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Abstract

We present invariance characterizations of di�erent types of random se-

quences. We correct Schnorr's original, incorrect characterization of Martin-L�of

random sequences, compare it with Schnorr's corresponding characterization of

his own randomness concept, and give a similar, new chararacterization of Kurtz

random sequences. That is, we show that an in�nite sequence � is Kurtz ran-

dom if and only if for every partial, computable, measure-invariant function

� : �! ! �! the sequence �(�) is not recursive.

Keywords: Randomness, invariance properties

1 Introduction and Notation

Random sequences were �rst introduced by von Mises [von Mises 1919] as a foun-

dation for probability theory. Von Mises thought that random sequences were a

type of disordered sequences, called \Kollektive". The two features characterizing a

Kollektiv are: the existence of limiting relative frequencies within the sequence and

the invariance of these limits under the operation of an \admissible place selection

rule". Here an admissible place selection rule is a procedure for selecting a subse-

quence of a given sequence � in such a way that the decision to select a term �[n]

does not depend on the value of �[n]. But von Mises' de�nition of an \admissible

place selection rule" is not rigorous according to modern mathematics. After von

Mises introduced the concept of \Kollektive", the �rst question raised was whether

this concept is consistent. Wald [Wald 1936] answered this question a�rmatively

by showing that, for each countable set of admissible place selection rules, the cor-

responding set of \Kollektive" has Lebesgue measure 1. The second question raised

was whether all \Kollektive" satisfy the standard statistical laws. For a negative

answer to this question, Ville [Ville 1939] constructed a counterexample in 1939. He

showed that, for each countable set of admissible place selection rules, there exists

a \Kollektiv" which does not satisfy the law of the iterated logarithm. The exam-

ple of Ville defeated the plan of von Mises to develop probability theory based on

\Kollektive", that is, to give an axiomatisation of probability theory with \random

sequences" (i.e., \Kollektive") as a primitive term. Later, admissible place selection

rules were further developed by Tornier, Wald, Church, Kolmogorov, Loveland and

others. This approach of von Mises to de�ne random sequences is now known as the

\stochastic approach".
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Martin-L�of [Martin-L�of 1966] developed a quantitative (measure-theoretic) ap-

proach to the notion of random sequences. This approach is free from those di�-

culties connected with the frequency approach of von Mises. The idea underlying

this approach is to identify the notion of randomness with the notion of typicalness.

A sequence is typical if it lies in every \large" set of sequences, that is, if it is not

in any \small" set of sequences. Of course, if we take \small" sets as Lebesgue

measure 0 sets, then no typical sequence exists. The solution to this problem given

by Martin-L�of is to de�ne the \small" sets to be certain constructive null sets.

A di�erent characterization of Martin-L�of's randomness concept was given by

Solovay (see, e.g. [Chaitin 1987] or [Kautz 1991]), which is in the style of the �rst

Borel-Cantelli Lemma. Later, the notion of \typicalness" was further studied by

Schnorr, Kurtz and others.

Schnorr [Schnorr 1971] used the martingale concept to give a uniform description

of various notions of randomness. Moreover, he criticized Martin-L�of's concept as

being too strong and proposed a less restrictive concept as an adequate formalization

of a random sequence. Kurtz [Kurtz 1981] introduced a notion of weak randomness

using recursively open sets of Lebesgue measure one.

In [Wang 1996, Wang 1997], the second author obtained a complete characteri-

zation of the relations among these notions of randomness mentioned above. That

is, the following diagram is shown:

M-RAND � S-RAND �W-RAND;

where these sets are the sets of Martin-L�of, Schnorr and Kurtz random sequences,

respectively.

Note that a completely di�erent approach to the de�nition of random sequences

was proposed by Chaitin [Chaitin 1975], and further developed by others (compare

[Calude 1994]). In this approach, a notion of complexity is used for a de�nition of

random sequences: The complexity of a �nite string x is de�ned to be the length

of the minimal string y from which x can be generated e�ectively. Then an in�nite

sequence is random if all of its initial segments have the maximal possible complexity

(modulo some additive constant).

Schnorr and Chaitin [Chaitin 1975] have shown that a sequence is random in

Chaitin's sense if and only if it is Martin-L�of random. But it is still open whether

one can de�ne a concrete set of place selection rules so that the notion of stochasticity

and the notion of typicalness coincide. Some partial results have been obtained in

this line for abstract selection rules.

In this paper we give a summary of Schnorr's characterization of Martin-L�of's

randomness concept (respectively Schnorr's randomness concept) in terms of in-

variance properties. Note that Schnorr's original characterization of Martin-L�of's

randomness concept in terms of invariance properties is not correct. We will give

a correct version in this paper. And we prove a similar characterization of Kurtz's

randomness concept.

We close this section by introducing some notation we will use.

N is the set of natural numbers. � = f0; 1g is the binary alphabet, �� is the set

of (�nite) binary strings, �n is the set of binary strings of length n, �! is the set of

in�nite binary sequences, and �1 = �� [ �!. The length of a string x is denoted

by jxj. � is the empty string. < is the length-lexicographical ordering on �� and

zn (n � 0) is the nth string under this ordering. For strings x; y 2 ��, xy is the

concatenation of x and y. For a sequence x 2 �! and an integer number n � �1,

2



x[0::n] denotes the initial segment of length n + 1 of x (x[0::n] = x if jxj � n+ 1)

and x[i] denotes the ith bit of x, i.e., x[0::n] = x[0] � � � x[n]. Lower case letters

� � � ; k; l;m; n; � � � ; x; y; z from the middle and the end of the alphabet will denote

numbers and strings, respectively. Lower case Greek letters �; �; � � � denote in�nite

sequences from �!.

A subset of �� is called a language or simply a set. Capital letters are used to

denote subsets of �� and boldface capital letters are used to denote subsets of �!.

For sets A and B, A � B (respectively A � B) denotes that A is a subset of B

(respectively A � B and B 6� A).

If X is a set of strings and C is a set of in�nite sequences, then X �C denotes

the set fw� : w 2 X; � 2 Cg. For a set C of in�nite sequences, we write Prob[C]

for the probability that � 2 C when � is chosen by a random experiment in which

an independent toss of a fair coin is used to decide whether �[n] = 1. This is the

usual product measure on �! and de�ned for all measurable sets C with respect to

this measure.

We �x a standard recursive bijection �x; y < x; y > on ��. For a set A � ��,

we set A[i] = fx : < x; zi >2 Ag.

A Martin-L�of test is a recursively enumerable set A � �� satisfying

Prob[A[i]
� �!] � 2i

for all i 2 N . An in�nite sequence � is random if it withstands every Martin-L�of

test A, that is � =2
T
iA

[i] � �!. Let M-NULL be the set of sequences which do not

withstand some Martin-L�of test, and let M-RAND = �! nM-NULL be the set

of Martin-L�of random sequences.

Schnorr modi�edMartin-L�of's randomness concept as follows. A Schnorr test is a

pair (U; g) consisting of a recursively enumerable set U � �� and a recursive function

g, together with a recursive enumeration fUsgs2N of U (that is, each Us � ��

contains exactly s words, Us � Us+1 for all s,
S
s Us = U , and the sequence fUsgs is

recursive) such that, for each k and j,

1. Prob[U [k] � �!] � 2�k.

2. Prob[(U [k] n U
[k]
g(k;j)) � �

!] � 2�j .

An in�nite sequence � does not withstand the Schnorr test (U; g) if � 2 U [k] � �! for

all k 2 N . A sequence � is Schnorr random if it withstands all Schnorr tests. Let

S-NULL be the set of sequences which do not withstand some Schnorr test, and

let S-RAND = �! n S-NULL be the set of Schnorr random sequences.

Kurtz [Kurtz 1981] further de�ned a notion of weak randomness in terms of

recursively open sets of Lebesgue measure 1. A Kurtz test is a recursively enumerable

set U � �� such that Prob[U � �!] = 1. A sequence � does not withstand the Kurtz

test U if � =2 U � �!. A sequence � is Kurtz random if it withstands all Kurtz tests.

Let W-NULL be the set of sequences that do not withstand some Kurtz test, and

let W-RAND = �! nW-NULL be the set of Kurtz random sequences.

In [Wang 1996, Wang 1997], the second author has given an alternative de�nition

of Kurtz random sequences in terms of Martin-L�of statistical tests. An mw-test is a

pair (U; g) where U � �� is a recursive set and g is a recursive function such that,

for all k, the following two conditions hold:

1. U [k] � ��g(k).
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2. Prob[U [k] � �!] � 2�k.

A sequence � does not withstand the mw-test (U; g) if � 2 U [k] ��! for all k 2 N . A

sequence � is mw-random if it withstands all mw-tests.

Theorem 1.1 [Wang 1996, Wang 1997] An in�nite sequence � is Kurtz random if

and only if it is mw-random.

2 Main Results

In this section we formulate a characterization of Martin-L�of's randomness concept

in terms of invariance properties and compare it with Schnorr's characterization

of his own randomness concept. Note that Schnorr's original characterization of

Martin-L�of's randomness concept is not correct. And we will give a similar charac-

terization of Kurtz's randomness concept.

De�nition 2.1 A partial function ' : �� ! �� is monotone if '(xy) 2 '(x) � ��

for all x; xy 2 dom(').

A partial function � : �! ! �! is continuous with respect to the product

topology on �! if, for each set A � ��, there exists a set B � �� such that

��1(A ��!) = (B ��!)\ dom(�), where dom(�) is the domain of �. This can also

be expressed in another way.

De�nition 2.2 [Schnorr 1971] A partial function � : �! ! �! is induced by a

partial, monotone function ' : �� ! �� if dom(�) =
T
n('

�1(�n ���) ��!) and, for

each � 2 dom(�) and n 2 N , �(�) 2 '(�[0::n� 1]) � �!.

It is easy to see that a partial function � : �! ! �! is continuous if and only if

there is a partial, monotone function ' : �� ! �� such that � is a restriction of the

function induced by '.

De�nition 2.3 [Schnorr 1971]

1. A partial function � : �! ! �! is called computable if it is induced by some

partial recursive, monotone function ' : �� ! ��.

2. A partial function � : �! ! �! is called strongly computable if it is induced

by some total recursive, monotone function ' : �� ! ��, and there is a total

recursive function h : N ! N such that dom(�) = f� 2 �! : j'(�[0::h(n) �

1])j � n; n 2 Ng.

In [Schnorr 1971] computable functions are called sub-computably continuous,

and strongly computable functions are called computably continuous. It is easy to

see that a partial function � : �! ! �! is computable if and only if it is induced by

some total recursive, monotone function ' : �� ! �� ([Schnorr 1971], Lemma 6.3).

For total functions � computability and strong computability are equivalent.

Lemma 2.4 A total function � : �! ! �! is computable if and only if it is strongly

computable.
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Proof. Let � : �! ! �! be a total computable function. W.l.o.g. we can assume

that � is induced by a total recursive monotone function ' : �� ! ��. We de�ne

h : N ! N by h(n) = minfm : j'(x)j � n for all x 2 �mg. By compactness of �!,

the function h is well-de�ned and total. It is computable. The pair ('; h) shows

that � is strongly computable. ut

De�nition 2.5 [Schnorr 1971]

1. A partial function � : �! ! �! is measure bounded if, for each Lebesgue

measurable set C � �!, there exists a constant c such that

Prob[��1(C)] � c � Prob[C]:

2. A partial function � : �! ! �! is measure-nondecreasing (note that Schnorr

used a di�erent word: massverkleinernd) if, for each Lebesgue measurable set

C � �!,

Prob[��1(C)] � Prob[C]:

3. A partial function � : �! ! �! is measure-invariant if, for each Lebesgue

measurable set C � �!,

Prob[��1(C)] = Prob[C]:

After these preliminary de�nitions, we can introduce von Mises style charac-

terizations of the notions of Martin-L�of randomness and Schnorr randomness. In

[Schnorr 1971], Satz 6.7, Schnorr claimed:

Given a recursive sequence � 2 �!, a sequence � 2 �! is Martin-L�of ran-

dom if and only if there is no partial, computable, measure-nondecreasing

function � : �! ! �! such that �(�) = �.

This is not correct. For counterexamples to Schnorr's claim the reader is referred to

[Hertling and Weihrauch 1997] and [Wang 1996, Wang 1997]. In the following, we

prove a correct version of Schnorr's result.

De�nition 2.6 [Hertling and Weihrauch 1997] A set D � �! is a fast enclosable

G�-set if there is an r.e. set A � �� satisfying the following conditions:

1. D =
T
i2N (A

[i] � �!),

2. Prob[A[i] � �! nD] � 2�i for all i 2 N .

Theorem 2.7 Given a recursive sequence � 2 �!, a sequence � 2 �! is Martin-

L�of random if and only if there is no partial, computable, measure-nondecreasing

function � : �! ! �! with �(�) = � whose domain dom(�) is a fast enclosable

G�-set.

Proof. The reader is referred to [Hertling and Weihrauch 1997] for the impli-

cation \)". For the implication \(", we proceed (almost) as in the proof of

the second part of Satz 6.7 in [Schnorr 1971] and construct a partial computable

function � : �! ! �! with dom(�) = �! n M-RAND and �(�) = � for all

� 2 �! nM-RAND. Note that �! nM-RAND is a fast enclosable G�-set. The

function � is measure-nondecreasing since Prob[dom(�)] = 0.
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Namely, it is well-known that there is a universal Martin-L�of test A � �� withT
iA

[i] ��! = �! nM-RAND. Furthermore, we can assume that A is recursive and

satis�es A[i+1] � A[i] � �� for all i. We de�ne a partial recursive monotone function

' : �� ! �� by

'(x) = �[0 : : : n� 1] where n = maxfj : a pre�x of x is in A[j]
g;

for all x 2 ��. Then the partial function � : �! ! �! which is induced by ' is

computable, has domain

dom(�) =
\
k

A[k]
� �! = �!

nM-RAND

and satis�es �(�) = � for all � 2 dom(�). ut

The following results give a characterization of Schnorr's randomness concept in

terms of invariance properties. Remember that a total function � : �! ! �! is

computable if and only if it is strongly computable.

Theorem 2.8 [Schnorr 1971] Let � : �! �! �! be a partial, computable, measure-

invariant function. Then S-RAND � dom(�) and �(S-RAND) � S-RAND.

Theorem 2.9 [Schnorr 1971] Let � : �! ! �! be a total, computable, measure-

bounded function. Then �(S-RAND) � S-RAND.

Let C1 be the set of total, computable, measure-bounded functions � : �! ! �!,

C2 be the set of total, computable, measure-nondecreasing functions � : �! ! �!,

C3 be the set of partial, computable, measure-invariant functions � : �! ! �!, and

C4 be the set of total, computable, measure-invariant functions � : �! ! �!.

Theorem 2.10 [Schnorr 1971] For i = 1; 2; 3; 4, a sequence � 2 �! is Schnorr

random if and only if, for all � 2 Ci with � 2 dom(�), �(�) satis�es the law of

large numbers.

By our characterization of Kurtz's randomness concept in Theorem 1.1, a similar

characterization as Theorem 2.10 can be given for Kurtz's concept. The proofs of the

following theorems are minor modi�cations of the proofs of Theorem 2.8, Theorem

2.9 and Theorem 2.10.

Theorem 2.11 Let � : �! ! �! be a partial, computable, measure-invariant func-

tion. Then �(W-RAND \ dom(�)) �W-RAND.

Proof. It su�ces to show that, for each mw-test (U; g), there is another mw-test

(V; f) such that

��1(NULL(U;g)) � NULL(V;f) (1)

where NULL(U;g) (respectively NULL(V;f)) is the set of sequences that do not

withstand the mw-test (U; g) (respectively (V; f)).

W.l.o.g., we may assume that � is induced by a total recursive, monotone func-

tion ' : �� ! ��. First, for all k 2 N, de�ne the set A[k] � �� to be the smallest

set with the following properties:

1. Prob[A[k] � �!] � 1� 2�k,
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2. if x 2 A[k] then j'(x)j � g(k),

3. if zn 2 A[k], j � n and j'(zj)j � g(k) then zj 2 A[k].

These sets A[k] are well-de�ned and �nite because � is measure-invariant. Let l(k) =

maxfjxj : x 2 A[k]g, C [k] = �l(k) n A[k] � ��, V [k] = C [k+1] [ fx 2 A[k+1] : '(x) 2

U [k+1] ���g, and f(n) = l(n+1). Then it is easily checked that (V; f) is an mw-test

and ��1(U [k+1] � �!) � V [k] � �!. Whence (1) holds. This completes the proof of

the theorem. ut

Theorem 2.12 Let � : �! ! �! be a total, computable, measure-bounded function.

Then �(W-RAND) �W-RAND.

Proof. It su�ces to show that, for each mw-test (U; g), there is another mw-test

(V; f) such that (1) holds. By Lemma 2.4 the function � is strongly computable.

Let ' : �� ! �� and h : N ! N be a pair of total functions which witness that �

is strongly computable. Fix a number c such that, for all Lebesgue measurable sets

C � �!, Prob[��1(C)] � 2c � Prob[C].

For all k, de�ne f(k) = h(g(k + c)) and V [k] = fx 2 �f(k) : '(x) 2 U [k+c] � ��g.

Since j'(x)j � g(k + c) for all x 2 �f(k) we see V [k] � �! = ��1(U [k+c] � �!), hence

Prob[V [k]
� �!] � 2c � Prob[U [k+c]

� �!] � 2�k

for all k 2 N . Hence, the pair (V; f) is an mw-test satisfying (1). This completes

the proof of the theorem. ut

Theorem 2.13 Let (U; g) be an mw-test and � 2 �! be a recursive sequence. Then

there exists a total, strongly computable, measure-invariant function � : �! ! �!

such that �(�) = � for all � 2 NULL(U;g).

Proof. W.l.o.g., we may assume that, for all k, the following hold:

1. g is strictly increasing,

2. U [k] � �g(k),

3. for all x 2 U [k+1], there is a pre�x y of x such that y 2 U [k],

4. Prob[U [k] � �!] = 2�k.

In the following we de�ne a total recursive, monotone function ' : �� ! �� such

that the induced function � : �! ! �! satis�es our requirements.

At �rst, we de�ne sequences C(k;0); � � � ; C(k;2k�1) of sets of strings and sequences

x(k;0); � � � ; x(k;2k�1) of strings by induction on k.

Let C(0;0) = f�g and x(0;0) = f�g.

Let C(k+1;0); � � � ; C(k+1;2k+1�1) be a sequence of subsets of �g(k+1) such that

1. (C(k+1;2i) [ C(k+1;2i+1)) � �
! = C(k;i) � �

! for i < 2k,

2. C(k+1;0) = U [k+1],

3. C(k+1;i) \ C(k+1;j) = ; for i 6= j,

4. Prob[C(k+1;i) � �
!] = 2�(k+1) for i < 2k+1,
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and let x(k+1;0); � � � ; x(k+1;2k+1�1) be an enumeration of all strings in �k+1 such that

1. x(k+1;0) = �[0::k],

2. x(k;i) � �
! = fx(k+1;2i); x(k+1;2i+1)g � �

! for all i < 2k.

Now the function ' : �� ! �� is de�ned by '(�) = � and

'(yb) =

(
x(k;i) if yb 2 C(k;i) for some k; i 2 N

'(y) otherwise

where y 2 �� and b 2 �.

The function ' is total recursive and monotone. It is straightforward to check

that the induced function � : �! ! �! by ' is total, strongly computable and

measure-invariant. Moreover, for all � 2 NULL(U;g), �(�) = �. ut

Now we are ready to characterize the notion of Kurtz randomness in terms of

invariance properties. By combining previous theorems, we obtain the following

theorem.

Theorem 2.14 For i = 1; 2; 3; 4 and a recursive sequence � 2 �!, a sequence

� 2 �! is Kurtz random if and only if �(�) 6= � for all � 2 Ci with � 2 dom(�).

Proof. This follows from Theorem 2.11, Theorem 2.12, Theorem 2.13, and from

the fact that no recursive sequence is Kurtz random. ut

The topic of this paper is related to the independence properties of subsequences

of a random sequence and is also related to the independent random sequences. A

number of general independence properties for subsequences of a random sequence

are established by Kautz [Kautz 1991] and van Lambalgen [van Lambalgen 1987b,

van Lambalgen 1987a] et al. There are various applications of independence prop-

erties and independent random sequences. For example Lutz [Lutz 1992] used the

independent random oracles to characterize complexity classes, and Kautz and Mil-

tersen [Kautz and Miltersen 1994] used independence properties of Martin-L�of ran-

dom sequences to show that relative to a random oracle, NP is not small in the

sense of Lutz p-measure.
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