 0, for every w ∈ X∗. 2

Corollary 4.7. For every non-degenerated product measure on Xω, µ̄(D) = 1.

Corollary 4.8. For every finite-state nowhere dense subset F ⊆ Xω we have
µ̄(C(F )) = 0.

We proceed with the topologically more complicated ω-languages in the classes Fσ and
Gδ. To this end let I(F ) = Xω \ C(Xω \F ) be the interior of the ω-language F , that is,
the largest open subset contained in F .

Lemma 4.9. Let F =
⋃
i∈IN

Fi where every Fi is finite-state and closed. Then F ⊇
I(F ) ⊇ F \R0 and µ̄(F ) = µ̄(I(F )).

Proof. For every finite-state closed (and thus regular) set Fi ⊆ Xω the set Fi \ I(Fi) is
nowhere dense and regular, and thus a subset of R0. 2

By complementation we obtain

Lemma 4.10. Let E =
⋂
i∈IN

Ei where every Ei is finite-state and open. Then E∪R0 ⊇
C(E) ⊇ E and µ̄(E) = µ̄(C(E)).

Since regular Fσ-sets satisfy the conditions of Lemma 4.9 (cf. Staiger and Wagner [48])
and, therefore, regular Gδ-sets satisfy the conditions of Lemma 4.10, we obtain:

Corollary 4.11. A regular Gδ-set E is nowhere dense if and only if it is a null set.

Proof. If E is nowhere dense and regular then µ̄(C(E)) = 0 according to Corollary 4.8.
If E is a null set then from Lemma 4.10 we have µ̄(C(E)) ≤ µ̄(E) + µ̄(R0) = 0. Hence,
C(E) is a closed null set and, thus, nowhere dense. 2

This corollary is not valid under the assumptions of Lemma 4.10 because any closed
set F is the intersection of regular open sets, but need not be a null set if it is nowhere
dense. Neither this corollary is valid for arbitrary regular sets as the example X∗xω

(x ∈ X) of a dense null set shows.
Now, we can present the measure-category result for arbitrary regular ω-languages.

Theorem 4.12. A regular set F ⊆ Xω is of first Baire category if and only if it is a
null set for any non-degenerated product measure µ̄.

12



Proof. We show that F ⊆ R0 if and only if µ̄(F ) = 0. Since F is regular, it follows (cf.
Thomas [50]) that there are regular Fσ-sets Fi and regular Gδ-sets Ei such that

F =
n⋃
i=1

(Fi ∩ Ei).

From this one has

F ⊆
n⋃
i=1

(Fi \ I(Fi)) ∪
n⋃
i=1

(I(Fi) ∩ Ei).

Then the first union is a subset of R0, and the second is a regular Gδ-set. Hence, by
Corollary 4.11, the latter is a null set if and only if it is contained in R0, which proves
our assertion. 2

Thus we have seen that for an arbitrary finite alphabet X containing at least two
letters the ω-language of disjunctive sequences is large as well in the sense of Baire
category in Cantor space as in the sense of product measure on Xω. Moreover, every
non-disjunctive sequence is contained in a certain regular ω-language which is nowhere
dense in Xω or, equivalently, has null measure. We shall return to this item later when
we will measure the density of regular ω-languages containing a certain non-disjunctive
sequence x.

5 How Large is the Set of Disjunctive Real Numbers?

We shall study the size of disjunctive sequences by means of their associated real numbers.
The first natural question is the following:7 Is disjunctiveness a property of real numbers
or of their representations? In other words, if a real number is disjunctive to a certain
base, is it disjunctive in any other base? Let us first notice that normality is not base
invariant (as it is proved, for example, in Kuipers and Niederreiter [24]),8 but, as it was
proved in Calude and Jürgensen [7], randomness is invariant under the change of base
(see also Calude [6]).

Two real numbers a, b > 1 are equivalent if an = bm, for some positive integers n,m.
The following result is stated in Hertling [19]; its proof is based on results in El-Zanati
and Transue [16] and Schmidt [40].

Theorem 5.1. 1. Every real number which is disjunctive to a base b is disjunctive
to every base a equivalent to b. 2. Assume a and b are not equivalent bases. Then the
set of real numbers which are disjunctive to base a but not disjunctive to base b has the
cardinality of the continuum.

Theorem 5.1 gives us no indication about any “concrete examples” of reals that are
disjunctive in one base and not disjunctive in another base.9 The following result, due
to Hertling [19], remedies this situation.

7This question was raised by H. Jürgensen and solved by Hertling [19].
8A real x is simply normal to base b if every digit 0 ≤ d < b appears in the sequence sb(x) with the

asymptotic frequency b−1. Let a, b ≥ 2 and n ≥ 1 be integers and assume that a 6= bn, for all n. The set
of real numbers which are simply normal to base a but not simply normal to base b has the cardinality
of the continuum; see Hertling [18, 19]

9It is not known whether numbers like e, π, ln 2 are or not disjunctive.
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Theorem 5.2. Let b ≥ 2 be an integer. The number
∞∑
i=0

b−i!−i

is not disjunctive to base b, but is disjunctive to all bases a which are not equivalent to b
and are divisible by all prime divisors of b.

From now on let us denote by D the set of all numbers which are disjunctive in any
base.10 Is D empty?

Let x be a real number in [0, 1] written in base b, and x(n) ∈ Q11 have precisely n
digits, namely the first n digits of x (completed with zeros if necessary).

If the word u appears (without overlaps) exactly k times in x(n), put

pu,n(x) =
k|u|
n
.

Let
p−u (x) = lim inf

n→∞
pu,n(x), p+

u (x) = lim sup
n→∞

pu,n(x).

Usually, we say that u appears with probability p in x if

p−u (x) = p+
u (x) = p.

According to the law of large numbers (see Oxtoby [32]), almost every real number
from [0, 1] is normal, i.e. every word appears with its “natural” probability. So, for
example, the ones appear with probability 1/2, the word 0010 appears with probability
1/24, if base 2 is used. This property is valid for almost all numbers, but not exactly all
of them.12 In the sense of Baire categories, how do most numbers behave?13 The answer
comes from Calude and Zamfirescu [8]:

10These numbers are called absolutely disjunctive.
11The set of rationals is denoted by Q.
12To get a quick idea of this phenomenon let us prove, with Borel [1], the following weaker result

(compare with Property 4.6): Almost all real numbers, when expressed in any base, contain every possible
digit or possible word of digits. Indeed, let b ≥ 2. Notice that for all a ∈ Xb and u ∈ X∗b , u does not
contain the digit a if and only if u ∈ (Xb \ {a})∗. Accordingly, for every k > 0

N(k) = #{u ∈ X∗b | |u| ≤ k ∧ u doesn’t contain a} =
(b− 1)k+1 − 1

b− 2
,

and
N(k)

#{u ∈ X∗b | |u| ≤ k}
=

((b− 1)k+1 − 1)(b− 1)

(bk+1 − 1)(b− 2)
,

so

lim
k→∞

N(k)

#{u ∈ X∗b | |u| ≤ k}
= 0.

We may now write the formula:

lim
k→∞

#{u ∈ X∗b | |u| ≤ k, u does contain a}
#{u ∈ X∗b | |u| ≤ k}

= 1

which shows that almost all reals, when expressed in any scale b ≥ 2, contain every possible digit a ∈ Xb.
The case of words of digits can be easily settled just by working with a large enough base. For instance,
if the word 957 never occurs in the ordinary decimal for some number, then the digit 957 never occurs
in base 1000.

13Here “most” means “those in a residual set”, i.e. “all, except those in a set of first category”.
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Theorem 5.3. For most numbers x ∈ [0, 1], using any base and choosing any word u
written in the same base,

p−u (x) = 0 and p+
u (x) = 1.

Proof. Choose arbitrarily the base b and the word u written in base b.

Let, for some α ∈ (0, 1) ∩Q,

R+
α,n = {x ∈ [0, 1] | ∃m(m ≥ n ∧ pu,m(x) ≥ α)}.

We claim that R+
α,n contains an open set dense in [0, 1]. Indeed, choose y ∈ [0, 1) and

ε > 0 arbitrarily. Let q ≥ n satisfy b−q < ε. To the digits of y(q) we add the word u
as many times as needed in order to get a number z = z(m) (with z(n) = y(n)) satisfying
pu,m(z) ≥ α. Then the whole interval (z, z + b−m) lies in R+

α,n and each of its points has
distance at most b−m < b−q < ε from y. The claim is proven.

Analogously,
R−α,n = {x ∈ [0, 1] | ∃m(m ≥ n ∧ pa,m(x) ≤ α)}

contains an open dense set. Of course, R−α,n and R+
α,n depend on b and u. Thus,

Ru,b =
⋂
α,n

(R−α,n ∩R+
α,n)

is residual in [0, 1].

Notice that⋂
n

R−α,n = {x ∈ [0, 1] | p−u (x) ≤ α},
⋂
α,n

R−α,n = {x ∈ [0, 1] | p−u (x) = 0},

and similarly for + instead of −. Therefore ∩u,bRu,b is exactly the set of real numbers
the theorem speaks about, and it is residual in [0, 1]. 2

A consequence of Theorem 5.3 is that most numbers in [0, 1] are absolutely disjunc-
tive. As another immediate consequence we get a result due to Oxtoby and Ulam ([33],
p. 877):

Corollary 5.4. The law of large numbers is false in the sense of category.

Proof. Indeed, the set of all numbers x ∈ [0, 1] such that in their dyadic development
the digits 0 and 1 appear with probability one-half lies in the complement of the residual
set from Theorem 5.3. 2

Random numbers are transcendental, as they are non-computable Calude [6]. This
argument does not work for disjunctive numbers as some of these numbers are com-
putable. Using a result of Staiger [42]14 Jürgensen and Thierrin [21] have proved:

14Stating that the set {x} is an ω-language accepted by a deterministic finite acceptor provided vb(x)
is rational.
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Theorem 5.5. If x ∈ Xω
b is disjunctive, then vb(x) is not rational.

There are uncountably many disjunctive sequences x having vb(x) transcendental
as the set of random sequences has measure 1, Calude [6]. The proof of the following
theorem, due to Jürgensen and Thierrin [21], explicitly constructs an uncountable class
of transcendental disjunctive numbers. A real number x is a Liouville number if it is
not rational and if for each positive integer n there exist two integers (depending upon
n) qn > 1 and pn such that |x − pn

qn
| < q−nn holds true. Liouville numbers are typical

examples of transcendental numbers Hardy and Wright [17].

Theorem 5.6 (Jürgensen and Thierrin [21]). There are uncountably many dis-
junctive Liouville numbers.

Proof. Consider a sequence {wi}i≥1 of words wi ∈ X∗b \ {ε} containing exactly one
occurrence of each non-empty word. Let ti = |wi| and ri = vb(wi), that is

ri =
ti∑
j=1

xijb
−j,

where wi = xi1xi2 · · ·xiti .
Define

λ1 = 0, λi =
i−1∑
j=1

tj, for j > 1,

and

x =
∞∑
i=1

rib
−λi!,

and let y = sb(x) be the base-b expansion of x. Clearly, y is disjunctive. We will show
that x is transcendental by proving that x is a Liouville number. Given the positive
integer n construct λk > n and minimum with this property, and define qn, pn by

pn
qn

=
k∑
i=1

rib
−λi!, qn = bλk!+tk .

The difference x− pn
qn

can be evaluated as follows:

0 < x− pn
qn

= x−
k∑
i=1

rib
−λi!

=
∞∑

i=k+1

rib
−λi!

<
b− 1
bλk+1!+1

∞∑
j=1

b−j

= b−λk+1!

=
1

b(λk+1−1)!λk+1
.

16



One has λk < λk+1; if we assume, in addition, that

λk! + tk < (λk+1 − 1)!, (11)

then
x− pn

qn
<

1
qλkn

< q−Nn ,

for all N < λk. It remains to prove that the inequality (11) is satisfied for almost all
positive integers k. Indeed, observe that the sequence {λn}n≥1 is strictly increasing, so
λk ≥ 2 for almost all k. From the construction of the sequence {wi}i≥1 it follows that
tk ≥ 2 for almost all k. Therefore,

tk < tkλk! ≤ (λk + tk − 2)λk!,

so
λk! + tk < λk!(λk + tk − 1) ≤ (λk + tk − 1)! = (λk+1 − 1)!,

for almost all k. 2

Corollary 5.7. There exist uncountable many disjunctive sequences x ∈ Xω
b such that

vb(x) is transcendental.

A stronger results holds true:

Theorem 5.8. Most Liouville numbers are absolutely disjunctive.

Proof. Since the residual set from Theorem 5.3 is a subset of D, most numbers from
[0, 1] are in D. But most reals are Liouville numbers, cf. Oxtoby [32], Priestley [38]. 2

So, most numbers from [0, 1] lie in D. Simultaneously, D contains all elements of
[0, 1] obeying the law of large numbers and has therefore measure 1. This suggests that
D may contain nearly all elements of [0, 1]. But what means “nearly all”? To answer this
question we shall make use, following Calude and Zamfirescu [8], of the notion porosity
studied by Dolzhenko [15]. A set M ⊂ [0, 1] is said to be porous at x ∈ [0, 1] if there is
a number β > 0 and a sequence of points {xn}∞n=1 converging to x such that for large
enough n,

(xn − β|x− xn|, xn + β|x− xn|) ∩M = ∅.

Further, M is called porous if it is porous at each of its points, and it is called σ-porous if
it is a countable union of porous sets. We say that nearly all points of [0, 1] enjoy property
P if the set of points not enjoying P is σ-porous Zamfirescu [53]. By Lebesgue’s Density
Theorem,15 every porous set has measure zero and therefore a set containing nearly all
elements is large from both the measure and the category points of view.16

15See Oxtoby [32].
16The complement of a null set of first category may well not contain nearly all elements, as Zaj́ıček

[52] proved.
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Theorem 5.9. Nearly all numbers in [0, 1] are absolutely disjunctive.

Proof. Let u be a word written in base b. Let Pu,b be the set of all numbers in [0, 1]
which, written in base b, do not contain u. We show that Pu,b \ {1} is porous.

Let y ∈ Pu,b \ {1}. Consider the arbitrary natural number n. Using the notation from
Theorem 5.3, y−y(n) ≤ b−n. Add u to the digits of y(n) and get another number z = z(m)

with m = n+ |u|. Clearly,
(z, z + b−m) ∩ Pu,b = ∅.

For the midpoint zm of (z, z + b−m), we have |zm − y| < b−n and

b−m/2 = 2−1b−|u|b−n > 2−1b−|u||zm − y|,

whence
(zm − 2−1b−|u||y − zm|, zm + 2−1b−|u||y − zm|) ∩ Pu,b = ∅.

while zm → y when n → ∞. Hence Pu,b \ {1} is porous and ∪u,bPu,b, the set in the
statement, is σ-porous. 2

The above results hold true even constructively. To each word w ∈ X∗b we associate
the open interval Ib,w = (vb(w), vb(w)+b−|w|) ⊂ [0, 1] where vb(w1w2 · · ·wn) =

∑n
i=1wib

−i

in case w = w1w2 . . . wn. The family {Ib,w}w∈X∗
b

is a base for the natural topology on
[0, 1]. First we get a constructive version of a residual set (i.e. of a set that contains the
intersection of a countable family of open dense sets). To this aim we require that the
family of open dense sets is enumerated by a recursively enumerable (r.e.) set, and each
basic open set Ib,x intersects the family in an effectively computable point. We are led
to the following definition: A set R is constructively residual if there exists an r.e. set
E ⊂ IN × IN∗ × IN, and a recursive function f : IN∗ × IN → IN∗ such that the following
two conditions hold true:

1. The set
∞⋂
m=1

 ⋃
(b,x,m)∈E

Ib,x


is contained in R.

2. For all b ≥ 2,m ≥ 1, and x ∈ B+
b we have x ⊂ f(x,m), (b, f(x,m),m) ∈ E.

A constructively residual set is residual, but the converse is false. The statement
“constructively, the typical number has, or most numbers have, property P” means
that the set of all numbers with property P is constructively residual. In Calude and
Zamfirescu [9] one obtains the following:

Theorem 5.10. Constructively, for most numbers x ∈ [0, 1], using any base b and
choosing any word v ∈ B+

b

p−b,v(x) = 0 and p+
b,v(x) = 1.
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Corollary 5.11. Constructively, a typical number does not obey the law of large num-
bers.

Corollary 5.12. Constructively, the typical Liouville number is absolutely disjunctive.

To get a constructive version of Theorem 5.9 we need first a constructive version of
Lebesgue Density Theorem. Call a set M ⊂ [0, 1] constructively megaporous if there exist
a base b ≥ 2, a rational number r ∈ (0, 1) and a recursive function f : X∗b → X∗b such
that each interval Ib,u of length less than r contains a subinterval Ib,f(u) disjoint from M
and having length greater than rb−|u|. An r.e. union of constructively megaporous sets
is called constructively σ-megaporous. More precisely, M is constructively σ-megaporous
if M =

⋃∞
n=1Mn, and there exist two recursive functions T : IN × IN∗ → IN∗, R : IN →

Q such that Mn is constructively megaporous under T (n, .) and R(n). We say that
“constructively, nearly every point of [0, 1] enjoys property P” if the set of points not
enjoying P is constructively σ-megaporous.

Following Martin-Löf [27] (see Calude [6]), a set S ⊂ [0, 1] is constructively null (with
respect to Lebesgue measure µ) if there exists a base b ≥ 2 and an r.e. set G ⊂ X+

b × IN
such that

S ⊂
∞⋂
n=1

 ⋃
(x,n)∈G

Ib,x

 ,
and

lim
n→∞

µ

 ⋃
(x,n)∈G

Ib,x

 = 0, constructively.

The following weaker version of Lebesgue Density Theorem, due to Calude and Zam-
firescu [9], is useful for our aims.

Theorem 5.13. Every constructively σ-megaporous set is constructively null.

Proof. Due to Martin-Löf’s Theorem (Calude [6]), there exists a maximal constructively
null set. Consequently, it is enough to prove the theorem for constructively megaporous
sets.

Let M be constructively megaporous with respect to the base b, the rational r and the
recursive function f . To estimate the size of M we will generate, in a recursive way,
smaller and smaller coverings of M . We start with an integer n such that b−n < r. For
a word w ∈ B+

b put E(w) = {y ∈ B+
b | w ⊂ y, |y| = |f(w)|, and y 6= f(w)}. The first

covering is
M ⊂

⋃
|u|=n

Ib,u.

The second iteration is

M ⊂
⋃
|u|=n

⋃
v1∈E(u)

Ib,v1 =
⋃
|u|=n

Ib,u \ Ib,f(u).
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The measure of this covering is

µ

 ⋃
|u|=n

Ib,u \ Ib,f(u)

 =
∑
|u|=n

µ(Ib,u \ Ib,f(u))

=
∑
|u|=n

(b−|u| − b−|f(u)|)

≤
∑
|u|=n

b−|u|(1− r)

= 1− r.

In general, a proof by induction shows that

M ⊂
⋃
|u|=n

⋃
v1∈E(u)

· · ·
⋃

vk∈E(vk−1)

⋃
vk+1∈E(vk)

Ib,vk+1

=
⋃
|u|=n

⋃
v1∈E(u)

· · ·
⋃

vk∈E(vk−1)

Ib,vk \ Ib,f(vk)

and

µ

 ⋃
|u|=n

⋃
v1∈E(u)

· · ·
⋃

vk∈E(vk−1)

⋃
vk+1∈E(vk)

Ib,vk+1

 < (1− r)k+1.

We conclude that M is constructively null with respect to the r.e. family G = {(w, n) ∈
B+
b × IN | w ∈ Fn, n = 1, 2, . . .}, where F0 = {u ∈ B+

b | |u| = n} and Fk+1 = {u ∈ B+
b |

u ∈ E(w), for some w ∈ Fk}. 2

We conclude this section with one more result in Calude and Zamfirescu [9]:

Theorem 5.14. Constructively, nearly every number is absolutely disjunctive.

Proof. Let γ : {(b, w) | b ≥ 2 ∧ w ∈ B+
b } → IN be a recursive bijection, and define

the recursive functions T (n, u) = uw, R(n) = b−|w| − 1, whenever n = γ(b, w). Again,
if n = γ(b, w), we put Ln = {0 ≤ x ≤ 1 | w is not contained in sb(x)}. It is seen that
[0, 1] \ D =

⋃∞
i=1 Li, and each Ln is constructively megaporous with respect to the base

b, the recursive function T (n, .) and the rational R(n). 2

Theorem 5.14 is stronger than Theorem 5.9 as, for instance, constructively null sets
are much smaller than classical null sets: the union of all null sets coincides with the
whole space, while, the union of all constructively null sets is a constructively null set.

6 How Complex Are Disjunctive Sequences?
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6.1 A computational complexity approach

At the top, disjunctive sequences x can be random, non-random but non-recursive, re-
cursive, but arbitrarily complex; they form a class of measure one Calude [6].

To construct, following Calude and Yu [10], arbitrarily complex recursive disjunctive
sequences we rely on Rabin’s Theorem (see, for instance, Theorem 3.5 in Calude [4]).17

Theorem 6.1. There exist recursive, arbitrarily complex, disjunctive sequences.

Proof. Consider a primitive recursive enumeration ε of all non-empty words over X and
a recursive function B mapping positive integers into positive integers. Assume that B
grows as fast as Ackermann’s function Calude [4]. Fix two letters, say σ1, σ2 in X and
let f be a recursive function mapping positive integers into {σ1, σ2} such that for every
ϕi = f, Φi(n) > 2B(n), for almost all n. Construct the sequence

x = f(1)ε(1)f(2)ε(2) · · · f(n)ε(n) · · · .

Clearly, T(x) = X∗. Let x(n) be the prefix of length n of x. Then for every integer
n ≥ 2,

f(n) = ψ(x(
n−1∑
i=1

| ε(i) | +n)),

where ψ(w) returns the last letter of the word w. Obviously, if ϕj(n) = xn, (xn is the
nth term of x), then Φj(n) > B(n), for almost all n. 2

6.2 A language-theoretic approach

At the bottom, the complexity of a sequence x will be measured by the complexity of the
language A(x) consisting of all prefixes of x; these languages can be context-sensitive,
but not context-free.

One can prove that the language of all prefixes of the sequence consisting of all words
over the binary alphabet arranged in quasi-lexicographical order is context-sensitive (see
Calude and Yu [10]).18 The fact that this complexity is the best possible will be proven
below.

Lemma 6.2. A sequence x is ultimately periodic if and only if its set of prefixes A(x)
is context-free.

Proof. If x = wvω for some words w, v ∈ X∗ then A(x) = A(wv∗) is even regular.

Conversely, since A(x) is infinite, according to the pumping lemma for context-free
languages it contains an infinite family (w′wnvunu′)n∈IN. Thus x = w′wω if w is not the
empty word or otherwise x = w′vuω. 2

17For every Blum space (ϕi,Φi) and for every recursive function B, a two-valued recursive function f
can be effectively constructed such that, for every j with ϕj = f , one has Φj(n) > B(n), for almost all n.

18In fact, there exist infinitely many disjunctive sequences x ∈ Xω such that A(x) is context-sensitive.
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As consequences we deduce:

Corollary 6.3. For every disjunctive sequence x ∈ Xω, A(x) is not context-free.

Corollary 6.4. If x ∈ Xω is disjunctive, then A(x) contains no infinite context-free
language.

6.3 Subword complexity

We introduce a concept of complexity of infinite sequences x which is intimately related
to disjunctive ω-words. This concept is based solely on the sets of subwords T(x). It
turns out that the subword complexity τ(x) of a word x ∈ Xω is also closely related to
the entropy of the regular ω-languages containing x.

For a language W ⊆ X∗ let

sW (n) = cardW ∩Xn

be its structure function (cf. Kuich [23]), and

HW = lim sup
n→∞

logcardX sW (n)
n

be its entropy . Define sF = sA(F ) and HF = HA(F ), for F ⊆ Xω.
We continue with more definitions. Let

T∞(x) = {w |w ∈ X∗ ∧ ∀n∃v∃β(|v| ≥ n ∧ vwβ = x)} (12)

be the set of subwords occurring infinitely often in x.
We call τ(x) = HT(x) the subword complexity of the word x ∈ Xω. Then the following

identity holds (cf. Staiger [46]):

HT(x) = HT∞(x) = inf{HF |F is finite-state ∧ x ∈ F} (13)

An ω-word is disjunctive if and only if T(x) = T∞(x) = X∗.

Proposition 6.5. Let F be a finite-state ω-language. Then τ(x) ≤ HF , for every
x ∈ F .

The following result comes from Staiger [46].

Proposition 6.6. If F 6= ∅ is a closed finite-state ω-language then there is a recursive
(as a function mapping IN to X) sequence x ∈ F satisfying τ(x) = HF .

Now, in a way similar to Lemma 4.4 we obtain a relationship between density, entropy
and subwords:

Theorem 6.7. Let E ⊆ Xω be such that C(E) = C(W ω), for some nonempty regular
language W ⊆ X∗, and let F be a finite-state subset of C(E).

Then the following conditions are equivalent:
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1. F is nowhere dense in E.

2. HF < HE.

3. lim
n→∞

sF (n)

sE(n)
= 0

4. ∃w(w ∈W ∗ ∧ F ⊆ C(E) \X∗wXω).

5. ∀x(x ∈ F ⇒ τ(x) < HE).

Proof. Theorem 21 in Merzenich and Staiger [29] shows that the first three conditions
are pairwise equivalent. Moreover, Lemma 4.4 proves the equivalence of 1. and 4., and
the above Propositions 6.5 and 6.6 show the equivalence of 2. and 5.. 2

7 Disjunctive Runs

7.1 Elementary properties

In this section we study a canonical generalization of disjunctive sequences, namely
disjunctive runs in finite automata. We need some further notation from ω-languages.
Let M,N denote languages over X, i.e. M,N ⊆ X∗.

An automaton A (over X) is a tuple A = (QA, EA, iA) of a finite set QA of states,
QA ∩X = ∅, an initial state iA ∈ QA, and a relation EA ⊆ QA ×X ×QA of labeled arcs.
A run r in A from q to q′ is a word r = e1 . . . en ∈ EA∗ with ei = (qi, ai, q′i) ∈ EA such
that q′i = qi+1 holds for 1 ≤ i < n with q1 = q and q′n = q′. Run(A) is the set of all
finite runs in A. An infinite run r in A is an element of adh Run(A) ⊆ EAω. Runω(A) is
the set of all infinite runs in A starting from iA. As (infinite) runs are special words in
E∞, r[k], r[k, l], r[k], and r[k, l] are already defined.

The labeling λ: EA → X is the projection of a labeled arc onto its second coordi-
nate, λ((q, a, q′)) = a. λ is canonically extended to a homomorphism λ : EA∞ → X∞.
Runq,q′(A) denotes the set of all finite runs in A from q to q′, Lq,q′(A) := λ(Runq,q′(A)).
Note that ε ∈ Lq,q(A), as the empty run runs from q to q for any q. M ⊆ X∗ is called
recognizable if there is an automaton A and a set Qf of final states, Qf ⊆ QA, such that
M =

⋃
q′∈Qf LiA,q′(A); Rec denotes the class of all recognizable languages. Analogously,

Reg denotes the set of all regular languages. Rec = Reg is known as Kleene’s Main
Theorem in automata theory, cf. Kleene [22].

An automaton A is called reachable if for any state q ∈ QA there is a run in A from iA
to q. One may usually drop all non-reachable states. In the sequel, any automaton will be
reachable. An automaton A is called deterministic if (q, a, q1) ∈ EA and (q, a, q2) ∈ EA
implies q1 = q2, for all q, q1, q2 ∈ QA and all a ∈ X. A (usually non-deterministic)
automaton A with an attached set Qf ⊆ QA of final states is called trim if for any state
q ∈ QA there is a finite run r from iA to some final state q′ ∈ Qf that runs through q.
A is called strongly connected if for any two states q, q′ ∈ QA there is a run in A from q
to q′. Obviously, any recognizable language can be recognized by some trim automaton
by throwing away all states that are not reachable or that do not lead to any final state
by any run in A, and for any regular ∗-closed language M (i.e., a language satisfying the
equality M∗ = M) there is a strongly connected automaton A such that M = LiA,iA(A).

We say that an infinite run r = (ei)i∈IN, ei = (qi, ai, q′i), touches a state q infinitely
often if q = qi for infinitely many i ∈ IN. Qω(r) denotes the set of states touched infinitely
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often by r. An ω-language F ⊆ Xω is called recognizable if there is an automaton A and
a set Qf ⊆ QA of final states such that F = {x ∈ Xω | ∃ r ∈ Runω(A) (λ(r) = x
∧ Qω(r) ∩ Qf 6= ∅)}. Recω denotes the class of recognizable ω–language. Let Regω

denote the class of regular ω–languages, see chapter 1. By famous results of Büchi [3],
McNaughton [28], and Muller [30], Recω = Regω.

In what follows we shall use disjunctivity as another acceptance criterion for infinite
runs. An infinite run r is called disjunctive if any finite run that may be used infinitely
often by r has to be used at least once (and thus infinitely often) by r. More formally, r
is disjunctive if for all q ∈ Qω(r) and for all finite runs r in A from q r is an infix of r. We
talk about λ-disjunctivity if r may not use all possible sub-runs but λ(r) must contain all
labelings of all possible sub-runs. Formally, r is called λ-disjunctive if for all q ∈ Qω(r)
and for all finite runs r in A from q λ(r) ∈ λ(T(r)) holds. This leads to (λ-)disjunctive
languages of automata:

Ld(A) = {x ∈ Xω | ∃r ∈ Runω(A) (r is disjunctive ∧x = λ(r))}

is the disjunctive language of A,

Lλ−d(A) = {x ∈ Xω | ∃r ∈ Runω(A) (r is λ-disjunctive ∧x = λ(r))}

is the λ-disjunctive language of A.19

Finally, Recd and Recλ−d denote the classes of disjunctive and λ-disjunctive lan-
guages.

Here is a list of examples.20
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Figure 1. Some automata
19In the literature, the term “disjunctive language” of an automaton is also used regarding properties

of the syntactic monoid. However, in this paper, a disjunctive language is simply the λ-image of the set
of all disjunctive runs of an automaton.

20We represent automata, as usual, by graphs; > denotes the initial state.
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Examining Figure 1 we immediately get:

• Ld(A1) = Lλ−d(A1) = D{a,b,c},

• Ld(A2) = {a, b}∗aω, as any disjunctive run must reach state 2 the arc 1 a−→ 2 must
be used,

• Lλ−d(A2) = {a, b}∗aω ∪ D{a,b}, as a λ-disjunctive run may stay with state 1: any
labeling string can be used without leaving state 1,

• Ld(A3) = Lλ−d(A3) = {a, b}∗caω,

• Ld(A4) = ∅, as any disjunctive run in A4 must use 1 a−→ 2 and thus cannot be
infinite,

• Lλ−d(A4) = D{a,b}.

As can be seen in the above examples (λ)–disjunctive languages may be ω–regular.21

A sub-automaton B of A generated by QB ⊆ QA is given by B = (QB, EB, iB) with
some iB ∈ QB and EB = EA ∩ (QB×X×QB). A sub-automaton B of A is called final
(λ-final) if there is a disjunctive (λ-disjunctive) run r in A from iA such that QB = Qω(r).
A sub-automaton B of A is final if EB 6= ∅ and B is strongly connected and closed (i.e.,
no run in A starting from a state in B can reach a state in QA \QB). A sub-automaton
B of A is λ-final if EB 6= ∅ and B is strongly connected and λ-closed (i.e., for any finite
run r in A starting from some state q in B there exists a run r′ in B with λ(r′) = λ(r)).
Thus, any final sub-automaton is also λ-final but not necessarily vice versa. Fin(A) and
Finλ(A) denote the (finite) sets of all final and λ-final sub-automata of A. The following
(obvious) normal-form-theorem for automata is quite helpful.

Lemma 7.1. Let A be an automaton. Then, the following statements hold true:

1. Ld(A) =
⋃
B∈Fin(A) LiA,iB(A)Ld(B),

2. Lλ−d(A) =
⋃
B∈Finλ(A) LiA,iB(A)Lλ−d(B),

3. Ld(A) ⊆ Lλ−d(A).

7.2 Algebraic properties of disjunctive languages

We introduce the (λ-)disjunctive closure, Md (Mλ−d), of a language M ⊆ X∗ by

Md = {x ∈Mω | ∃(wi)i∈IN : {wi | i ∈ IN} = M∗ \ {ε} ∧ x = w1 · · ·wi · · ·},
Mλ−d = {x ∈ adh (M∗) |M∗ = T(x)}.

21We will prove later that ω–regular (λ)–disjunctive languages are exactly of the form
⋃

1≤i≤nMiwj
ω

for some regular languages Mi ⊆ X∗ and words wi ∈ X∗.
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A sequence x ∈ Xω is in Md if x is an infinite concatenation of words of M∗ such that
any word of M∗ appears in this concatenation (which is equivalent to the fact that any
word of M∗ appears infinitely often). So, x ∈ Xω is in Mλ−d if x ∈ adh (M∗) and any
word of M∗ appears (infinitely often) as an infix of x. Obviously, Md = (M∗)d = M∗Md,
Mλ−d = (M∗)λ−d = M∗Mλ−d, A(Md) = A(Mλ−d) = A(M∗).

Lemma 7.2. Let A be an automaton. Then:

1. For any final sub-automaton B, Ld(B) = (LiB ,iB(B))d.

2. For any λ-final sub-automaton B, Lλ−d(B) = (LiB ,iB(B))λ−d.

Proof. The inclusion Ld(B) ⊆ (LiB ,iB(B))d is obvious from the definitions. To prove
“⊇” choose some x ∈ (LiB ,iB(B))d. Thus, there is an infinite sequence (wi)i∈IN of words
wi ∈ LiB ,iB(B) \ {ε} with x = w1w2 · · · wi · ·· where any word u ∈ LiB ,iB(B) \ {ε} must
appear infinitely often as some wi in x. For any wi we find a non–empty run ri from iB
to iB in B with wi = λ(ri), thus, r = r1r2 · · · ri · ·· is in Runω(B) with λ(r) = x. Let
C = {c1, c2, · · ·} be some enumeration of all circular runs in B from iB to iB. As B is
strongly connected it is obvious that some run in Runω(B) is disjunctive if it contains
C as sub–runs.

We define a new run R ∈ Runω(B) inductively. First, put R1 = r1r2 · · · ri−1c1 where
i = µy(λ(c1) = λ(ry)), t(R1) = i. Let Rn be defined such that Rn runs from iB to iB
with Ri v Rj v Rn for all i ≤ j ≤ n and ci is a sub–run of Rn for 1 ≤ i ≤ n. For
i = µy(y > t(Rn)∧ λ(cn+1) = λ(ry)) define Rn+1 = Rnrt+1 · · · ri−1cn+1, where t = t(Rn),
and set t(Rn+1) = i. Thus, Rn+1 runs from iB to iB, contains Rn as a prefix–run, and
cn+1 as a sub–run. Thus, the unique run R in adh {Rn|n ∈ IN} contains all ci as sub–runs
and consequently is disjunctive with λ(R) = λ(r) = x i.e., x ∈ Ld(B). This proves the
first part. To prove 2. simply notice the following:22

Lλ−d(B) = {λ(r)|r ∈ Runω(B) ∧ r is λ− disjunctive}
= {λ(r)|r ∈ adhRuniB ,iB(B) ∧ r is λ− disjunctive},
= {λ(r)|r ∈ adhRuniB ,iB(B) ∧ ∀r ∈ RuniB ,iB(B) λ(r) ∈ T(r)}
= {x|x ∈ adhLiB ,iB(B) ∧ ∀u ∈ LiB ,iB(B) u ∈ T(x)}
= {x ∈ adh (LiB ,iB(B))∗|(LiB ,iB(B))∗ ⊆ T(x)}
= (LiB ,iB(B))λ−d.

2

We may restate Lemma 7.1 as

Lemma 7.3. Let A be an automaton. Then:

1. Ld(A) =
⋃
B∈Fin(A) LiA,iB(A) (LiB ,iB(B))d,

2. Lλ−d(A) =
⋃
B∈Finλ(A) LiA,iB(A) (LiB ,iB(B))λ−d.

22Note that RuniB ,iB (B) is the set of all finite runs in B from iB to iB .
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We call an ω-language F ⊆ Xω d-regular (λ-d-regular) if there are some non-empty
regular languages Mj , Nj ⊆ X∗ with F =

⋃
1≤j≤nMjNj

d (F =
⋃

1≤j≤nMjNj
λ−d, respec-

tively), or if F = ∅.
Regd and Regλ−d denote the classes of all d-regular and λ-d-regular languages.23

Theorem 7.4. Recd = Regd, Recλ−d ⊂ Regλ−d.

Proof. The relations Recd ⊆ Regd and Recλ−d ⊆ Regλ−d hold by Lemma 7.2 and the
definition of (λ-) d-regularity. Obviously, {a, b}∗aω = {a, b}∗{a}λ−d ∈ Regλ−d, but any
automaton A with {a, b}∗aω ⊆ Lλ−d(A) possesses also an infinite λ-disjunctive run r that
stays in {a, b}∗, i.e. D{a,b} ⊆ Lλ−d(A) holds. Thus, Lλ−d(A) 6= {a, b}∗aω for any A (this
is not true for disjunctivity, see example A2), i.e., Recλ−d ⊂ Regλ−d holds. It remains
to prove Regd ⊆ Recd. For F =

⋃
1≤j≤nMjNj

d, Nj = Nj
∗, Nj, Mj regular, there exist

automata Cj , Bj, sets Qf
j ⊆ QCj , such that

Mj =
⋃
q∈Qf

j

LiCj ,q(Cj),

Nj = LiBj ,iBj (Bj),

where Bj may be chosen to be strongly connected and Cj to be trim. We construct an
automaton A′ with ε-arcs (i.e., arcs labeled with ε) by using 2j mutually disjoint versions
of the automata Cj and Bj plus a new initial state iA and placing ε-arcs from iA to each
iCj and from any q ∈ Qf

j to iBj . Finally, A follows from A′ by a standard elimination of
those ε-arcs (e.g., whenever (q, a, q′) and (q′, ε, q′′) are edges, add a new edge (q, a, q′′),
keep (q, a, q′), and remove finally all ε-arcs). As Cj was chosen to be trim, then any
disjunctive run in A from iA that passes Cj must eventually reach Bj via some final state
q in Qf

j . Thus, Ld(A) = F , i.e. Regd ⊆ Recd. 2

Lemma 7.5. The following statements hold true:

1. M 6= ∅ ⇒Mλ−d 6= ∅ 6= Md,

2. Md ⊆Mλ−d,

3. ∃M ⊆ X∗: Mλ−d 6⊆Md.

Proof. The first two statements are obvious. For 3. we construct a language M ⊆ X∗

with M = M∗ but Mλ−d 6⊆Md. For simplicity, we choose M ⊆ {a, b}∗. Let yi be the i-th
word in {a, b}∗ in lexicographic order, i.e., |yi| = blg2ic. Put M = {y1 . . . yib

2i+6 | i ∈ IN}∗,
and let y = y1 . . . yi . . . be the infinite concatenation of all words of {a, b}∗ in their
lexicographic order. Obviously, y ∈ adhM and any u ∈M∗(= M) is an infix of some yi,
i.e. an infix of y, thus y ∈Mλ−d. However, y 6∈Md as even y 6∈Mω holds. This is easily
seen as no word v ∈ M is even a prefix of y. Indeed, assume that v ∈ M and v v y.
As v ∈ M , v has y1 . . . yib

2i+6 as a prefix for some i. But y has already y1 . . . yiyi+1yi+2

23Of course, d-regular languages are usually not ω-regular. The name “d-regular” only reflects the
similarity in the definition of ω-regularity, and the fact that d-regularity is the algebraic counterpart of
d-recognizability.
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as a prefix and |yi+1yi+2| ≤ 2 · lg2(i + 2) ≤ 2i + 6= |b2i+6|. Thus, yi+1yi+2 v b2i+6, a
contradiction, as two consecutive words in lexicographic order must contain at least one
letter a. 2

We shall see later that the non-regularity of M , in the example used in the above
proof, is essential as Md= Mλ−d holds for all regular languages M .

Lemma 7.6. The following statements hold true:

1. M ⊆ N ∧ Mω ⊆ Nω ∧ A(M) ⊆ A(N) ∧ T(M) ⊆ T(N) 6⇒ Md ∩ Nd 6= ∅ ∨
Mλ−d ∩Nλ−d 6= ∅,

2. Md= Nd ∧ Mλ−d= Nλ−d 6⇒M ⊆ N ∨ Mω ⊆ Nω.

Proof. For 1. let M = a∗ and N = {a, b}∗. They fulfill all hypotheses and Mλ−d=
Md= aω 6∈ Nλ−d= Nd= D{a,b}. To prove 2. we choose M = {a, b}∗, N = (a∗b)∗. Thus,
Mλ−d= Md= Nλ−d= Nd= D{a,b}, but a∗ ∈M \N and aω ∈Mω \Nω. 2

The above (trivial) examples warn us to be quite careful in finding relations between
Mλ−d, Md, M , and Mω.

Lemma 7.7. The following statements hold true:

1. Md ⊆ Nd or Mλ−d ⊆ Nλ−d ⇒ A(M∗) ⊆ A(N∗),
2. Mλ−d ∩Nλ−d 6= ∅ ⇒ T(M∗)= T(N∗).

Proof. 1.: For Md ⊆ Nd we choose some w ∈ A(M). As Md= M∗Md there is some z
and x with wz ∈M∗ and wzx ∈Md ⊆ Nd. Thus w ∈ A(N∗). For Mλ−d ⊆ Nλ−d use the
same argument. To prove 2. one simply notes that w ∈ T(M∗) and x ∈ Mλ−d ∩ Nλ−d

implies w ∈ T(x), thus w ∈ T(N∗). By symmetry, T(N∗) ⊆ T(M∗) is also true. 2

Lemma 7.8. For every regular languages M,N ⊆ X∗, one has:

S(Mλ−d)= S(Nλ−d)⇔ T(M∗)= T(N∗). 24

Proof. For “⇒ ” we note that w ∈ T(M∗) implies z1wz2x ∈Mλ−d, for some z1, z2 ∈M∗

and x ∈ Mλ−d= M∗Mλ−d, thus wz2x ∈ S(Mλ−d)= S(Nλ−d), i.e. z3wz2x ∈ Nλ−d for
some z3 ∈ X∗. Thus, w ∈ T(N∗). By symmetry one also concludes T (N∗) ⊆ T (M∗).

For “ ⇐ ” we note that x ∈ S(Mλ−d) implies zx ∈ Mλ−d, for some z ∈ A(M∗).
Thus, (zx)[k] ∈ A(M∗), ∀k ∈ IN. The relation A(M∗) ⊆ T(M∗)= T(N∗) holds true
by assumption, i.e., zx[k] ∈ T(N∗), ∀k ∈ IN. Thus, there is a sequence (yk)k∈IN with
yk ∈ A(N∗) and ykzx[k] ∈ A(N∗) ∀k ∈ IN. As N is regular N∗ and A(N∗) are regular
too; thus, the set of states A(N∗)/yk= {v ∈ X∗ | ykv ∈ A(N∗)} is finite. So, there is
one y ∈ X∗ such that yzx[k] ∈ A(N∗) for infinitely many k, i.e. for all k ∈ IN. Thus,
yzx ∈ adh A(N∗). For u ∈ N∗ we conclude u ∈ T(N∗)= T(M∗); thus, u ∈ T(x) as
x ∈ Mλ−d. But yzx ∈ adh A(N∗) and T(A(N∗)) ⊆ T(yzx) implies yzx ∈ Nλ−d, thus,
x ∈ S(Nλ−d). By symmetry one gets S(Nλ−d) ⊆ S(Mλ−d). 2

24Remember, S(F ) is the set of all suffixes of F .
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Lemma 7.9. The following statements are equivalent:

1. Mλ−d= Nλ−d,

2. adhM∗= adhN∗,

3. A(M∗)= A(N∗).

Proof. “1. ⇒ 2.”: From x ∈ adhM∗ we deduce x[k] ∈ A(M∗) = A(Mλ−d) = A(Nλ−d)
= A(N∗) for all k ∈ IN; i.e., x ∈ adhN∗.

“2. ⇒ 3.”: As w ∈ A(M∗) implies wx ∈Mλ−d = Nλ−d for some x, one gets w ∈ A(N∗).

“3. ⇒ 1.”: Note that x ∈ Mλ−d implies x ∈ adhM and M∗ ⊆ T(x). A(M∗) = A(N∗)
implies immediately adhM∗= adhN∗. Further, N∗ ⊆ A(N∗) = A(M∗) ⊆ T(x), i.e.
x ∈ Nλ−d. 2

Combining Lemma 7.9 and Lemma 7.3 we get a decision procedure for testing whether
Lλ−d(A) = Lλ−d(B) for given automata A, B:

Theorem 7.10. Equality in Recλ−d is decidable.

The same result holds for Recd, but this proof is far more involved.25

7.3 Regd and Regλ−d are the same

If A is a deterministic automaton with some run r from some state q with label λ(r)= w
then this run is uniquely determined by q and w and will be denoted by rq,w. We write
δ(q, w)= q′ if rq,w exists and ends in q′. Thus, δ refers always to deterministic automata.

Lemma 7.11. For every deterministic automaton A one has: Ld(A)= Lλ−d(A).

Proof. It remains to prove the relation Lλ−d(A) ⊆ Ld(A). We even can prove that any
λ-disjunctive run in a deterministic automaton is also disjunctive. Therefore, we assume
the existence of a λ-disjunctive but not disjunctive run r in A. I.e., there has to be some
q0 ∈ Qω(r) and some finite run r0 in A from q0 such that r0 is no sub-run of r. However, as
r is λ-disjunctive, u0 = λ(r0) is an infix of λ(r) infinitely often. Thus, there is q1 ∈ Qω(r)
such that rq1,u0 is a sub-run of r. As q0 ∈ Qω(r), it follows that rq1,u0u1 is a sub-run of
r from q1 to q0 for some u1 ∈ X∗. Thus, rq1,u0u1u0 and rq0,u0u1u0 are not sub-runs of r
where u0u1u0 is an infix of λ(r) as r does not contain r0 = rq0,u0 . By induction, we can
find arbitrarily many states q0, q1, q2, . . . , qn ∈ Qω(r) and words u0, u1, . . . , un ∈ X∗ such
that rqj , u0u1u0u2u0 . . . u0unu0 are not sub-runs of r for 1 ≤ j ≤ n but u0u1u0 . . . u0unu0

is an infix of λ(r), a contradiction as Qω(r) is finite. 2

25We shall give a rough idea of this proof in the following when we will look at further connections
between disjunctivity and λ-disjunctivity.
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The deterministic closure, Adet, of an arbitrary automatonA = (QA, EA, iA) is defined
as Adet = (Qdet

A , Edet
A , {iA}), where Edet

A ⊆ 2QA×X×2QA is defined by (S, a, S′) ∈ Edet
A if

S′ = {q′ ∈ SA | ∃q ∈ S (q, a, q′) ∈ EA}. Qdet
A ⊆ 2QA is the set of all reachable states in

Adet. Note that (S, a, S′) ∈ EAdet does not mean that (q, a, q′) ∈ EA holds for all q ∈ S
and all q′ ∈ S′. Further, A being strongly connected does not imply that Adet is strongly
connected. These facts lead to difficulties in gluing together parts of runs in A to form
a larger run that corresponds to some given run in Adet. A gluing-technique is given in
the following technical lemma.

Lemma 7.12. In Adet the following properties hold:

1. S1 ⊆ S2 ⇒ δ(S1, w) ⊆ δ(S2, w).

2. δ(S,w) = S′ ⇔
i) ∀q ∈ S ∃q′ ∈ S′ ∃ run r in A from q to q′ with λ(r) = w, and

ii) ∀q′ ∈ S′ ∃q ∈ S ∃ run r in A from q to q′ with λ(r) = w.

3. If A is strongly connected with EA 6= ∅ then for any disjunctive run R in Adet from
{iA}:
i) ∃S ∈ Qω(R) iA ∈ S

ii) ∀S ∈ Qω(R) (iA ∈ S ⇒ ∃S◦ ∈ Qω(R) ∃v ∈ X∗ (iA ∈ S◦ and S◦ = δ(S, v) =
δ({iA}, v))).

Proof. The first two statements are obvious. For 3., note that R has to reach some
final sub-automaton Bdet of Adet; thus, R = R[`]R′ for some ` where R′ runs completely
inside Bdet. For any S′ ∈ Qω(R) = Qdet

B there is some k (> `) and S′ = δ({iA}, u) with
u = λ(R[k]). By Lemma 7.12, 2 there is a run r in A from iA to q′ with λ(r) = u and
q′ ∈ S′. As A is strongly connected there is some run r′ in A from q′ to iA. Thus,

iA ∈ δ({iA}, uλ(r′)) ∈ Qdet
B = Qω(R),

which proves 3.i).

Now, let S be some state inQω(R) (= Qdet
B ) with iA ∈ S. S = δ({iA}, u) with u = λ(R[k])

for some k. By Lemma 7.12, 2.ii) we know the existence of some run r in A from iA to iA
with λ(r) = u. We define Si = δ({iA}, ui) for i ∈ IN, i.e., S = S1. By Lemma 7.12.1 we
conclude from {iA} ⊆ S that δ({iA}, u) ⊆ δ(S, u) holds, thus S1 ⊆ S2 as S1 = δ({iA}, u)
and S2 = δ({iA}, u2) = δ(S1, u). By induction, one concludes {iA} ⊆ S1 ⊆ S2 ⊆ . . ..
As Qω(R) is finite this sequence must become stationary with some Sj (= Sj+1). For
S◦ = Sj the desired properties iA ∈ S◦ and S◦ = δ({iA}, v) = δ(S, v) hold with v = uj.

2

Lemma 7.13. If A is strongly connected, then Ld(Adet) ⊆ Ld(A).

Proof. For x ∈ Ld(Adet) there is a disjunctive run R in Adet from {iA} with λ(R) = x.
Let C = {c1, c2, . . .} be an enumeration of all finite runs in A from iA to iA. We construct
a disjunctive run r with x = λ(r) as follows.
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By Lemma 7.12, 3.i) there is some state S in Qω(R) with iA ∈ S. Further, S =
δ({iA}, λ(R[k0])) for some k0 ∈ IN. By Lemma 7.12, 2.ii) we find a run r0 in A from iA
to iA with λ(r0) = λ(R[k0]).

Assume we have already defined rn such that the following holds:

• rn is a run in A from iA to iA,

• cj is a sub-run of rn for 1 ≤ j ≤ n,

• R[kn] runs in Adet from {iA} to some state Sn ∈ Qω(R) with iA ∈ Sn, for kn = |rn|,
• λ(rn) = λ(R[kn]).

By Lemma 7.12, 3 we can find a word v and a run rSn,v from Sn to some S◦ ∈ Qω(R)
with iA ∈ S◦ and δ(Sn, v) = δ({iA}, v) = S◦. Note that cn+1 is the (n + 1)st finite
run in A from iA to iA and iA ∈ S◦ ∈ Qω(R) holds. Thus, R may use rS◦,wn+1 with
wn+1 = λ(cn+1) infinitely often and has to do so: there is some finite run R in Adet from
S◦ to S◦ such that R[kn]rSn,vRrS◦,wn+1 is a prefix of R. From δ(Sn, v) = δ({iA}, v) we
know δ(Sn, vλ(R)) = δ({iA}, vλ(R)) = S◦ 3 iA. By Lemma 7.12, 2.ii) there is thus a run
r′ in A from iA to iA with λ(r′) = vλ(R). We now define rn+1 = rnr

′cn+1 and conclude:

• rn+1 is a run in A from iA to iA,

• cj is a sub-run of rn+1 for 1 ≤ j ≤ n+ 1,

• for kn+1 = |rn+1|, R[kn+1] (= R[kn]rSn,vRrS◦,wn+1) runs in Adet from {iA} to some
state Sn+1 ∈ Qω(R) with iA ∈ Sn+1,

• λ(rn+1) = λ(R[kn+1]).

As rn v rn+1, |rn| < |rn+1| there is a run r ∈ adh {rn |n ∈ IN} with all required properties.
2

Lemma 7.14. If A strongly is connected, then Lλ−d(A) ⊆ Lλ−d(Adet).

Proof. For x ∈ Lλ−d(A) there is a λ-disjunctive run r in A from iA with λ(r) = x. In
view of the construction of Adet there is exactly one infinite run R in Adet from {iA} with
λ(R) = λ(r) = x. For S ∈ Qω(R) and any finite run R in Adet from S with v = λ(R)
we find a finite run r in A from some q ∈ S with λ(r) = v. By λ-disjunctivity of r we
conclude that v ∈ λ(r) holds, thus v ∈ λ(R) and R is also λ-disjunctive. 2

Now we have completed all necessary steps to conclude the main results.

Theorem 7.15. If A is strongly connected, then Ld(A) = Lλ−d(A).

Proof. Use, in order, Lemma 7.1, Lemma 7.14, Lemma 7.11, and Lemma 7.13 to get:

Ld(A)⊆Lλ−d(A)⊆Lλ−d(Adet)=Ld(Adet)⊆Ld(A).

2
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Theorem 7.16. If M ∈ Reg, then Md = Mλ−d.

Proof. As Md = (M∗)d, Mλ−d = (M∗)λ−d we may assume that M = M∗ holds.
Thus, there is a strongly connected automaton A with M = LiA,iA(A). We conclude
by Lemma 7.2 and Theorem 7.15:

Md = (LiA,iA(A))d = Ld(A) = Lλ−d(A) = (LiA,iA(A))λ−d = Mλ−d.

2

Theorem 7.17. Recλ−d ⊂ Regλ−d = Regd = Recd.

Proof. Theorem 7.16 implies Regλ−d = Regd while Theorem 7.4 implies the rest. 2

We call an automaton A finally deterministic if any final sub-automaton of A is
deterministic. In Lemma 7.3 the final sub-automata B are strongly connected. We
thus may replace them by Bdet, following the proof of Theorem 7.15. As an obvious
consequence we deduce that any disjunctive language L ⊆ X∗ is the disjunctive language
Ld(A) of some finally deterministic automaton.

Theorem 7.18. Equality in Recd is decidable.

Sketch of proof. This proof requires all facts on disjunctive runs in A and Adet but,
nevertheless, it is not an easy consequence of them. We only present a sketch of the
proof (from the Ph.D. Thesis of Rehrmann [39]). We call a relation τ ⊆ QA×QA weakly
continuable if τ is symmetric and qτq′ implies the following:

∀q1 ∈ QA ∀ runs r in A from q to q1 ∃q2, q2
′ ∈ QA ∃ run r1 in A from q1 to q2

∃ run r′ in A from q′ to q2
′ (λ(rr1) = λ(r′) ∧ q2τq2

′).

We define q ∼weak q′ if there exists a weak continuable relation τ with qτq′. For A =
(QA, EA, iA), q ∈ QA, define Aq = (QA, EA, q). Define q ∼d q′ if Ld(Aq) = Ld(Aq′).
Then the following important connection between ∼weak and ∼d holds true for finally
deterministic automata:

q ∼weak q′ ⇐⇒ q ∼d q′, 26

for all q, q′ ∈ QA. As ∼weak turns out to be decidable, one has a decision procedure for
the equality-problem in Recd. 2

26As ∼weak is a variant of bisimulation, this equation presents an interesting connection between
disjunctivity and bisimulations. Bisimulations play an important role in the theory of concurrent
computations.
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7.4 Topological properties of disjunctive languages

Here we study closure properties of Regd with respect to finite and countable union
and intersection, and compute the complexity of Regd in the Borel hierarchy. First, we
answer the simple question whether Regd may contain any ω–regular, closed or open
languages.

We need the following simple technical lemma.

Lemma 7.19. Let B be a strongly connected and deterministic automaton. If Ld(B)
possesses an ultimately period word uwω for some u, w ∈ X∗, then Ld(B) = wω.

Proof. As B is deterministic we identify here runs from iB with their labeling words.
It suffices to show that there are no two runs r1, r2 in B from iB with r1 6v r2 and
r2 6v r1 whenever Ld(B) possess at least one ultimately periodic word. Thus, we assume
the existence of a word w and two different letters a, b such that wa and wb run from
iB. Both runs can be continued to reach iB again. Thus, there are cyclic runs c1 = wac′1
and c2 = wbc′2 from iB to iB. Define C1: = c

|c2|
1 , C2: = c

|c1|
2 . Thus, |C1| = |C2| and the

infinite run
C := C1C2C

2
1C

2
2 · · · Ci

1C
i
2 · ··

is not ultimately periodic. However, if there is a disjunctive ultimately periodic run
r = uwω in B, then any arbitrarily large part of C must be a sub–run of r, a contradiction,
as r(|w| · |C1| · n+ k) must always be the same letter for n large enough in r, for any k,
but has to be a and b in C, for some k and infinitely many values n. 2

Theorem 7.20. The following statements are true:

1. L ∈ Regd ∩Regω ⇔ L =
⋃

1≤i≤nMiw
ω
i for some regular Mi ⊆ X∗ and wi ∈ X∗.

2. L ∈ Regd ∩G⇔ L = ∅.
3. L ∈ Regd ∩ F⇔ L = Ld(A) for some automaton A with λ(Runω(A)) = Ld(A).
4. Regd ∩ F ⊆ Regω.

Proof. The first statement is an obvious consequence of Lemma 7.19. For L ∈ Regd

there is a finally deterministic automaton A with L = Ld(A) =
⋃

1≤i≤mMiL
d(Bi) for

some regular languages Mi and final deterministic automata Bi. Thus, Ld(Bi) = wωi for
some wi ∈ X∗ or Ld(Bi) possesses no ultimately periodic word, i.e., L = L1 ∪ L2 with
an ω–regular language L1 =

⋃
1≤i≤nMiw

ω
i and some language L2 without any ultimately

period word. If L is in addition ω–regular the same must hold for L2 = L − L1, thus
L2 = ∅ as any non–empty ω–regular language must possess an ultimately periodic word.

2.: L is open if L = MXω, for some M ⊆ X∗. As we assume that |X| > 1 holds
∅ 6= L must possess infinitely many ultimately periodic words in contrast to disjunctive
languages.

3.: Let L = Ld(A) where without any loss of generality any state q of A possesses a
run from q into some final sub–automaton of A. Thus, any finite run in A from iA can
be continued into some disjunctive run, which implies adh (Ld(A)) = λ(Runω(A)). As
L = adhL for any closed ω–language 3. follows. As λ(Runω(A)) is ω–regular 4. follows
as well. 2
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Lemma 7.21. Regd is not closed under countable union or countable intersection.

Proof. Clearly, aj
2
bω ∈ Regd for any j ∈ IN, but

⋃
j>0 a

j2bω = {aj2 | j ∈ IN}bω is not in
Regd. This is easily seen as Ld(A) = {aj2 | j ∈ N}bω implies that all final sub-automata
of A possess only b–arcs. Thus, if we drop all b-arcs in A we get an automaton A′ that
would recognize {aj2 | j ∈ IN}, a contradiction as {aj2 | j ∈ IN} is not regular. Also,
Lk = {baba2ba3 . . . bak}{a, b}ω ∈ Regd, but L =

⋂
k>1 Lk = {baba2ba3 . . . bak . . .} 6∈ Recd.

This is easily seen as a disjunctive language consisting of only one infinite word must be
of the form uwω, following the proof of Lemma 7.19. 2

As a consequence, there is no topology for Xω such that Regd is the class of open or
of closed sets in this topology.

Lemma 7.22. The class Regd is closed under finite union and intersection.

Proof. For Mi = Ld(Ai) one easily constructs a new (non-deterministic) automaton A
(that consists mainly of two disjoint versions of A1 and A2 plus one new initial state from
which one may enter A1 or A2) such that Ld(A) = Ld(A1) ∪ Ld(A2) holds. However, a
construction of an automaton A with Ld(A) = Ld(A1) ∩ Ld(A2) is rather involved. Two
states q1, q2 ∈ QA are equivalent if⋃

q∈QA

Lq1,q(A) =
⋃
q∈QA

Lq2,q(A).

An automaton is reduced if no two different states are equivalent. It turns out that A
may always be chosen to possess only deterministic and reduced final sub–automata.
From switching theory the concept of a homing-sequence is adopted: a word w ∈ X∗

is a homing-sequence if all finite runs in A with labeling w end in the same state. It
turns out that strongly connected, deterministic, reduced automata always possess a
homing sequence. As disjunctive runs have to use such a homing sequence we have some
control on disjunctive runs ri in Ai with λ(r1) = λ(r2): both have to reach isomorphic
sub-automata where they become eventually “synchronized”. Exploiting those facts one
may construct an automaton A with Ld(A) = Ld(A1)∩Ld(A2). Details may be found in
Nolte [31]. 2

We have omitted some details in the previous proof as Lemma 7.22 is not needed
in the following in the study of the complexity of Regd in the Borel hierarchy. It is a
well-known result that Regω ⊆ Fσδ ∩Gδσ holds in the Borel hierarchy.27

Theorem 7.23. Regd ⊆ Fσδ ∩Gδσ.

27Originally, it was one hope to find a natural acceptance concept–via disjunctivity–for Regd to lie
above Regω.
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Proof. For M ⊆ X∗ we compute the complexity of M δ, adhM , and Md.

M δ = {x ∈ Xω | card (A(x) ∩M) =∞} =
⋂
i∈IN

M ∩⋃
j≥i

Xj

Xω ∈ Gδ.

Analogously, adhM = A(M)δ ∈ Gδ. For u ∈ X∗ we get

{u}M δ =
⋂
i∈IN

{u}

M ∩⋃
j≥i

Xj

Xω ∈ Gδ.

For a regular M ,

Md = Mλ−d = adhM∗ ∩
⋂
u∈M

(X∗u)Xω ∈ Gδ,

and
{u}Md = {u}Mλ−d ∈ Gδ.

Thus, for any automaton A we get

Ld(A) =
⋃

B∈Find(A)

LiA,iB(A)(LiB ,iB(B))d

=
⋃

B∈Find(A)

 ⋃
u∈LiA,iB (B)

{u} (LiB ,iB(B))d
 ∈ Gδσ,

showing that Regd = Recd ⊆ Gδσ.

To prove Regd ⊆ Fσδ a concept of k-disjunctivity in quite helpful. An infinite run r in
A is k-disjunctive if for all q ∈ Qω(r) and for all runs r in A from q of length k it is true
that r is a sub-run of r. A k-disjunctive language is defined by Lk−d(A) = {x ∈ Xω |
∃r ∈ Runω(A) (r is k-disjunctive ∧ x = λ(r))}. However, as there are only finitely many
runs of a fixed length k from any state q ∈ QA one may describe them by a finite formula.
In fact, it is a rather simple exercise to describe Lk−d(A) by a S1S-formula of “second
order logic of one successor”. By a famous result of Büchi [2] Lk−d(A) is thus ω-regular
for all k ∈ IN. The relation Regω ⊆ Fσδ implies Lk−d(A) ∈ Fσδ, for all k ∈ IN and one
easily sees that Ld(A) =

⋂
k>0 L

k−d(A). As Fσδ is closed under countable intersection
this implies Ld(A) ∈ Fσδ, thus Recd ⊆ Fσδ. 2

Disjunctivity, called path-fairness, and λ-disjunctivity, called word-fairness, have
been intensively researched by D. Nolte, L. Priese, R. Rehrmann and U. Willecke-Klemme
in the area of fairness. There, Recd, Recλ−d, Regd, and Regλ−d were introduced by Priese
[36]. A hierarchy of variants of k-disjunctive languages was found in the Ph.D. thesis of
U. Willecke-Klemme, see also Priese and Willecke-Klemme [37]. Some topological prop-
erties of disjunctive languages are found in the Masters Thesis of Nolte [31] and some
connections to ultra-metrics were studied by Darondeau, Nolte, Priese, and Yoccoz, see
[14], [34].

Many of the relations between λ-disjunctive and disjunctive languages are by Priese
and Rehrmann [35]. The decidability of equality in Recd is by Rehrmann [39].28

28In these papers the authors operate with a slightly different concept for automata, namely with
non-deterministic finite automata with ε-edges. As ε-edges seem to be not very natural in the study of
disjunctive runs we had to change the concept and thus several proofs.
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[1] É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend.
Circ. Mat. Palermo 27 (1909), 247–271.
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