
CDMTCS

Research

Report

Series

The Real Number Structure

is E�ectively Categorical

Peter Hertling

Department of Computer Science

University of Auckland

CDMTCS-057

September 1997

Centre for Discrete Mathematics and

Theoretical Computer Science

The Real Number Structure is E�ectively Categorical

Peter Hertling�

Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealandy

September, 1997

Abstract

On countable structures computability is usually introduced via numberings. For

uncountable structures whose cardinality does not exceed the cardinality of the con-

tinuum the same can be done via representations. Which representations are appro-

priate for doing real number computations? We show that with respect to computable

equivalence there is one and only one equivalence class of representations of the real

numbers which make the basic operations computable. This characterizes the real

numbers in terms of the theory of e�ective algebras or computable structures, and is

reected by observations made in real number computer arithmetic. We also give fur-

ther evidence for the well-known non-appropriateness of the representation to some

base b by proving that strictly less functions are computable with respect to these

representations than with respect to a standard representation of the real numbers.

Furthermore we consider basic constructions of representations and the countable

substructure consisting of the computable elements of a represented, possibly un-

countable structure. For countable structures we compare e�ectivity with respect to

a numbering and e�ectivity with respect to a representation. Special attention is paid

to the countable structure of the computable real numbers.

Mathematics Subject Classi�cation: 03D45, 03F60, 03D80, 68Q05.

Keywords: numberings, representations, e�ectivity for countable and for uncount-

able structures, computability over the real numbers.

1 Introduction

On the set of natural numbers IN = f0; 1; 2; : : :g or the set of �nite words over a �nite

alphabet one has the classical equivalent computability notions by the Church-Turing

thesis, de�ned e.g. via �-recursive functions or Turing machines. If one wishes to introduce

computability on other structures, for example on the set lQ of rational numbers, one

can either consider a special machine model for this dataset or try to refer to existing

computability notions. The last idea seems to be preferable since by this idea one refers

�The author was supported by the DFG Research Grant No. H 2489/2-1. He would like to thank

Bakhadyr Khoussainov and Klaus Weihrauch for valuable discussions and Klaus Weihrauch also for useful

comments on an earlier version of the paper.
yEmail: hertling@cs.auckland.ac.nz.

1

to computations as they are carried out by actual digital computers. For countable data

sets or structures S this can be done by (partial) notations � :� �� ! S (where � is a �nite

alphabet) or numberings � :� IN ! S where the elements n in dom (�) are considered to

be names for the objects �(n) in S. Then the computation is carried out not directly on

the objects but on their names. The concept of numbered structures has been treated in

great generality by Maltsev [24]. For the theory of total numberings (numberings where all

natural numbers are names for objects) see Ershov [8, 9, 10]. For example it is easy to see

that there is one and except for computable equivalence only one numbering of the rational

numbers lQ which makes the four basic arithmetic �eld operations computable and the

equality relation enumerable. Altogether, structures with this property, that is, with the

property that they have one and only one numbering except for equivalence, are especially

interesting because their structure already determines the computability notion on them.

If one considers special numberings with decidable domains such structures are called

\computably stable" by Stoltenberg-Hansen and Tucker [31], or, for one-to-one numberings

with decidable domains they are called \computably categorical" in computable model

theory, see e.g. Khoussainov and Shore [18].

In this paper we are especially interested in the real numbers. The problem to introduce

computability on the real numbers leads to the problem how to represent real numbers on

a digital computer or its theoretical model, the Turing machine. Of course, one cannot

represent every real number by a �nite word or a natural number. Hence, one possibility

is to restrict oneself to a countable substructure on which computability can be introduced

via a numbering as above. In this more constructive approach, represented in the Russian

school of recursive analysis, see e.g. Kushner [22], also reected in constructive analysis,

see Bishop and Bridges [2], one considers only computable real numbers, that is, numbers

which can be approximated algorithmically with arbitrary precision. These real numbers

can be represented by programs for these algorithms, and hence, can be numbered. We

shall consider this approach in Section 5.

The other approach is based on the idea that real numbers can be represented by

in�nite sequences of digits where larger portions of such a sequence contain more and

more precise information about the real number. This leads to a computability notion

based on approximations. This computability notion for real functions was studied by

Grzegorczyk [12, 13], Lacombe [23], Hauck [14, 15, 16], Pour-El and Richards [29], Kreitz

and Weihrauch [33, 21, 38, 34], Ko [19], and others. Kreitz and Weihrauch [33, 21, 34],

see also Hauck [16], developed a general theory of represented topological spaces, which

allows the introduction of computability on a large variety of spaces. The basic idea is

the same as with numberings: one considers a mapping from a name space to the space in

question, called a representation, and performs computations not directly on the objects

but on their names.

For the real numbers the question arises which representations are suitable for real

number computations. We answer this question by proving that there is one and except

for computably equivalent ones only one representation of the real numbers such that

certain basic operations on the real numbers are e�ective. These operations are deter-

mined by the fact that the set of real numbers IR is a complete archimedean ordered

�eld and uniquely determined by these conditions. Our result has several consequences.

On the one hand it gives an algebraic characterization of the computability notion over

the real numbers: the notion of a computable real function is intrinsically determined

2

by the structure of the real numbers themselves and by the general approach to de�ne

computability using representations and the Turing machine model. An ad hoc de�nition

is not necessary, though often it is very useful. On the other hand it explains the expe-

rience made in practice that certain representations of the real numbers are favourable

for computational purposes while others are not. For example, computer arithmetic for

real number computations, i.e. the hardware and software implementation of algorithms

for fast and e�cient real number computations makes essential use of redundant number

systems which stem from representations lying in the class of standard representation of

the real numbers, see Muller [28] and Section 4. Note that Kreitz and Weihrauch [21, 38]

de�ned the notion of an admissible representation which is de�ned mainly in topological

terms, but still relies on the choice of a numbering of a base of the topology. If this

numbering is chosen appropriately, then the admissible representations of the reals are

standard representations.

Before we analyze the real number structure we provide a general framework of ef-

fectivity for countable structures and for uncountable structures. In the �rst section we

introduce structures, for countable structures e�ectivity and e�ective categoricity with re-

spect to numberings, and for structures whose cardinality does not exceed the cardinality

of the continuum e�ectivity and e�ective categoricity with respect to representations. It

is essential that we allow also in�nitary operations.

In the following section about basic constructions we show that the classical result

(Maltsev [24]) about the minimal (in terms of reduction) numbering of a �nitely gener-

ated algebra can be transferred to these cases. Furthermore we show that a structure

which is e�ectively categorical with respect to representations has a canonical countable

substructure of computable elements. For countable structures we compare the notions of

e�ectivity with respect to a numbering and of e�ectivity with respect to a representation.

These notions are equivalent if only �nitary operations are allowed and the structure is

generated by its constants and functions, but they turn out to be not equivalent in general.

In the subsequent section the full structure of the real numbers is considered, and

it is shown to be e�ectively categorical. We complement this result by giving further

evidence that the representation to a base b is not appropriate for computational purposes:

we prove that the class of functions which are computable with respect to any of these

representations is always a strict subset of the class of functions computable with respect

to a standard representation of the real numbers.

Then we discuss various results connected with the countable structure of the com-

putable real numbers. In analogy to the e�ective categoricity of the full real number

structure with respect to representations, the countable structure of the computable real

numbers is e�ectively categorical with respect to numberings. This follows immediately

from a theorem of Moschovakis [26].

The paper ends with a discussion of metric spaces and with open problems.

2 E�ectivity for Countable and for Uncountable Structures

The section starts with the de�nition of the notion of a structure in the form in which we

will use it. Then we introduce numberings and representations, de�ne computability for

functions and relations with respect to them, and explain when a structure may be called

e�ective or e�ectively categorical with respect to numberings or representations.

3

By f :� X ! Y we denote a partial function with domain dom f � X and range f �

Y . We denote x 2 dom f also by f(x) =# or by f(x) # while x 62 dom f is denoted

by f(x) =" or f(x) ". If S is a set, then S! = fp j p : IN ! Sg is the set of all

in�nite sequences over S. A set A � IN is called an initial segment of IN if there is an

N 2 IN [f!g with A = fn 2 IN j n < Ng where fn 2 IN j n < !g = IN. We call

a function m :� IN ! f1; 2; : : :g [f!g computable i� the function ~m :� IN ! IN with

dom ~m = domm and ~mi = mi if mi < ! and ~mi = 0 if mi = !, is computable.

De�nition 2.1 1. A signature is a triple (Nc;m; n) consisting of an element Nc 2

IN [f!g and two computable functions m :� IN ! f1; 2; : : :g [f!g and n :� IN !

f1; 2; : : :g [f!g whose domains are initial segments of IN.

2. A structure S of signature (Nc;m; n) is a quadruple

S = (S; c; f; P)

consisting of

(a) a set S, the universe,

(b) a function c :� IN! S with dom c = fi 2 IN j i < Ncg, the list of constants,

(c) a function f :�
L
j2domm S

mj ! S de�ned on a subset of the direct sumL
j2domm S

mj of the spaces Smj ,

(d) and a subset P �
L
k2domn S

nk .

3. For j 2 domm we de�ne the function fj to be the restriction of f to the j-th

component Smj of the direct sum
L

j2domm S
mj , and analogously for k 2 domn the

predicate Pk to be the intersection of P with the k-th component Snk of the direct

sum
L

k2domn S
nk . The numbers mj and nk are called the arities of fj and Pk,

respectively. Usually a structure will be written in the form

(S; c0; c1; c2; : : : ; f0; f1; f2; : : : ; P0; P1; P2; : : :)

where the signature is clear from the context.

Note that we consider not only functions and relations on �nite vectors but also in-

�nitary functions and relations which are de�ned on in�nite sequences s 2 S!.

Remarks 2.2 Without problems the de�nition could be changed in the following ways.

1. One could consider constants as functions on S0 = ; instead of treating constants

and functions separately.

2. Sometimes it is advantageous to consider not only functions f :� Sm ! S but also

functions f :� Sm � T n ! R where T and R might be other structures. The same

applies to predicates. We shall consider an example in the last section.

3. In many applications, especially in computable analysis it is often desirable to con-

sider also operators which do not produce one speci�c value on one argument but

one value out of a set of values. This could be modeled by set-valued functions but

often the notion of a correspondence (see Bourbaki [3]) is more appropriate, compare

Weihrauch and Kreitz [21, 34], Brattka and Hertling [5], and Brattka [4].

4

Examples 2.3 1. The rational number structure (lQ; 0; 1;+;�; �; 1=:;=) consisting of

the rational numbers, the constants 0 and 1, the �eld operations addition \+":

lQ2 ! lQ, additive inverse \�": lQ ! lQ, multiplication \�": lQ2 ! lQ, multiplicative

inverse \1=:": lQ n f0g ! lQ, and the predicate \=" = f(q; q) 2 lQ2 j q 2 lQg. This

structure has the signature (2;m; n) with domm = f0; 1; 2; 3g, and m0 = m2 = 2,

m1 = m3 = 1, and domn = f0g, n0 = 2.

2. The real number structure (IR; 0; 1;+;�; �; 1=:;Cauchylim; <) consisting of the real

numbers, the constants 0 and 1, the �eld operations addition \+": IR2 ! IR, additive

inverse \�": IR ! IR, multiplication \�": IR2 ! IR, multiplicative inverse \1=:":

IR n f0g ! IR, the order relation \<" = f(x; y) 2 IR2 j x < yg, and the limit

operator Cauchylim :� IR! ! IR which maps each Cauchy sequence of reals to its

limit, that is

dom (Cauchylim) = f(xn)n2IN 2 IR! j (8" > 0)(9N)(8n;m > N) jxn � xmj � "g;

Cauchylim((xn)n) = lim
n!1

xn for all (xn)n 2 dom(Cauchylim):

This structure has the signature (2;m; n) with domm = f0; 1; 2; 3; 4g, and m0 =

m2 = 2, m1 = m3 = 1, m4 = !, and domn = f0g, n0 = 2.

We wish to introduce computability on structures and to make precise what it means

to say that an element, a function, or a predicate of a structure is computable. For

a countable structure S this can be done by using numberings or notations, which is

equivalent. We shall use numberings.

De�nition 2.4 A numbering of a countable set S is a surjective function � :� IN! S.

Remark 2.5 We do not impose any restriction on the domain of de�nition of the number-

ing, thereby following e.g. Maltsev [24], Moschovakis [26, 27], and Weihrauch [34], though

in many references in the literature mainly numberings with computably enumerable or

decidable domains are considered (see also Maltsev [24] or Stoltenberg-Hansen and Tucker

[31]; Ershov [8, 9, 10] treats total numberings). The reason for our choice is the fact that

we also wish to capture the structure of the computable real numbers, which does not have

a standard numbering with a nice domain, see Section 5. It seems that the introduction

of computability on structures via naming systems gives rise to two aims: (a) to be able

to perform the desired operations in an e�ective way on names of objects, (b) to be able

to recognize whether a natural number or string is a name of an object or not. With our

de�nition above we address the �rst aim, neglecting the second. The second is infeasible

already for the computable real numbers.

For uncountable structures whose cardinality is at most the cardinality of the con-

tinuum one can proceed in the same manner using representations, see Hauck [16] and

Weihrauch and Kreitz [33, 21, 34]. Therefore one must have a natural computability no-

tion on the space of names. Possible spaces of names are the Cantor space �! = fp j

p : IN ! �g (i.e. the space of all in�nite sequences over a �nite alphabet �; computable

functions are de�ned via Oracle Turing machines or Type 2 Turing machines) or the Baire

space IF := fp j p : IN! INg (the space of all total functions mapping natural numbers to

natural numbers; computable functions will be de�ned below). For complexity theoretic

5

considerations one should use the Cantor space because its computability is based directly

on the Turing machine model, see e.g. Weihrauch [36, 37]. We shall use the Baire space

IF, mainly because of notational simplicity. Most of the following notions are taken from

Weihrauch and Kreitz [33, 21, 34].

De�nition 2.6 A representation of a set S is a surjective function � :� IF! S.

We summarize numberings and representations by saying that a function � :� X ! S

is a naming system if X is either equal to IN or IF and � is either a numbering or a

representation.

In order to introduce computability on a numbered or represented set we need com-

putability notions on IN and IF. We use the usual computable functions and functionals,

compare Rogers [30], Weihrauch [34]. For the convenience of the reader we give the de�-

nitions.

Computable functions f :� INk ! IN and computably enumerable (c.e.) sets A � INk

(k � 1 arbitrary) are de�ned in the usual way (also called partial recursive, recursively

enumerable).

A function f :� IN ! IF is called computable i� there is a computable function g :�

IN2 ! IN with dom f = fn 2 IN j (8i) g(i; n) #g and f(n)(i) = g(i; n), for all n 2 dom f

and i 2 IN.

A function f :� IF ! IN is called computable i� there is a computable1 function

g :� IN� ! IN satisfying the following three conditions: (1) g(v) = g(vw) for all v,

vw 2 dom g, (2) dom f = (dom g)IF = fp 2 IF j a pre�x of p lies in dom gg, (3) f(p) = g(v)

for any p 2 dom f and any pre�x v 2 dom g of p.

A function g :� IN� ! IN� is called monotone i� g(vw) 2 g(v)IN� for all v, vw 2 dom g.

If g :� IN� ! IN� is monotone, then the function f :� IF ! IF induced by g is de�ned

by dom f =
T
n(g

�1(INnIN�)IF) and f(p) 2 g(v)IF for all pre�xes v 2 dom g of p. A

function f :� IF ! IF is called computable i� there is a monotone, computable2 function

g :� IN� ! IN� which induces f . It is well-known and easy to prove that a function

f :� IF ! IF is computable if and only if there is a total (!), monotone, computable

function g : IN� ! IN� which induces f .

A function f :� IN� IF! X (where X 2 fIN; IFg) is called computable i� the function

g :� IF ! X with g(p) := f(p(0); (p(1); p(2); : : :)) is computable. Note that a function

g :� IF! IF is computable if and only if there is a computable function h :� IN� IF! IN

with dom g = fp 2 IF j (8n) h(n; p) #g and g(p)(n) = h(n; p) for all p 2 dom g and n 2 IN.

A subset U � IF is called computably enumerable (c.e.) i� there is a computable

function f :� IF ! IN with dom f = U . This is equivalent to saying that there is a

computably enumerable3 subset A � IN� with U = AIF =
S
w2AwIF = fp 2 IF j a pre�x of

p lies in Ag. A subset U � IN� IF is called c.e. i� the set fp 2 IF j (p(0); (p(1); p(2); : : :)) 2

Ug is c.e.

We denote the set of partial computable functions f :� IN ! IN by P(1). Often we

shall use a total standard numbering ' : IN! P(1) with the properties:

1To be precise: this means that there is a computable function ~g :� IN! IN with g(�IN�(i)) = ~g(i) for all

i 2 IN, where �IN� : IN! IN� is the bijection with �IN�(0) = " and �IN�(1+ hk; hn0; : : : ; nkii) = (n0; : : : ; nk)

for k 2 IN, n0; : : : ; nk 2 IN. For the standard tupling function h; i see after Corollary 2.12.
2This is also meant relatively to the numbering �IN� : there is a computable function ~g :� IN! IN with

g(�IN�(i)) = �IN�~g(i) for all i 2 IN.
3This means: the set ��1IN�(A) is c.e.

6

1. (utm Theorem) the function u' :� IN�IN! IN with u'(n; i) = 'n(i) for all n; i 2 IN

is computable,

2. (smn Theorem) for any computable H :� IN2 ! IN there is a total computable

function r : IN! IN with 'r(n)(i) = H(n; i) for all n; i 2 IN.

The total computable functions, i.e. the elements of the set R(1) = ff : IN ! IN j f is

computableg, are the computable elements of IF.

De�nition 2.7 Let X;Y 2 fIN; IFg, and :� X ! S and � :� Y ! T be naming

systems of sets S and T .

1. An element s 2 S is called -computable i� it has a computable -name, i.e. if there

is a computable element p 2 X \ dom with (p) = s.

2. A function f :� S ! T is called (; �)-computable i� there is a computable function

g :� X ! Y with dom f � dom g and

f(p) = �g(p)

for all p 2 dom f. This is expressed by saying that g (; �)-tracks f .

3. A subset P � S is called -enumerable i� there is a computably enumerable set

A � X with

A \ dom = �1(P) :

Then we say that A -enumerates P .

The de�nition of a -computable element is void if is a numbering since then all

elements are -computable.

Remarks 2.8 1. By not imposing any restriction on the domain of a (; �)-computable

function we follow Maltsev [24] and Weihrauch [34]. Often only functions which are

strongly computable in the following sense are considered: a function f :� S ! T

is called strongly (; �)-computable i� there is a computable function g :� X ! Y

which (; �)-tracks f and satis�es the condition dom f = dom g \ dom . It is

easy to see that this is equivalent to demanding that f is (; �)-computable and its

domain dom f is -enumerable if � is a numbering. But if � is a representation the

domain of f can be more complicated. For our purposes the simple computability

de�nition of a function turns out to be su�cient. A further reason will be given in

Section 5.

2. Often a subset P � S is called -decidable if its characteristic function cA : S ! IN,

cA(s) = (1 if s 2 A, = 0 otherwise) is (; idIN)-computable. It is easy to see that

this is equivalent to A and S nA being -enumerable. Therefore we will only use the

notion of -enumerability.

3. For the de�nition of (; �)-computability for correspondences (see Remark 2.2) the

reader is referred to Weihrauch and Kreitz [21, 34].

We show that the computability induced by a naming system depends only on its

equivalence class.

7

De�nition 2.9 Let S; T be two sets, and :� X ! S, � :� Y ! T be naming systems.

We say that can be reduced to � and write � � i� there is a computable function

g :� X ! Y with

dom � dom g and (p) = �g(p) for all p 2 dom

(this implies S � T). In that case we say that g proves � �. The naming systems and

� are equivalent (written: � �) i� � � and � � .

We leave the proof of the following lemma to the reader.

Lemma 2.10 Let X;Y � fIN; IFg. Let A � Y be c.e. and f :� X ! Y be computable.

1. If Y = IN, then also f�1(A) is c.e.

2. If Y = IF, then there is a c.e. set B � X with B \ dom f = f�1(A).

Proposition 2.11 Let S; T be sets, and :� X ! S, 0 :� X 0 ! S and � :� Y ! T ,

�0 :� Y 0 ! T be naming systems with � 0 and � � �0. Then:

1. If an element s 2 S is -computable it is also 0-computable.

2. If a function f :� S ! T is (0; �)-computable it is also (; �0)-computable.

3. If a set P � S is 0-enumerable it is also -enumerable.

Proof. 1. If p 2 dom is a computable -name for an element s 2 S and a computable

function g proves � 0, then g(p) is a computable 0-name for s.

2. If g1 proves � 0, g2 proves � � �0, and h (; �)-tracks f , then the function

g2 �h� g1 is computable itself or has a computable extension. This extension (; �0)-tracks

f .

3. Assume that g proves � 0 and A 0-enumerates P . By Lemma 2.10 there is a

c.e. set B � X with B \ dom g = g�1(A). One checks that this set -enumerates P . 2

Corollary 2.12 Let S; T be sets, and :� X ! S, 0 :� X 0 ! S and � :� Y ! T ,

�0 :� Y 0 ! T be naming systems with � 0 and � � �0. Then:

1. Any element s 2 S is -computable, i� it is 0-computable.

2. Any function f :� S ! T is (; �)-computable, i� it is (0; �0)-computable.

3. Any set P � S is -enumerable, i� it is 0-enumerable.

Before we de�ne e�ectivity of structures we need simple constructions of new naming

systems out of given ones. Given a naming system :� X ! S we wish to construct

canonical naming systems k for Sk, ! for a subset of S!, and naming systems for direct

sums of named sets.

First we treat the case of numberings. We need the standard bijection h; i : IN2 ! IN

de�ned by hi; ji := 1
2
(i + j)(i + j + 1) + j and the derived bijections h: : :i : INk+1 ! IN

de�ned by hii := i for k = 0 and hi1; i2; : : : ; ik+1i := hi1; hi2; : : : ; ik+1ii for k � 2. We

also use the projections �kl : IN ! IN de�ned by �kl hi1; : : : ; iki := il for 1 � l � k. Let

8

�i :� IN ! Si for 0 � i � k for some k 2 IN be numberings of sets Si. We de�ne the

numbering (�0; : : : ; �k) :� IN! S0 � � � � � Sk by

(�0; : : : ; �k)hn0; : : : ; nki :=

(
(�0(n0); : : : ; �k(nk)) if n0 2 dom �0; : : : ; nk 2 dom �k
" otherwise:

Let � :� IN! S be a numbering. For 1 � k < ! the numbering �k :� IN! Sk is de�ned

by �k := (�; : : : ; �) (k times). The set of all �-computable sequences is de�ned as

S!;��comp := fs = (s0; s1; s2 : : :) 2 S
! j (9p 2 R(1))(8i) si = �(p(i))g:

The numbering �! :� IN! S!;��comp is de�ned via a total standard numbering ' : IN!

P(1) by

�!(n) :=

(
(�'n(0); �'n(1); : : :) if 'n 2 R(1) and 'n(i) 2 dom �, for all i

" otherwise:

Finally, for an arbitrary set A � IN and function m : A ! f1; 2; : : :g [f!g we de�ne the

numbering
L

j2A �
mj :� IN!

L
j2A S

mj by

M
j2A

�mj hi; ki := the element �mi(k) in the i-th component of
M
j2A

Smj

for each i 2 A and k 2 dom �mi , and
L

j2A �
mj hi; ki :=" otherwise. Obviously, if �i � � 0i

and � � � 0, then (�0; : : : ; �k) � (� 00; : : : ; �
0
k), �

k � (� 0)k for 1 � k < !, and (by an

application of the smn Theorem) �! � (� 0)!. This is true also for
L

j2A �
mj if A is an

initial segment of IN and the arity function m is a computable function. Also, replacing '

by another total standard numbering of P(1) does not change the equivalence class of �!

(or of
L

j2A �
mj , if A is an initial segment of IN and the arity function m is a computable

function).

We do the same for representations, see Weihrauch and Kreitz [33, 21, 34]. We need

standard tupling functions on IF. The empty word in IN� is denoted by ". For p =

p(0)p(1)p(2) : : : 2 IF and q = q(0)q(1)q(2) : : : 2 IF we de�ne hp; qi := p(0)q(0)p(1)q(1) : : : 2

IF. For p0; p1; : : : ; pn+1; : : : 2 IF we de�ne recursively: hp0i := p0 and hp0; : : : ; pn+1i :=

hp0; hp1; : : : ; pn+1ii, and a coding of in�nite sequences over IF by: hp0; p1; p2; : : :i(hi; ji) :=

pi(j).

Let �i :� IF ! Si for 0 � i � k for some k 2 IN be representations of sets Si. We

de�ne the representation (�0; : : : ; �k) :� IF! S0 � � � � � Sk by

(�0; : : : ; �k)hp0; : : : ; pki :=

(
(�0(p0); : : : ; �k(pk)) if p0 2 dom �0; : : : ; pk 2 dom �k
" otherwise:

Let � :� IF ! S be a representation. For 1 � k < ! the representation �k :� IF ! Sk is

de�ned by �k := (�; : : : ; �) (k times). The representation �! :� IF! S! is de�ned by

�!(hp0; p1; p2; : : :i) :=

(
(�(p0); �(p1); : : :) if pi 2 dom �, for all i

" otherwise:

In order to de�ne a representation of a direct sum of sets Smj we use the pairing function

h; i : IN � IF ! IF with hi; pi := (i; p(0); p(1); p(2); : : :) for i 2 IN and p 2 IF. For an

9

arbitrary set A � IN and function m : A ! f1; 2; : : :g [f!g we de�ne the representationL
j2A �

mj :� IF!
L
j2A S

mj by

M
j2A

�mj hi; pi := the element �mi(p) in the i-th component of
M
j2A

Smj

for each i 2 A and p 2 dom�mi , and
L

j2A �
mj hi; pi :=" otherwise. As in the case of

numberings, if �i � �0i or � � �0, then also (�0; : : : ; �k) � (�00; : : : ; �
0
k), �

k � (�0)k for

1 � k < !, and �! � (�0)!. The analogous statement is true also for
L

j2A �
mj if A is an

initial segment of IN and the arity function m is a computable function.

We can also compare numberings and representations. If �i :� IN ! Si and �i :�

IF! Si are numberings and representations of countable sets Si and �i � �i for all i, then

(�0; : : : �k) � (�0; : : : ; �k) for any k 2 IN. Especially, � � � implies �k � �k for any �nite

k � 1 and
L
j2A �

mj �
L

j2A �
mj for any initial segment A � IN and any computable

function m : A ! f1; 2; : : :g. But for k = ! this cannot be true since �! denotes only

�-computable sequences (elements of S!;��comp) while �! denotes arbitrary sequences in

S!. But even the restricted representation �!j(�!)�1(S!;��comp) :� IF ! S!;��comp is not

equivalent to �! in general. (Take for example S = IN, � = idIN, and � : INf0
!g � IF! IN

with �((n; 0; 0; 0; : : :)) := n. Obviously � � �, S!;��comp = R(1), and �! � �!j(�!)�1(R(1)),

but for continuity reasons �!j(�!)�1(R(1)) 6� �!). This fact has consequences as we shall

see.

We are ready to de�ne e�ectivity and e�ective categoricity for structures.

De�nition 2.13 A structure S = (S; c; f; P) = (S; c0; c1; : : : ; f0; f1; : : : ; P0; P1 : : :) with

arities mj for fj and nk for Pk is called n-e�ective (respectively r-e�ective) i� there is a

numbering :� IN! S (resp. a representation :� IF! S) with the following properties:

1. The numbering c of the constants is reducible to .

2. The function f :�
L
j2domm S

mj ! S is (
L

j2domm
mj ;)-computable.

3. The set P �
L

k2domn S
nk is

L
k2domn

nk-enumerable.

In that case we say that the naming system makes S e�ective. If S is n-e�ective (r-

e�ective) and any two numberings (representations) which make S e�ective are equivalent,

then we call S n-e�ectively categorical (r-e�ectively categorical). In that case we call any

such numbering a standard numbering of S (such representation a standard representation

of S).

If the list f0; f1; f2; : : : is �nite then one can consider each function separately, that

is, the second condition can be replaced by the condition that fj is (
mj ;)-computable,

for each j. The same applies to the list of predicates P0; P1; P2; : : :. The pre�xes \n" and

\r" indicate that the notions are de�ned with respect to numberings and with respect to

representations. The following lemma follows immediately from Corollary 2.12 and from

the remarks about the naming systems k for k 2 f1; 2; : : :g [f!g and about
L

j2A
mj .

Lemma 2.14 Let S be a structure.

1. If a numbering � makes S e�ective and � is an equivalent numbering, then also �

makes S e�ective.

10

2. If a representation � makes S e�ective and � is an equivalent representation, then

also � makes S e�ective.

By Corollary 2.12 e�ectively categorical structures are of special interest because one

has canonical notions for computable elements, computable functions and enumerable

predicates on them.

In the terminology of Maltsev [24], an algebraic system has a \partial recursive"-

numbering if and only it is n-e�ective according to the de�nition above. Related notions

have been studied extensively, computable structures in computable model theory, see e.g.

Khoussainov and Shore [18], or e�ective numberings and computable algebras in the theory

of e�ective algebras, see Stoltenberg-Hansen and Tucker [31].

Examples 2.15 1. It is easy to check that the rational number structure introduced

in Example 2.3.1 is n-e�ectively categorical and r-e�ectively categorical. A standard

numbering of lQ is for example the total mapping � lQ : IN! lQ with � lQhi; j; ki := (i�

j)=(k+1). The proof of the n-e�ective categoricity and of the r-e�ective categoricity

is based on the same ideas as used in the proof of Theorem 4.1 below.

2. The structure of the real numbers in Example 2.3.2 is not n-e�ective since it is

not countable. It is also not r-e�ective. To see this assume that there is a rep-

resentation � :� IF ! IR which makes the structure e�ective. Fix a Cauchy se-

quence (xn)n of reals converging to 0 and let pn be a �-name for xn, for each

n. Let p := FCL(hp0; p1; p2; : : :i) be the name for 0 which is produced on input

hp0; p1; p2; : : :i by a computable function FCL which (�!; �)-tracks the limit oper-

ator CauchyLim. Furthermore let q be a �-name for 1. Since the relation \<"

is �2-enumerable there is a pre�x w of hp; qi such that all p0 2 dom � which sat-

isfy hp0; qi 2 wIF also satisfy �(p0) < 1. Hence there is a pre�x v of p with

�(dom � \ vIF) � fx 2 IR j x < 1g. Since the function FCL is continuous there is a

pre�x v0 of hp0; p1; : : :i with FCL(v
0IF \ dom �!) � vIF. But by changing the names

pi with i � jv0j we can change hp0; p1; : : :i to a �!-name r lying in v0IF of a Cauchy

sequence converging to a number greater than 1, e.g. to 2. Then s := FCL(r) is a

�-name for 2 and lies in dom �\ vIF. This is a contradiction. Hence the real number

structure of Example 2 is not r-e�ective. In fact, the limit operator CauchyLim is too

strong. One cannot expect to be able to compute the limit of an arbitrary Cauchy

sequence without knowledge about its convergence rate. A natural r-e�ectively cat-

egorical real number structure will be considered in Section 4.

3 Basic constructions

We show that the classical result about the existence of a minimal (with respect to re-

duction) numbering of a �nitely generated algebra can be transferred to our settings, i.e.

to numberings and representations of structures with in�nitely many possibly in�nitary

functions. Then we make basic observations about the substructure of computable ele-

ments of an r-e�ective, represented structure and start with a comparison of n-e�ectivity

and r-e�ectivity for countable structures.

Let S = (S; c; f) = (S; c0; c1; : : : ; f0; f1; : : :) be a structure without predicates (that

means: the signature (Nc;m; n) of S satis�es domn = ;) where mj is the arity of fj, for

11

each j. We de�ne the closure Sg of fc0; c1; c2; : : :g under ff0; f1; f2; : : :g to be the smallest

subset R of S with

1. fc0; c1; c2; : : :g � R,

2. (8j) fj(dom fj \R
mj) � R.

One observes that Sg =
S
�R� (union over ordinals � out of the second number class,

compare e.g. Weihrauch [34]) where

R0 := fc0; c1; c2; : : :g;

R<� :=
[
�<�

R� ;

R� := R<� [fs 2 S j (9j 2 domm) (9s 2 (R<�)
mj) s = fj(s)g

for each ordinal � out of the second number class. It is obvious that

Sg = (Sg; c0; c1; : : : ; f0jSm0
g
; f1jSm1

g
; : : :)

is a structure itself. If all functions are �nitary, then Sg is countable (then one has already

Sg = R<!). The following result was formulated by Maltsev [24] for �nitely many functions

fj and by Weihrauch [34] for in�nitely many fj.

Proposition 3.1 Let S = (S; c0; c1; : : : ; f0; f1; : : :) be a structure without predicates and

such that the functions fj are all �nitary. The set of equivalence classes of numberings of

Sg which make the structure (Sg; c0; c1; : : : ; f0jSm0
g
; f1jSm1

g
; : : :) e�ective is non-empty and

has a �-minimum.

We shall show a slightly stronger result which covers also in�nitary functions. If the

structure S contains also in�nitary functions fj, then the closure Sg is not necessarily

countable. But one can also obtain a numbering of a reasonable countable substructure

in such a case if one restricts oneself to the elements which are constructed recursively in

a purely computable way. The numbers for elements will encode computable �nite path

trees with �nite or !-branching, which show how the elements can be constructed out of

the constants using the functions.

We de�ne a subset T � S and a numbering �g of T as follows. In parallel we de�ne

the domain D of �g. We follow Weihrauch [34, Ch. 2.8] closely.

D0 := fh0; ii j i 2 dom cg ;

D<� :=
[
�<�

D� ;

D� := D<�

[fh1 + j; hl1; : : : ; lmj
ii j j 2 domm, mj < !, li 2 D<� for i = 1; : : : ;mj,

and (�g(l1); : : : ; �g(lmj
)) 2 dom fjg

[fh1 + j; li j j 2 domm, mj = !, 'l 2 R(1), (8i) 'l(i) 2 D<�,

and (�g'l(i))i 2 dom fjgg ;

D :=
S
�D�,

�g(n) :=

8><
>:
ci if n = h0; ii 2 D

fj(�g(l1); : : : ; �g(lmj
)) if n = h1 + j; hl1; : : : ; lmj

ii 2 D and mj is �nite

fj((�g'l(i))i) if n = h1 + j; li 2 D and mj = ! :

12

One proves by trans�nite induction that �g is well-de�ned and dom �g = D. Set T :=

range �g. Then T � Sg. De�ne the function f
0 by

f 0j :=

(
fjjTmj if mj < !

fjjT!;�g�comp if mj = !

for each j 2 domm.

Theorem 3.2 1. T = (S; c; f 0) = (T; c0; c1; : : : ; f
0
0; f

0
1; : : :) is a countable structure.

2. The numbering �g makes this structure e�ective.

3. The numbering �g is minimal among all numberings which make this structure ef-

fective.

In the special case that all functions fj are �nitary one has T = Sg. Hence, Theorem

3.2 implies Proposition 3.1. For example the rational number structure considered in

Examples 2.3.1 and 2.15.1 without the equality relation has this form, i.e. its universe lQ

is the closure of its constants and functions, and all its functions are �nitary. The set IRc
of computable real numbers is also the closure of the constants and functions of a natural

structure on IRc, which we will consider in Section 5. It has only one in�nitary function

| a \recursive normed limit operator" |, and the domain of this operator is contained

in IR
!;�g�comp
c .

The proof of Theorem 3.2 goes along the same lines as the proof of Proposition 3.1.

We give is nevertheless because the in�nitary functions cause an additional di�culty.

Proof of Theorem 3.2. 1. It is obvious that T is countable and easy to check that

T = (T; c; f 0) = (T; c0; c1; : : : ; f
0
0; f

0
1; : : :) is a structure.

2. The total computable function i 7! h0; ii proves c � �g. And the total computable

function hj; ki 7! h1 + j; ki shows that f 0 is (
L

j2domm �
mj
g ; �g)-computable.

3. Assume that � :� IN ! T is a numbering which makes the structure T e�ective.

We have to show that there is a computable function q :� IN! IN with �g(n) = �q(n) for

all n 2 dom �g.

Let ~c be a computable function which proves c � � and let ~f be a computable function

which (
L

j2domm �
mj ; �)-tracks f 0. Let p 2 R(1) be a total computable function with

'phz;li(x) = 'z('l(x)) for all z; l; x 2 IN. In order to obtain the desired function q we

apply the following version of the recursion theorem:

for any H 2 P(1) there is a z 2 IN with 'z(n) = Hhz; ni, for all z; n;

to the function H de�ned by

Hhz; ni :=

8>>><
>>>:

~c(i) if n = h0; ii
~fhj; h'z(l1); : : : ; 'z(lmj

)ii if n = h1 + j; hl1; : : : ; lmj
ii and mj < !

~fhj; phz; lii if n = h1 + j; li and mj = !

" otherwise :

Let z be the obtained number. We claim that the function q := 'z proves �g � �. The

proof is done by trans�nite induction.

13

Let n 2 dom �g. If n = h0; ii, then

�g(n) = ci = �~c(i) = �Hhz; ni = �'z(n) = �q(n) :

If n = h1 + j; hl1; : : : ; lmj
ii and mj < !, then

�g(n) = f 0j(�g(l1); : : : ; �g(lmj
))

= f 0j(�q(l1); : : : ; �q(lmj
))

= f 0j�
mj hq(l1); : : : ; q(lmj

)i

= � ~fhj; hq(l1); : : : ; q(lmj
)ii

= �Hhz; ni

= �q(n)

where we have used the induction hypothesis in the second step. Finally, in the case

n = h1 + j; li and mj = !, one obtains analogously

�g(n) = f 0j((�g'l(i))i)

= f 0j((�'z'l(i))i)

= f 0j((�'phz;li(i))i)

= f 0j�
!phz; li

= � ~fhj; phz; lii

= �Hhz; ni

= �q(n) :

This ends the proof. 2

The last result can also be transferred to the case of representations instead of num-

berings. Then the in�nitary functions do not cause any problems.

Theorem 3.3 Let S = (S; c; f) = (S; c0; c1; : : : ; f0; f1; : : :) be a structure without predi-

cates. The set of equivalence classes of representations of the closure Sg (of the set of

constants fcig under the functions ffjg) which make the structure

Sg = (Sg; c0; c1; : : : ; f0jSm0
g
; f1jSm1

g
; : : :)

e�ective is non-empty and has a �-minimum.

We remark that for an r-e�ectively categorical structure S whose universe S is the clo-

sure of its constants and functions the unique equivalence class of representations which

make the structure e�ective is identical with the minimum equivalence class of represen-

tations which make the structure without the predicates e�ective. This is for example the

case for the real number structure which we will consider in the following section.

In order to prove Theorem 3.3 we need a standard numbering of fF j F :� IF! IF is

computableg.

Lemma 3.4 There is a total numbering : IN! fF j F :� IF ! IF is computableg with

the following properties:

14

1. (utm Theorem) The universal function u :� IN� IF! IF with u (n; p) = n(p) for

all n 2 IN and p 2 IF is computable.

2. (smn Theorem) For any computable function H :� IN � IF ! IF there is a total

computable function r 2 R(1) with r(n)(p) = H(n; p) for all n 2 IN and p 2 IF.

Proof. Each computable function F :� IF ! IF is induced by a partial computable,

monotone function g :� IN� ! IN�. The graph of g is �2IN�-enumerable. We shall obtain

a total numbering of fF j F :� IF ! IF is computableg by de�ning a total numbering of

the graphs of all monotone computable word functions.

Let ' : IN ! P(1) be a total standard numbering. Fix a function h1 2 R(1) such that

'h1(n) 2 R(1) and dom'n = fk 2 IN j 1 + k 2 range'h1(n)g, for all n. There is a function

h2 2 R(1) with

'h2(n)(i) =

8><
>:
'h1(n)(i) if the set �2IN�fk j 1 + k 2 'h1(n)f0; 1; : : : ; igg

is the graph of a monotone function

0 otherwise

Then, for each n 2 IN, the set �2IN�fk j 1 + k 2 range'h2(n)g is the graph of a monotone

computable function mapping words in IN� to words in IN�. Let (n) be the function

F :� IF ! IF induced by the monotone function with this graph. It is clear that is a

total numbering of fF j F :� IF! IF is computableg and satis�es the �rst condition (the

utm Theorem). We show that is also satis�es the second condition. Let H :� IN� IF !

IF be a computable function. Let ~H :� IF ! IF be the computable function de�ned

by ~H(p) := H(p(0); (p(1); p(2); : : :)). Furthermore, let g :� IN� ! IN� be a monotone

computable function which induces ~H, and let ~g 2 R(1) be a total computable function

which enumerates the graph of g in the fashion as above, i.e. graph g = �2IN�fk 2 IN j

1 + k 2 range ~gg. Let r1 2 R(1) be a function such that 'r1(n)(i) = 0 if ~g(i) = 0 or if

the �rst word in the pair of words �2IN�(~g(i) � 1) does not start with n, and such that

�2IN�('r1(n)(i) � 1) = (v; w) if �2IN�(~g(i) � 1) = (nv;w) for some v; w 2 IN�. Finally �x a

function r2 2 R(1) with dom'r2(n) = fk 2 IN j 1 + k 2 range'r1(n)g. This function r2
satis�es the condition r2(n) = H(n; p) for all n 2 IN and p 2 IF. 2

We shall use the following recursion theorem for .

Lemma 3.5 Let be a total numbering as in the last lemma. Then for any computable

function H :� IN� IF! IF there is a number z 2 IN with z(p) = H(z; p) for all p 2 IF.

Proof. Let s 2 P(1). By Condition (1) in Lemma 3.4 the function (n; p) 7! s(n)(p)

is computable. By Condition (2) in Lemma 3.4 there is an r 2 R(1) with r(n) = s(n)
for all n. This means that the numbering is precomplete, compare Weihrauch [34]. Let

H :� IN� IF! IF be a computable function. Condition (2) in Lemma 3.4 gives a function

r 2 R(1) with r(n)(p) = H(n; p) for all n 2 IN and p 2 IF. An application of the recursion

theorem, e.g. Corollary 2.5.7(2) in [34], yields the desired number z. 2

Proof of Theorem 3.3. The proof follows closely the proof of Theorem 3.2. Compare

also Weihrauch [34, Ch. 2.7, 2.8, 3.4].

15

We de�ne subsets D� (� ordinals out of the second number class) of IF and a repre-

sentation �g :
S
�D� ! Sg as follows.

D0 := f(0; i; 0; 0; : : :) j i 2 dom cg ;

D<� :=
[
�<�

D� ;

D� := D<�

[fh1 + j; hq1; : : : ; qmj
ii j j 2 domm, mj < !, qi 2 D<� for i = 1; : : : ;mj,

and (�g(q1); : : : ; �g(qmj
)) 2 dom fjg

[fh1 + j; hq0; q1; : : :ii j j 2 domm, mj = !, qi 2 D<� for i 2 IN,

and (�g(qi))i 2 dom fjg ;

D :=
S
�D�,

�g(p) :=

8><
>:
ci if p = (0; i; 0; 0; : : :) 2 D

fj(�g(q1); : : : ; �g(qmj
)) if p = h1 + j; hq1; : : : ; qmj

ii 2 D and mj is �nite

fj((�g(qi))i) if p = h1 + j; hq0; q1; : : :ii 2 D and mj = ! :

As in the case of the numbering �g one shows by trans�nite induction that the map �g is

well-de�ned with dom �g = D. We claim that �g is a representation of Sg which makes

this structure e�ective and that �g is minimal among all representations which make Sg
e�ective. The �g-names for elements encode �nite path trees with �nite or !-branching,

which show how the elements can be constructed out of the constants ci using the functions

fj.

By induction one proves �g(D�) = R� for all �, hence range �g = Sg. The total

computable function from IN to IF with i 7! (0; i; 0; 0; : : :) proves c � �g. The total

computable function hj; pi 7! h1+j; pi (for j 2 IN and p 2 IF) mapping IF to IF shows that

f jL
j2domm

S
mj
g

is (
L

j2domm �
mj
g ; �g)-computable. Hence, the representation �g makes the

structure Sg e�ective.

Let � :� IF ! Sg be an arbitrary representation which makes Sg e�ective. We have

to show �g � �. Assume that a computable function ~c :� IN ! IF proves c � � and

that a computable function ~f :� IF ! IF shows that the function f jL
j2domm

S
mj
g

is

(
L

j2domm �
mj ; �)-computable. Let be a numbering as in Lemma 3.4. We apply Lemma

3.5 to the following computable function H :� IN� IF! IF:

f(p) =

8>>>>>>><
>>>>>>>:

~c(p(1)) if p(0) = 0
~fhj; h z(q1); : : : ; z(qmj

)ii if p(0) = 1 + j, mj < !, p = h1 + j; hq1; : : : ; qmj
ii

for some j 2 IN and qi 2 IF for i = 1; : : : ;mj

~fhj; h z(q0); z(q1); : : :ii if p(0) = 1 + j, mj = !, p = h1 + j; hq0; q1; : : :ii

for some j 2 IN and qi 2 IF for i 2 IN

" otherwise :

Let z be the resulting number. It is now straightforward to check by trans�nite induction

over � (as in the proof of Theorem 3.2) that �g(p) = � z(p) for each p 2 D�. Hence,

�g � � is proved. 2

The question arises what the relation between n-e�ectivity and r-e�ectivity is. Since

r-e�ectivity also applies to uncountable structures and n-e�ectivity only to countable

16

structures they cannot be compared completely. We can compare them only for countable

structures. First we consider the countable substructure of the computable elements of

an r-e�ective, represented structure.

De�nition 3.6 Let � :� IF ! S be a representation of a set S. By S��comp we denote

the set of all �-computable elements in S. The derived numbering �� :� IN ! S��comp is

de�ned by

��(n) :=

(
�'n if 'n 2 R(1) and 'n(i) 2 dom �, for all i

" otherwise

where ' : IN! P(1) is a total standard numbering of the partial recursive functions.

The following lemma is a collection of elementary facts about the derived numbering.

Lemma 3.7 Let � :� IF! S and � :� IF! T be representations.

1. �� � �.

2. If � is a numbering of a subset of S and � � �, then also � � ��.

3. If f :� S ! T is (�; �)-computable, then f(S��comp) � T ��comp and the restriction

f jS��comp is (�� ; ��)-computable.

4. If � � � , then also �� � �� .

5. If P � S is �-enumerable, then the intersection P \ S��comp is ��-enumerable.

6. For any k 2 f1; 2; : : :g [f!g one has ��k � �k� . If m :� IN ! IN is a computable

function whose domain is an initial segment of IN, then also

�L
j2domm

�
mj �

M
j2domm

�
mj
� :

Proof. 1. The function 'j'�1(R(1)) :� IN ! IF which maps each i 2 '�1(R(1)) to 'i is

computable and proves �� � �.

2. Let g :� IN! IF be a computable function which proves � � �. There is a function

r 2 R(1) with 'r(n)(x) = g(n)(x) for all n 2 dom g and x 2 IN. This function r proves

� � ��.

3. Assume that g :� IF ! IF is a computable function which (�; �)-tracks f . If

p 2 dom� is computable, then also p 2 dom g and g(p) is computable. This shows

f(S��comp) � T ��comp. There is a function r 2 R(1) with 'r(n)(x) = g('n)(x) for all

n 2 dom g' and x 2 IN. This function r (��; ��)-tracks f .

4 This follows directly from (1) and (2) or from (3).

5. Let A � IN� be a c.e. set with AIF \ dom� = ��1(P). The set

B := fi 2 IN j (9w 2 A) (8j < jwj) 'i(j) = w(j)g

is c.e. and satis�es B \ dom �� = ��1� (P). This proves the assertion.

6. All of these equivalences are proved by functions not depending on �. We prove

only ��! � �!� , leaving the other equivalences to the reader. Applying the smn Theorem

(for ') twice yields a function r 2 R(1) with 'ihj; ki = ''r(i)(j)(k) for all i; j; k 2 IN.

This function r proves ��! � �!� . One application of the smn Theorem yields a function

s 2 R(1) with 's(i)hj; ki = ''i(j)(k) for all i; j; k 2 IN. This function s proves �!� � ��! . 2

17

De�nition 3.8 Let S = (S; c; f; P) be a structure of signature (Nc;m; n) and � :� IF! S

be a representation which makes S e�ective. The substructure of �-computable elements

is the structure S��comp = (S��comp; c; f 0; P 0) where f 0 is the restriction of f to the

(
L

j2domm �
mj)-computable elements, and P 0 is the intersection of P with the set of

(
L

j2domn �
nk)-computable elements.

Part 3 of the last lemma tells us that f 0 maps (
L

j2domm �
mj)-computable elements to

�-computable elements, and hence, that by S��comp we have indeed de�ned a structure.

From the lemma one also deduces the following theorem.

Theorem 3.9 If a structure S = (S; c; f; P) is r-e�ective and a representation � :� IF!

S makes it e�ective, then the structure S��comp is n-e�ective and the numbering �� makes

it e�ective.

It is clear that for two equivalent representations � and � which make a structure

S e�ective the induced substructures S��comp and S��comp are identical. This is espe-

cially interesting if the structure S is r-e�ectively categorical since then it has a canonical

substructure of computable elements, which we denote by Sc, namely the substructure

S��comp for any representation � which makes S e�ective. In the following section we will

consider the uncountable structure of the real numbers and in the subsequent section its

substructure of the computable real numbers.

Finally we compare n-e�ectivity and r-e�ectivity for arbitrary countable structures.

For a special (classical) case we observe that n-e�ectivity and r-e�ectivity are equivalent.

Theorem 3.10 Let S = (S; c0; c1; : : : ; f0; f1; : : : ; P0; P1; : : :) be a structure whose func-

tions fj and predicates Pk are all �nitary and such that the set S is the closure of the

constants fc0; c1; : : :g under the functions ff0; f1; : : :g.

1. Let �g :� IN ! S be a minimal numbering as in Theorem 3.2 (or Proposition 3.1),

and let �g :� IF! S be a minimal representation as in Theorem 3.3. Then �g � �g.

2. The structure S is n-e�ective if and only if it is r-e�ective.

Proof. 1. All elements in S are �g-computable. Hence, S is identical with its sub-

structure of �g-computable elements. Both numberings �g and ��g make the structure

(S; c0; c1; : : : ; f0; f1; : : :) e�ective. By minimality of �g we have �g � ��g and by Lemma

3.7.1 ��g � �g. On the other hand, by �(p) := �g(p(0)) one de�nes a representation with

� � �g. As both � and �g make the structure (S; c0; c1; : : : ; f0; f1; : : :) e�ective, minimality

of �g gives �g � � � �g.

2. If S is n-e�ective and � is a numbering which makes S e�ective, then �g � � andL
k �

nk �
L
k �

nk . Hence, by Proposition 2.11.3, �g makes S e�ective. The �rst part of the

current theorem shows that �g � �g and, hence,
L

j �
mj �

L
j �

mj
g and

L
k �

nk �
L

k �
nk
g .

Proposition 2.11 shows that also �g makes S e�ective. Hence S is r-e�ective. On the other

hand, if S is r-e�ective, then by the same arguments �g makes S e�ective, and �nally also

�g makes S e�ective. 2

But in general, especially when we allow also in�nitary operations, this is not true.

The following result will be proved in Section 5.

Theorem 3.11 There is an n-e�ectively categorical structure which is not r-e�ective.

Many questions on the relation between n-e�ectivity (n-e�ective categoricity) and r-

e�ectivity (r-e�ective categoricity) for countable structures remain open.

18

4 The Real Number Structure

We are concerned with computability over the real numbers. For a short discussion and a

short list of references on this topic the reader is referred to the introduction. Since com-

putability on an uncountable structure cannot be introduced via a numbering we shall use

representations. For an overview over many di�erent representations of the real numbers

and a comparison of them via reducibility see Deil [7]. First we prove the main result of

the section which states that the real number structure is r-e�ectively categorical. Then

we shortly discuss computability of the order relation and give some examples of standard

representations. Finally we discuss the b-ary (b � 2 a natural number) representations.

They are well-known since ancient times, though for computational purposes mainly their

counterparts for integers, i.e. notations of integers to base b, are used. It is well-known that

the b-ary representations are not suitable for real number computations on digital com-

puters or on Turing machines, compare Weihrauch and Kreitz [38]. We shall give further

evidence for this by proving that strictly less functions are computable with respect to any

b-ary representation than with respect to a standard representation of the real numbers.

In the next section we shall consider the countable substructure of the computable real

numbers.

The real number structure we consider will reect the fact that the real numbers

are categorical: the set IR of real numbers is a complete archimedean ordered �eld and

uniquely determined by these conditions. We shall use the �eld structure (constants 0 and

1 and the four basic operations), the ordering, and a condition which expresses e�ective

completeness. Remember that the operator CauchyLim considered in Example 2.3.2 is too

strong: one cannot compute the limit of an arbitrary Cauchy sequence without knowledge

about its convergence rate, see Example 2.15.2. But if the convergence rate can be bounded

computably the limit can be computed. For (countable) recursive metric spaces recursive

completeness is de�ned in the same way, compare Moschovakis [26, 27] and Kushner [22].

In fact, it is su�cient to consider Cauchy sequences with a normed convergence rate. We

consider the following real number structure

(IR; 0; 1;+;�; �; 1=:;NormLim ; <)

consisting of the set IR of real numbers, of the constants 0 and 1, of the arithmetic

�eld operations addition \+": IR2 ! IR, additive inverse \�": IR ! IR, multiplication

\�": IR2 ! IR, multiplicative inverse \1=:": IR n f0g ! IR, the order relation \<"=

f(x; y) 2 IR2 j x < yg, and the normed limit operator NormLim :� IR! ! IR which maps

each normed Cauchy sequence of reals to its limit, that is

dom (NormLim) := IR!;normed := f(xn)n2IN 2 IR! j (8m;n) jxn � xmj � 2�minfm;ngg;

NormLim((xn)n) = lim
n!1

xn for all (xn)n 2 dom (NormLim):

Theorem 4.1 The structure (IR; 0; 1;+;�; �; 1=:;NormLim ; <) is r-e�ectively categori-

cal.

Remark 4.2 One could replace the operator NormLim also by other operators expressing

e�ective completeness, for example by the operator which for a monotone, converging

sequence of intervals computes its limit, expressed by (x0; x1; x2; x3; : : :) 7! limn xn, if

19

x0 � x2 � : : : � x3 � x1 and
T
n[x2n; x2n+1] contains only one point. On the other hand,

for example the operator which maps each bounded sequence of reals to its supremum

is not e�ective with respect to a standard representation, again because the convergence

rate is unknown in general. Demanding e�ectiveness of this operator leads to a one-sided

representation shortly considered in Section 6.

First we shall show that this structure is r-e�ective. Therefore we need a representation

of the real numbers. More examples of standard representations will be given after the

proof. We use the total numbering �ID : IN! ID of the dyadic rational numbers:

ID := fx 2 IR j (9i; j; k 2 IN) x =
i� j

2k
g

de�ned by �IDhi; j; ki := (i� j)=2k. The representation

�C :� IF! IR; dom �C := fp 2 IF j (8m;n) j�IDp(m)� �IDp(n)j � 2�minfm;ngg ;

�C(p) := lim
n!1

�IDp(n) for all p 2 dom �C

is called normed Cauchy representation.

Proof of Theorem 4.1. First we show that the representation �C makes IR e�ective.

The constants 0 and 1 have computable �C-names, e.g. �C(p) = 0 if p(i) = h0; 0; 0i for

all i, and �C(q) = 1 if q(i) = h1; 0; 0i for all i. The addition \+" is (�2C ; �C)-computable:

de�ne the total recursive function g : IN2 ! IN by

g(hi; j; ki; hi0 ; j0; k0i) := hi � 2k
0

+ i0 � 2k; j � 2k
0

+ j0 � 2k; k + k0i :

Then the function h : IF! IF with

h(hp; qi)(i) := g(p(i+ 1); q(i + 1))

is computable and satis�es �C(p)+�C(q) = �C(h(hp; qi)) for all hp; qi 2 dom �2C . We leave

it to the reader to check in a similar way that the multiplication \�" is (�2C ; �C)-computable,

and the additive inverse \�" and the multiplicative inverse \1=:" are (�C ; �C)-computable.

The computable function F : IF! IF de�ned by

F (hp0; p1; p2; : : :i)(i) := pi+2(i+ 2) where pi 2 IF for all i

satis�es NormLim�!C(p) = �CF (p) for all p 2 dom (NormLim � �!C), as can easily be

checked by triangle inequalities. Hence NormLim is (�!C ; �C)-computable. That the order

relation \<" is �2C-enumerable, is proved by the c.e. set

A := fw 2 IN� j (9i < jwj=2) �ID(w(2i)) + 21�i < �ID(w(2i + 1))g ;

which has the property AIF \ dom �2C = (�2C)
�1(\<"). We have proved that �C makes IR

e�ective.

In order to prove the r-e�ective categoricity it is su�cient to consider representations

of restricted structures. Assume that � :� IF ! IR and � :� IF ! IR are representations

such that � makes the structure (IR; 0; 1;+;�; �; 1=:;<) e�ective, and such that � makes

the structure (IR; 0; 1;+;�; �; 1=:;NormLim) e�ective. We shall show that this implies

20

� � � . This proves that any two representations which make the full real number structure

e�ective are equivalent.

The reduction algorithm works as follows: One analyzes a �-name of a real number by

constructing �-names of rational numbers and comparing them with the real number using

the �-algorithm for the order relation. Thus one can obtain a normed Cauchy-sequence of

rational numbers approximating the real number. Simultaneously one constructs � -names

for these rational numbers and, using these, a �!-name for the whole sequence. Finally

one uses the � -algorithm for NormLim in order to synthesize a � -name of the limit of this

sequence, which is just the real number in question.

Let us do this formally. Let p�;0 and p�;1 be computable �-names for 0 and 1, respec-

tively, and f�;+, f�;�, f�;�, f�;1=: be computable functions that (�2; �)-track (respectively

(�; �)-track) the operations \+", \�", \�", \1=:". We need a total computable function

d� : IN! IF which (�ID; �)-tracks the embedding of the dyadic rationals ID into the reals,

that is, it must satisfy �(d�hi; j; ki) = (i� j)=2k , for all hi; j; ki. Therefore we de�ne in a

recursive manner computable functions h1; h2 : IN! IF by

h1(0) := p�;0; h1(i+ 1) := f�;+(p�;1; h1(i)) ;

h2(0) := p�;1; h2(i+ 1) := f�;�(f�;+(p�;1; p�;1); h2(i)) ;

and set

d�hi; j; ki := f�;�(f�;+(h1(i); f�;�(h1(j))); f�;1=:(h2(k))) :

In the same way, using computable � -names for 0 and 1, and computable functions which

track the arithmetic operations \+", \�", \�", \1=:" with respect to � , one can de�ne a

computable function d� : IN! IF with �(d� hi; j; ki) = (i� j)=2k, for all hi; j; ki. Since the

order \<" is �2-enumerable there is a c.e. set A � IN� such that for all hp; qi 2 dom�2:

�(p) < �(q) () (9w 2 A) w is pre�x of hp; qi :

Let h3 : IN! IN� be a total computable function which enumerates A, i.e. range (h3) = A.

We de�ne a partial computable function g :� IN� IF! IN by

g(n; p) := �31 minfhi; k1; k2i j h3(k1) is a pre�x of hd�(i); pi

and h3(k2) is a pre�x of hp; f�;+(d�(i); d�h1; 0; ni)ig

where g(n; p) is unde�ned if the minimum does not exist, i.e. if the set if empty. For

p 2 dom� and any n 2 IN the value g(n; p) is de�ned and is equal to a number i with

�(d�(i)) < �(p) < �(d�(i)) +
1

2n
:

Hence, as we have �d�(i) = �d� (i) for all i, for p 2 dom� the sequence

hd� g(0; p); d� g(1; p); d� g(2; p); : : :i 2 IF

is a �!-name for a normed Cauchy sequence converging to �(p). Finally let f�;NormLim be

a computable function which (�!; �)-tracks the limit operator NormLim . The function

F :� IF! IF, de�ned by

F (p) := f�;NormLim (hd� g(0; p); d� g(1; p); d� g(2; p); : : :i)

21

is computable and satis�es �(p) = �F (p) for all p 2 dom�. Hence, � � � is proven. 2

The last theorem allows us to speak of the standard representations of the real numbers,

namely the elements of the unique equivalence class of representations which make the

above real number structure e�ective. Weihrauch and Kreitz [38] considered the same

class of representations, compared it with other representations and argued that among

these it is for topological reasons the only reasonable one. Yet, their argument still relies

on a reasonable choice of a numbering of a base of the topology. Theorem 4.1 justi�es the

notion of a standard representation of the real numbers directly by the structure of the

real numbers.

Let � be a standard representation of IR. We have seen that �-computability of real

numbers, �!-computability of sequences of real numbers, (�n; �)-computability of func-

tions f :� IRn ! IR for n 2 f1; 2; : : :g [f!g and �n-enumerability of sets U � IRn for

n 2 f1; 2; : : :g [f!g does not depend on the choice of �. Since it seems to be very rea-

sonable to demand that the operations formulated in the real number structure in the

theorem are e�ective, this means that we have a canonical computability notion on the

real numbers. It makes sense to call a real object (number, sequence of numbers, function

or set) computable (or enumerable) if and only if it is computable (or enumerable) with

respect to a standard representation. This is in fact the computability notion considered

by the authors cited in the introduction with the exception that some of them impose fur-

ther restrictions on the domain of de�nition of the considered functions. It is well-known

and easy to check, that all the common functions like rational functions with computable

coe�cients, exp, log, sin, cos, and so on are computable. It is of fundamental importance

that all real number functions which are computable in this sense are continuous. This

follows easily by considering the representation �C , compare also Weihrauch [34]. In fact,

this computability for functions can be considered as a form of e�ective continuity, see

e.g. Weihrauch [35], Hertling [17].

Often one would like to be able to decide for two arbitrary numbers x; y 2 IR whether

x < y is true or not. It is clear that this is impossible with respect to �C and hence with

respect to any standard representation. One might ask whether it is perhaps possible to

choose a non-standard representation which makes this test decidable, even if one looses

computability of some of the other operations. But even this is impossible.

Proposition 4.3 (Weihrauch [36, Lemma 4.5]) There is no representation � :� IF ! IR

such that the relation \�"= f(x; y) 2 IR2 j x � yg is �2-enumerable.

Proof. Assume there is a representation � :� IF! IR and a c.e. set A � IN� such that

AIF \ dom �2 = (�2)�1(\�"). Let p 2 dom �. Because of �(p) � �(p) there is a w 2 A

which is a pre�x of hp; pi. Let v be a �nite pre�x of p such that hv�!; v�!i � w�!.

This implies that for all q 2 vIF \ dom � we have �(p) � �(q) and �(q) � �(p). Hence

�(vIF) = f�(p)g, and range � is countable in contradiction to range � = IR. 2

We list a few more standard representations of the real numbers.

1. The nested interval representation �I :� IF! IR. We de�ne a numbering �I : IN!

f[x; y] � IR j x 2 ID; y 2 ID; x � yg [f;g of closed intervals with dyadic boundaries

by �Ihi; ji := [�ID(i); �ID(j)] where [x; y] = fz 2 IR j x � z � yg if x � y, and

[x; y] = ; if y < x. Then �I is de�ned by

�I(p) := x i� �I(p(k)) � �I(p(k + 1)) for all k, and
T
n �I(p(n)) = x:

22

2. The open balls representation �B :� IF ! IR. We de�ne a total numbering �B of

a base of open balls in IR by �Bhi; ji := fx 2 IR j jx � �ID(i)j < 2�jg. Then �B is

de�ned by

�B(p) := x i� fp(0); p(1); p(2); : : :g = fi 2 IN j x 2 �B(i)g :

3. In the three representations �C , �I , and �B one can replace the numbering �ID by

the numbering � lQ of the rationals, see Example 2.3.1.

4. The redundant number representations �k;l :� IF ! IF. Consider two numbers

k; l 2 f1; 2; 3; : : :g and identify the alphabet �k;l := f:;�k;�(k � 1); : : : ; 0; : : : ; lg

consisting of the colon \:" and of the integers from �k to l with a subset of IN.

Then de�ne �k;l :� �!k;l ! IR by dom (�k;l) := f�k; : : : ; lg�f:gf�k; : : : ; lg! and,

using m := maxfk; lg+ 1 set

�k;l(p) :=
n�1X
i=0

p(i) �mn�1�i +
1X

i=n+1

p(i) �mn�i

for p 2 f�k; : : : ; lgnf:gf�k; : : : ; lg! (i.e. p(n) =\:") for some n 2 IN.

The last representations �k;l and variations thereof are of great importance in real

number computer arithmetic, which is concerned with the hardware and software imple-

mentation of real number algorithms, see Muller [28]. This shows that the analysis of

e�ectivity and e�ective categoricity of structures, that is, the analysis of the question

which representations are suitable for certain structures, is not just of academic interest

but has direct applications in practice. Of course, besides the fact that these redundant

number representations belong to the unique (in terms of computable equivalence) class of

representations which make the structure IR e�ective, these representations also have the

special property that they are suitable for complexity theoretic reasons. In fact, a large

number of complexity theoretic results in computable analysis (Brent [6], Ko [19]) can be

formulated with the signed-digit representation �1;1, which was introduced by Avizienis

[1].

These representations are very similarly de�ned to the b-ary representations �b. Identi-

fying the alphabet �b := f�; :; 0; 1; : : : ; b�1g, which consists of the minus symbol\�", the

colon \:" and of the integers from 0 to b�1, with a subset of IN, one de�nes �b :� �!b ! IR

by

dom �b := f";�gfwords in f0; : : : ; b� 1g� not starting with 0gf:gf0; : : : ; b� 1g!

and de�nes

�b(p) :=

8>>><
>>>:

Pn�1
i=0 p(i) � b

n�1�i +
P1
i=n+1 p(i) � b

n�i if p 2 dom �b, p does not start

with \�", and p(n) =\:"

�(
Pn�1
i=1 p(i) � b

n�1�i +
P1
i=n+1 p(i) � b

n�i) if p 2 dom �b, p starts with \�",

and p(n) =\:":

The b-ary representations do not belong to the class of standard representations of IR. If �

denotes a standard representation of IR, then obviously �b � �. But already for topological

reasons � 6� �b, see e.g. Deil [7], Weihrauch and Kreitz [38]. In fact, it is well-known that

23

not even addition is (�2b ; �b)-computable, for any b � 2. This can easily be shown in a

way similar to the �rst part of the proof of Theorem 4.4 below. Still, one might hope that

by using these very common representations one might gain some computable functions

which are not computable with respect to a standard representation. This is not the case,

not even when one uses di�erent bases in one computation.

Theorem 4.4 Let b � 2, b0 � 2, and let � be a standard representation of IR. Fix an

n 2 f1; 2; 3; : : :g [f!g. Then every (�nb ; �b0)-computable function is (�n; �)-computable but

not vice versa.

Proof. First, we show that the function f : IRn ! IR with f(x0; x1; : : :) := (bb0� 1) �x0
is (�n; �)-computable but not (�nb ; �b0)-computable. It is clear that it is (�n; �)-computable.

If is su�cient to prove the other statement for n = 1 since the projection from IRn to IR

onto the �rst coordinate is (�nb ; �b)-computable. So we assume n = 1. Assume there is a

computable function F :� �!b ! �!b0 with f�b(p) = �b0F (p) for all p 2 dom �b. Let p be

a �b-name of 1=(bb0 � 1). Note that this name is unique and does not end on only 0's or

only the digit (b� 1) since 1=(bb0� 1) is not of the form z=bn for some integer z and some

n � 0. The sequence F (p) is a �b0-name of the number 1 = f(1=(bb0� 1)). Every �b0-name

of 1 consists of a �nite word, the colon and then an in�nite sequence either containing

only 0's or containing only the digit (b0 � 1). Let w be a pre�x of F (p) containing the

colon. In the �rst case (F (p) ending on 0's) the set w�!b0 contains �b0-names only of 1 and

numbers greater than 1; in the second case (F (p) ending on (b0�1)'s) it contains �b0-names

only of 1 and of numbers smaller than 1. Since F is computable and hence continuous

there is a pre�x v of p with F (v�!b) � w�!b0 . Since f is increasing, the set v�!b \ dom �b
may contain either only �b-names for numbers � 1=(bb0� 1) or only �b-names for numbers

� 1=(bb0 � 1). But this is false since p does not end on 0's or (b� 1)'s. By decreasing one

of the digits 6= 0 of p after the pre�x v one obtains a �b-name in v�! of a real number

smaller than 1=(bb0 � 1). And by increasing a digit 6= b � 1 of p after the pre�x v one

obtains a �b-name in vIF of a real number greater than 1=(bb0 � 1). Hence, the function f

is not (�b; �b0)-computable.

Secondly, we have to prove that every (�nb ; �b0)-computable function is also (�n; �)-

computable. Since �b0 � � any (�nb ; �b0)-computable function is also (�nb ; �)-computable.

Let f :� IRn ! IR be a (�nb ; �)-computable function. We show that it is also (�n; �)-

computable. We will treat the case n = 1 in detail and in the end explain why the

assertion is true also for the case of larger n 2 f2; 3; : : :g [f!g. So we assume n = 1. We

can also assume that � = �C is the normed Cauchy representation.

The idea is the following. From a �C-name p of a real number x we cannot compute a

�b-name. But we can for each t compute two words with t digits after the colon which are

pre�xes of �b-names of numbers close to the left and right from x such that at least one

of these two words is a pre�x of a �b-name for x itself. Now we apply the algorithm for

the (�b; �C)-computation of f to both words. When we obtain results close to each other,

both are good approximations of the correct value, hence one of them can be used for the

output. This algorithm will give better and better approximations since for su�ciently

large t large pre�xes of both words will be pre�xes of �b-names for x, in other words, since

for t tending to in�nity both words converge to �b-names of x.

For the formal proof we proceed as follows. It is clear that there is a computable

function h1 :� IN � IF ! IN such that for all t 2 IN and p 2 dom �C the value h1(t; p)

24

exists and is equal to a number hi; ji with

i� j

bt
< �C(p) <

i� j

bt
+

2

bt
:

Let h2 : IN
2 ! ��

b be the computable function such that �b(h2(t; hi; ji)0
!) = (i�j)=bt and

h2(t; hi; ji) has t digits after the colon. We de�ne h3; h4 :� IN � IF ! ��
b by h3(t; p) :=

h2(t; h1(t; p)) and h4(t; p) := h2(t; h�
2
1h1(t; p) + 1; �22h1(t; p)i). Then for t 2 IN and p 2

dom �C we have

�b(h4(t; p)0
!) = �b(h3(t; p)0

!) + 1=bt

and

�b(h3(t; p)0
!) < �C(p) < �b(h3(t; p)0

!) +
2

bt
:

Hence, both words h3(t; p) and h4(t; p) have exactly t digits after the colon, and at least

one of them is a pre�x of a �b-name for �C(p). Furthermore, both sequences (h3(t; p)0
!)t

and (h4(t; p)0
!)t converge to �b-names of �C(p): if �C(p) is not a number of the form z=bl

(for some integers z and l), then it has only one �b-name and both sequences converge to

it. Otherwise it has exactly two di�erent �b-names and for su�ciently large t the in�nite

words h3(t; p)(b� 1)! and h4(t; p)0
! will be the �b-names for �C(p).

Let F :� �!b ! IF be a computable function which (�b; �C)-tracks f and let g :�

��
b ! IN� be a monotone, computable function which induces F (see before De�nition

2.7). Let (vi)i be a computable list of the words in dom g. We de�ne a computable

function h5 :� IN� IF! IN by

h5(m; p) := �21 minfhk; ti j (9i; j � t) vi is pre�x of h3(t; p) and jg(vi)j � m+ 4

& vj is pre�x of h4(t; p) and jg(vj)j �m+ 4

& j�ID(g(vi)(m+ 3)) � �ID(g(vj)(m+ 3))j < 3 � 2�(m+3)

& g(vi)(m+ 3) = kg :

Finally we de�ne a computable function G :� IF! IF by

G(p) := (h5(0; p); h5(1; p); h5(2; p); : : :) :

We claim that this function (�C ; �C)-tracks f . Let m 2 IN and p 2 dom �C , furthermore

x := �C(p). It is su�cient to show that

jf(x)� �ID(h5(m; p))j < 2�(m+1) :

First we show that h5(m; p) exists. Since (h3(t; p)0
!)t and (h4(t; p)0

!)t converge to �b-

names of x and F maps these names to �C-names of f(x), there are a number t and a

pre�x vi of h3(t; p) which is also a pre�x of a �b-name for x with jg(vi)j � m+ 4, as well

as a pre�x vj of h4(t; p) which is also a pre�x of a �b-name for x with jg(vj)j � m+ 4. It

is clear that for these i; j

j�ID(g(vi)(m+ 3)) � �ID(g(vj)(m+ 3))j

� j�ID(g(vi)(m+ 3)) � f(x)j+ jf(x)� �ID(g(vj)(m+ 3))j

� 2 � 2�(m+3) :

25

Hence, the numbers t and i; j show that h5(m; p) exists. We already remarked that at

least one of the words h3(t; p) or h4(t; p) always is a pre�x of a �b-name of x. If h3(t; p) is

such a pre�x, then

jf(x)� �ID(g(vi)(m+ 3))j � 2�(m+3) < 2�(m+1);

if h4(t; p) is the pre�x, then

jf(x)� �ID(g(vi)(m+ 3))j

� jf(x)� �ID(g(vj)(m+ 3))j + j�ID(g(vj)(m+ 3))� �ID(g(vi)(m+ 3))j

< 2�(m+3) + 3 � 2�(m+3) = 2�(m+1) :

This ends the proof of jf(x) � �ID(h5(m; p))j < 2�(m+1). We have proved that every

(�b; �C)-computable function f :� IR! IR is also (�C ; �C)-computable.

Now assume that f :� IRn ! IR is a (�nb ; �C)-computable function where the input

dimension n 2 f2; 3; 4; : : :g is greater than 1 but �nite. Let p = hp0; : : : ; pn�1i 2 dom f�nC
be a �nC-name for a vector (x0; : : : ; xn�1) in the domain of f . Using p, we can for each

i 2 f0; : : : ; n � 1g proceed as above and compute h3(t; pi) and h4(t; pi) for any ni. For

t tending to in�nity each sequence (h3(t; pi))t and (h4(t; pi))t converges to a �b-name for

xi. And one of the words h3(t; pi) and h4(t; pi) is a pre�x of a �b-name for xi. Hence, one

of the 2n combinations containing for each i 2 f0; : : : ; n � 1g either h3(t; pi) or h4(t; pi)

consists solely out of pre�xes of �b-names for xi, i = 0; : : : ; n� 1. So we proceed as in the

one-dimensional case, but checking all 2n combinations at the same time and comparing

the results for all of them pairwise (in the part of computation which is done by h5 above).

We leave the precise de�nition of the corresponding function h
(n)
5 to the reader. Since all

combinations converge to �nb -names for x, the algorithm h
(n)
5 (m; :) will always stop, and

since one of the combinations consists solely out of pre�xes of names for xi, the algorithm

will give an approximation to the desired result. Hence the assertion is also true for �nite

dimension n > 2.

Finally we consider a (�!b ; �C)-computable function f :� IR! ! IR. We wish to show

that f is (�!C ; �C)-computable. Again, we can proceed similarly as above, but we must

take care of a growing number of components. We need some notation. For an in�nite

sequence p we de�ne the sequences p[i] by p = hp[0]; p[1]; : : :i. For a �nite word w we de�ne

w[i] to be the longest pre�x of (w$!)[i] not containing the dummy symbol $.

Assume that F :� �!b ! IF is a function that (�!b ; �C)-tracks f , and that g :� ��
b ! IN�

is a monotone, computable function that induces F . Let v0; v1; v2; : : : be a computable

sequence of all words in dom g. For each t 2 IN let dt : f0; : : : ; 2
t+1 � 1g ! f0; 1gt+1 be

the lexicographic bijection and for 0 � j � t let dt(k; j) be the j-th digit in the vector

dt(k). We de�ne a computable function h
(!)
5 :� IN� IF! IN by

h
(!)
5 (m; p) := �31 minfhk; s; ti j (9 i0; : : : ; i2t+1�1 � s)

[(8 0 � k � 2t+1 � 1) jg(vik)j � m+ 4

&(8 0 � j � t) v
[j]
ik

is pre�x of h3+dt(k;j)(t; p
[j])]

&(8 0 � k; l � 2t+1 � 1)

j�ID(g(vik)(m+ 3)� �ID(g(vil)(m+ 3))j < 3 � 2�(m+3)

& g(vi0)(m+ 3) = kg :

26

We claim that

jf(x)� �ID(h
(!)
5 (m; p))j < 2�(m+1)

for all m 2 IN and p 2 dom �!C . It is clear that this claim proves the assertion (that f is

(�!C ; �C)-computable) since then we can proceed further as in the one-dimensional case.

Once we know that h
(!)
5 (m; p) for m 2 IN and p 2 dom �!C exists, our claim follows as in

the one-dimensional case, since one of the vectors

(h3+dt(k;0)(t; p
[0]); : : : ; h3+dt(k;t)(t; p

[t]))

for 0 � k � 2t+1 � 1 contains only pre�xes of �b-names of the corresponding components

(x0; : : : ; xt) of x = (x0; x1; x2; : : :) = �!C(p). So we assume that m 2 IN and p 2 dom �!C .

We have to show only that h
(!)
5 (m; p) exists.

The set of �!b -names of x may be in�nite, but it is compact, since each real number

xj has only one or two �b-names. Hence, there is a number h such that each �!b -name of

x has a pre�x v 2 dom g with jvj � h and jg(v)j � m+ 4. Let s 2 IN be a number such

that all these pre�xes v are contained in the set fv0; v1; : : : ; vsg. On the other hand, if t is

large enough, then for each k 2 f0; 1; : : : ; 2t+1 � 1g the pre�x of length h (and hence any

pre�x of length less or equal to h) of

hh3+dt(k;0)(t; p
[0])$!; : : : ; h3+dt(k;t)(t; p

[t])$!; $!; $! ; : : :i

is a pre�x of a �!b -name of x (where $ is just a dummy symbol). This is true since the

�rst h digits of these sequences depend only on the �rst h digits of the words h3(t; p
[j])

and h4(t; p
[j]) for 0 � j � h � 1, and these words tend to �b-names of xj for t tending

to in�nity. Furthermore, a word v 2 IN� (not containing the symbol $!) of length less or

equal to h � t is a pre�x of

hh3+dt(k;0)(t; p
[0])$!; : : : ; h3+dt(k;t)(t; p

[t])$!; $!; $! ; : : :i

if and only if v[j] is a pre�x of h3+dt(k;j)(t; p
[j]), for 0 � j � t. Finally, for any pre�xes

vik ; vil 2 dom g of �!b -names of x with jg(vik)j � m+ 4 and jg(vil)j � m+ 4 one has

j�ID(g(vik)(m+ 3)� �ID(g(vil)(m+ 3))j

� j�ID(g(vik)(m+ 3)� f(x)j+ jf(x)� �ID(g(vil)(m+ 3))j

� 2 � 2�(m+3) :

We conclude that h
(!)
5 (m; p) exists. This ends the proof. 2

5 The Structure of the Computable Real Numbers

In the last section we have seen that the real number structure is r-e�ectively categorical.

At the end of Section 2 we observed that an r-e�ectively categorical structure S possesses

a unique countable substructure whose universe Sc consists of the computable elements

and whose functions and relations are obtained by appropriately restricting the functions

and relations of S. In this section we collect some results on the structure IRc of the

computable real numbers, derived from the real number structure of Theorem 4.1 by

following De�nition 3.8. Since it is so important we describe it explicitly.

27

The set IRc = IR�C�comp of computable real numbers can also be written as

IRc = fx 2 IR j there is an (idIN; �ID)-computable function g : IN! ID

with jx� g(n)j � 2�n for all n 2 IN :g

The constants 0 and 1 are computable and by Lemma 3.7.3 the basic arithmetic operations

transform computable real numbers and computable pairs of real numbers into computable

real numbers. Also, the limit NormLim((xn)n) of a normed Cauchy sequence (xn)n which

is additionally computable, i.e. lies in

IR!;comp
c = (IR!)�

!
C
�comp

= f(xn)n 2 IR! j (xn)n has a computable �!C-nameg

= f(xn)n 2 IR! j (9g 2 R(1))(8i; j) jxi � �ID(ghi; ji)j � 2�jg ;

is a computable real number.

Thus, on the computable real numbers we have a structure:

(IRc; 0; 1;+;�; �; 1=:;RecNormLim; <)

consisting of the constants 0 and 1, the �eld operations addition \+": IR2
c ! IRc, ad-

ditive inverse \�": IRc ! IRc, multiplication \�": IR2
c ! IRc, multiplicative inverse

\1=:': IRc n f0g ! IRc, the recursive normed limit operator RecNormLim de�ned by

dom (RecNormLim) := IR!;comp
c \IR!;normed

c and RecNormLim((xn)n) = NormLim((xn)n)

for all (xn)n in its domain, and the order relation \<" = f(x; y) 2 IR2
c j x < yg.

Theorem 5.1 The structure (IRc; 0; 1;+;�; �; 1=:;RecNormLim; <) is n-e�ectively cate-

gorical.

Proof. This follows immediately from Moschovakis' Theorem 4 in [26]. One detail

should be observed: Moschovakis calls a numbered �eld recursive if all the �eld operations

are strongly computable with respect to the numbering, compare Remark 2.8.1. The total

operations \+", \�", \�" are computable if and only if they are strongly computable. But

for the partial function \1=:" the two notions are not identical. However, if also the order

relation \<" is enumerable, then the set fx 2 IR j x 6= 0g, which is the domain of \1=:",

is enumerable as well. Hence, if \1=:" is computable and \<" is enumerable, then \1=:"

is strongly computable.

One can also easily obtain a direct proof. Let �C := �C' denote the numbering of IRc
derived from the Cauchy representation �C , compare De�nition 3.6. Since �C makes the

real number structure IR e�ective by Theorem 4.1, this numbering �C makes the structure

IRc e�ective by Theorem 3.9. For the e�ective categoricity one can easily translate the

second part of the proof of Theorem 4.1 from representations to numberings (by making

use of the smn Theorem). 2

Note that for the uniqueness of the numbering we do not demand that the four basic

arithmetic operations are strongly computable, compare Remark 2.8.1. But they turn out

to be strongly computable under any standard numbering. This is not the case for the

limit operator, which, by the following result, is not strongly computable with respect to

a standard numbering and cannot even be extended to a strongly computable operator.

This is one of the reasons why we chose to consider relative computability of functions

without restrictions on their domain.

28

Theorem 5.2 Let � :� IN ! IRc be a standard numbering of IRc. Every �!-enumerable

subset U � IR!;comp
c with IR!;comp

c \ IR!;normed
c � U contains non-converging sequences.

Proof. Consider the space IR!;comp
c with the metric induced by the norm jj � jj de�ned

by jj(xn)njj =
P1
n=0 2

�n jxnj
1+jxnj

and with its numbering �!. This space is a \recursive

metric space satisfying Condition (A)" in Moschovakis' [27] terminology. That is, one can

compute its metric, and the limit of a computable and computably convergent sequence of

elements in IR!;comp
c is again an element of IR!;comp

c , and a �!-index can be obtained from

an index for the sequence and its convergence rate. Hence, by Moschovakis' Theorem 2

[27], the complement of any �!-enumerable subset U � IR!;comp
c must contain all points

in IR!;comp
c that are limits of computable sequences of elements in the complement. Let

us assume that U � IR!;comp
c in �!-enumerable and contains IR!;comp

c \ IR!;normed
c . The

sequence (0; 0; 0; : : :) is an element of IR!;comp
c \ IR!;normed

c � U . It is also the limit of the

computable sequence (y(n))n where y(n) = (0; 1
2n
; 0; 1

2n
; 0; 1

2n
; : : :) 2 IR!;comp

c . We conclude

that not all of the y(n) lie in the complement IR!;comp
c n U of U . 2

The same remarks as those after Theorem 4.1 apply here as well. If one wishes to

analyze computability on IRc with respect to a numbering of IRc, then a standard num-

bering is the natural choice. Indeed, many of the results of constructive analysis, as it is

developed for example in Kushner [22], can be interpreted as formulated with respect to

a standard numbering of the computable real numbers.

It is interesting to note several classical negative results about the computability struc-

ture of IRc. By � we always denote an arbitrary standard numbering of IRc.

1. The order relation is not �2-decidable, that is, the function t : IR2
c ! f0; 1g is not

(�2; idIN)-computable. Even more: if a predicate P � IRnc is �n-decidable, then it

must be either the empty set or IRnc . This is due to Markov [25]. For a simpler proof

see Moschovakis [27], Section 3.

2. Given a computably enumerable set E of natural numbers contained in the domain

of � one can determine a �-name of a real number in IRcn�(E). This was observed by

Moschovakis [26] and can be proved by a simple diagonalization, see e.g. Weihrauch

[34, Lemma 3.8.9]. Hence, there is no c.e. set E � dom � with �(E) = IRc. Especially,

the domain of � itself cannot be a computably enumerable subset of IN. This is

the reason why we did not impose any restriction on the domain of a numbering.

This fact also implies that IRc is not a computable �eld in the sense of Fr�ohlich

and Shepherdon [11] and does not have an e�ective numbering as considered by

Stoltenberg-Hansen and Tucker [31].

3. The numbering � cannot be injective. Otherwise one could �2-decide the order

relation. Hence, it is impossible to identify the structure of the computable real

numbers with a computable substructure of IN.

4. The �rst point can be strengthened: every (�k; �)-computable function f :� IRkc !

IRc with a �
k-enumerable domain is computable with respect to a standard represen-

tation of IR by Tseytin's theorem [32] on e�ective continuity, see also Moschovakis

[27] and Kushner [22]. For a further strengthening see Hertling [17]. But there

29

exist (�; �)-computable real functions which are not continuous (and hence not com-

putable with respect to a standard representation of IR) as we shall see in the proof

of Theorem 3.11 below.

5. The \computation" of a discontinuous function like the test t in the �rst remark can

be replaced by the computation of a continuous correspondence which approximates

the discontinuous function, compare Remark 2.2.3 and see Weihrauch [34], Brattka

and Hertling [5], and Brattka [4].

Finally we prove Theorem 3.11.

Proof of Theorem 3.11. Let again �C = �C' denote the standard numbering of IRc de-

rived from the Cauchy representation �C . We de�ne a structure S by taking the structure

of the computable real numbers IRc of Theorem 5.1 and adding the function f :� IRc ! IRc
with

f(x) :=

8><
>:

0 if x = 0

1 if for each i with �C(i) = x there exists a j � i with �ID('i(j)) > 2�j

" otherwise :

This is an adaption of an example of Kreisel, Lacombe, Shoen�eld [20, page 293], which

they credit to Myhill. In order to prove that the structure S is n-e�ectively categorical

we have to show only that the function f is (�C ; �C)-computable. But this is shown by

the computable function g :� IN! IN with

g(i) :=

8><
>:
n0 if (8j � i) �ID('i(j)) � 2�j

n1 if (9j � i) �ID('i(j)) > 2�j

" otherwise

where n0 is a �C-index for the real number 0, and n1 is a �C-index for the real number 1.

Now we show that the structure S is not r-e�ective. The �rst step is to show that

the function f above is discontinuous in the point 0. Fix a number n. The set IRc n fx 2

IRc j (9i � n + 1) �C(i) = xg is a dense subset of IR. Fix a number x in this set with

2�(n+1) < jxj < 2�n. Then every i with �C(i) = x is larger than or equal to n+ 2. And

for each such i we have �ID('i(n+ 2)) > 2�(n+2). Hence f(x) = 1. This shows that f is

discontinuous in 0.

Let us assume that there is representation � :� IF ! IRc which makes S r-e�ective.

We choose �-names pi of the numbers 2�(i+1). Then hp0; p1; p2; : : :i is a �!-name for

a computable, normed Cauchy sequence converging to 0. Let FRNL :� IF ! IF be a

computable function which (�!; �)-tracks the operator RecNormLim. Then the sequence

p := FRNL(hp0; p1; p2; : : :i) is a �-name for 0. Since the function FRNL is continuous, for

any �nite pre�x v of p there is a �nite pre�x w of hp0; p1; p2; : : :i with FRNL(wIF) � vIF.

We can �x any real number x with jxj � 2�(jwj+1) and replace all names pj with j > jwj+1

by a �-name q for x. The resulting sequence hp0; p1; p2; : : : ; pjwj; q; q; : : :i still lies in wIF

but is a �!-name for a computable, normed Cauchy sequence with limit x. Hence there

is also a �-name for x in vIF. That means �(vIF) contains an open neighborhood of 0, for

any pre�x v of p.

On the other hand we assume that the function f is (�; �)-computable. Using the fact

that the order relation \<" is �2-enumerable one can easily show that f is also (�; idIN)-

computable. Let F :� IF ! IN be a computable function which (�; idIN)-tracks f . Since

30

f(x) = 0 we have F (p) = 0, and hence there is a �nite pre�x v of p such that F (vIF) = f0g.

We just saw that �(vIF) contains a neighborhood of 0. We conclude that f is continuous

in the point 0 in contradiction to the fact proved above that f is discontinuous in 0. 2

6 Other Structures and Open Problems

We give one more general example of an r-e�ectively categorical structure which sug-

gests that operators between di�erent structures might be of use and conclude with open

questions.

Consider a separable metric space M with a total numbering � : IN ! M of a dense

subset and a metric d : M2 ! IR. De�ne the normed limit operator NormLim as in the

case of real numbers: dom (NormLim) = f(xn)n 2M
! j (8i; j) d(xi; xj) � 2�minfi;jg and

limn!1 xn exists inMg, NormLim((xn)n) := limn!1 xn for all (xn)n 2 dom (NormLim).

Finally de�ne Pi := f(x; y) 2M2 j d(x; y) < �ID(i)g, for all i.

Theorem 6.1 The structure

(M;�0; �1; �2; : : : ;NormLim ; P0; P1; P2; : : :)

is r-e�ectively categorical if the set B = f(x; y; q) 2 range� � range� � ID j d(x; y) < qg

is (�; �; �ID)-enumerable.

Proof. The de�nition of the normed Cauchy representation can be copied from the

real number case: we de�ne a representation �C :� IF!M by

dom �C := fp 2 IF j (8m;n) j�p(m)� �p(n)j � 2�minfm;ng and lim
n!1

�p(n) exists in Mg

�C(p) := lim
n!1

�p(n) for all p 2 dom �C :

First we show that the representation �C makes the structure e�ective if the set B is

(�; �; �ID)-enumerable. The function i 7! (i; i; i; : : :) proves � � �C . That NormLim is

(�!C ; �C)-computable is as in the real number case proved by the function F : IF! IF with

F (hp0; p1; p2; : : :i)(i) = pi+2(i + 2). Let A � IN be a c.e. set with A \ dom (�; �; �ID) =

(�; �; �ID)
�1(B). The set

C := f(n;w) 2 IN� IN� j jwj is even, jwj � 2, and

d(�(w(jwj � 2)); �(w(jwj � 1))) < �ID(n)� 22�jwj=2g

is c.e. and the sets Cn := fw 2 IN� j (n;w) 2 Cg satisfy CnIF \ dom �2C = (�2C)
�1(Pn) for

all n. Hence �C makes the structure e�ective.

For the r-e�ective categoricity we assume that a representation :� IF ! M makes

the structure (M;�0; �1; �2; : : : ; P0; P1; P2; : : :) e�ective and a representation � :� IF!M

makes the structure (M;�0; �1; �2; : : : ;NormLim) e�ective. We show that this implies

 � �. We only sketch the proof, which is very similar to the second part of the proof of

Theorem 4.1. Let p be a -name for a point inM . Using the algorithm which proves � �

we can construct -names for the points �i. Using the algorithm which 2-tracks the sets

Pi we can estimate their distance from (p) and in this way construct a sequence of points

�ni with d((p); �ni) < 2�(i+1). Simultaneously we can compute �-names for these points

31

and hence a �!-name for the whole sequence. Finally application of the algorithm which

(�! ; �)-tracks NormLim gives us the desired �-name for (p). This ends the proof. 2

It is clear that the metric space IR with the numbering � = �ID or with the numbering

� = � lQ of a dense subset satis�es the assumption of the theorem, and that the resulting

class of representations is exactly the class of standard representations of the real numbers

considered in Section 4.

It is interesting to note that already the condition that the distance should be approx-

imable from below uniquely determines the equivalence class of the representation. For

more results on metric spaces and an analysis of other representations and their relations

the reader is referred to Weihrauch [35].

The formulation of the theorem above can simpli�ed if one considers composed struc-

tures in which also operations de�ned on or mappings to other, already introduced (prefer-

ably e�ectively categorical) structures are allowed. For the components in other struc-

tures one could refer to standard numberings or representations of them. For exam-

ple the sequence of relations (Pi)i above could be replaced by the distance function

d : M2 ! fx 2 IR j x � 0g and the condition that it should be (�2; �<)-computable

(� a representation of the metric space) where �< :� IF ! fx 2 IR j x � 0g is the rep-

resentation de�ned by �<(p) := supn2IN �ID(p(n)) if f�ID(p(n)) j n 2 INg is bounded and

its supremum non-negative, and �<(p) =" otherwise, see Weihrauch and Kreitz [38]. This

representation makes the following two r-e�ectively categorical structures e�ective:

1. (fx 2 IR j x � 0g; c;Sup; Q),

2. (fx 2 IR j x � 0g; 0; x 7! x+ 1; x 7! 2 � x; x 7! x=2;Sup; fx 2 IR j x > 1g)

where chi;ki = i=2k for all i; k 2 IN, where Sup is a (partial) in�nitary function de�ned by

Sup(x0; x1; x2; : : :) = supn2IN xn (if this supremum is �nite), and where Qhi;ki = fx 2 IR j

x > i=2kg for all i; k 2 IN. In these structures the supremum of a bounded sequence is

computable, compare Remark 4.2.

We conclude with some remarks. We have introduced the notions of e�ectivity and

e�ective categoricity for structures with in�nitary operations whose cardinality does not

exceed the cardinality of the continuum. In this paper we concentrated on the real num-

bers. There are several areas where work needs to be done. For countable structures

the relation between n-e�ectivity and r-e�ectivity needs to be analyzed more thoroughly.

What can be transferred from the theory of e�ective algebras and from computable model

theory and what role might uncountable e�ective or e�ectively categorical structures play

there? Finally, analysis { and certainly also other �elds | provides a rich source of natural

uncountable structures which should be analyzed with respect to e�ectivity and e�ective

categoricity. This last point seems to be of immediate practical interest.

References

[1] A. Avizienis. Signed{digit number representations for fast parallel arithmetic. IRE

Transactions on Electronic Computers, EC{10:389{400, 1961.

[2] E. Bishop and D. S. Bridges. Constructive Analysis. Springer-Verlag, Berlin, Heidel-

berg, 1985.

32

[3] N. Bourbaki. Theory of Sets. Addison-Wesley, Reading, 1974.

[4] V. Brattka. Recursive characterization of computable real-valued functions and rela-

tions. Theor. Comp. Science, 162:45{77, 1996.

[5] V. Brattka and P. Hertling. Continuity and computability of relations. Technical

Report 164, FernUniversit�at Hagen, September 1994.

[6] R. P. Brent. Fast multiple-precision evaluation of elementary functions. J. of the

ACM, 23(2):242{251, 1976.

[7] T. Deil. Darstellungen und Berechenbarkeit reeller Zahlen. Technical Report 51,

FernUniversit�at Hagen, December 1984.

[8] J. L. Ershov. Theorie der Numerierungen I. Zeitschrift f. math. Logik und Grundlagen

d. Math., 19:289{388, 1973.

[9] J. L. Ershov. Theorie der Numerierungen II. Zeitschrift f. math. Logik und Grundla-

gen d. Math., 21:473{584, 1975.

[10] J. L. Ershov. Theorie der Numerierungen III. Zeitschrift f. math. Logik und Grund-

lagen d. Math., 23:289{371, 1977.

[11] A. Fr�ohlich and J. C. Shepherdson. E�ective procedures in �eld theory. Philos. Trans.

Roy. Soc. London, 248:407{432, 1956.

[12] A. Grzegorczyk. Computable functionals. Fund. Math., 42:168{202, 1955.

[13] A. Grzegorczyk. On the de�nitions of computable real continuous functions. Fund.

Math., 44:61{71, 1957.

[14] J. Hauck. Zur Pr�azisierung des Begri�s berechenbare reelle Funktion. Zeitschrift f.

math. Logik und Grundlagen d. Math., 17:295{300, 1971.

[15] J. Hauck. Berechenbare reelle Funktionen. Zeitschrift f. math. Logik und Grundlagen

d. Math., 19:121{140, 1973.

[16] J. Hauck. Konstruktive Darstellungen in topologischen R�aumen mit rekursiver Basis.

Zeitschrift f. math. Logik und Grundlagen d. Math., 26:565{576, 1980.

[17] P. Hertling. E�ectivity and e�ective continuity of functions between computable

metric spaces. In D. S. Bridges et al., editor, Combinatorics, Complexity, and Logic,

Discrete Mathematics and Theoretical Computer Science, pages 264{275, Singapore,

1997. Springer-Verlag. Procedings of DMTCS'96, Auckland.

[18] B. Khoussainov and R. Shore. Categoricity and Scott families. In D. S. Bridges et al.,

editor, Combinatorics, Complexity, and Logic, Discrete Mathematics and Theoretical

Computer Science, pages 299{307, Singapore, 1997. Springer-Verlag. Proceedings of

DMTCS'96, Auckland.

[19] K.-I. Ko. Complexity Theory of Real Functions. Birkh�auser, Boston, 1991.

33

[20] G. Kreisel, D. Lacombe, and J. R. Shoen�eld. Partial recursive functionals and e�ec-

tive operations. In A. Heyting, editor, Constructivity in Mathematics, Proceedings of

the Colloquium held at Amsterdam 1957, pages 290{297, Amsterdam, 1959. North{

Holland Publishing Company.

[21] C. Kreitz and K. Weihrauch. Theory of representations. Theor. Comp. Science,

38:35{53, 1985.

[22] B. A. Kushner. Lectures on Constructive Mathematical Analysis, volume 60 of Trans-

lations of Mathematical Monographs. American Math. Soc., Providence, Rhode Is-

land, 1984.

[23] D. Lacombe. Extension de la notion de fonction r�ecursive aux fonctions d'une

ou plusieurs variables r�eelles I-III. Comptes Rendus Acad�emie des Sciences,

240/241:2478{2480/13{14,151{153, 1955.

[24] A. I. Maltsev. Constructive algebras I. Russian Math. Surveys, 16:77{129, 1961. Also

in: B. F. Wells III, editor, The Metamathematics of Algebraic Systems: Collected

Papers 1936{1967, pages 148{212. North Holland, Amsterdam, 1971.

[25] A. A. Markov. On the continuity of constructive functions. Uspekhi Mat. Nauk, 9(3

(61)):226{230, 1954. (Russian).

[26] Y. N. Moschovakis. Notation systems and recursive ordered �elds. Comp. Math.,

17:40{71, 1964.

[27] Y. N. Moschovakis. Recursive metric spaces. Fund. Math., 15:215{238, 1964.

[28] J.-M. Muller. Elementary Functions, Algorithms and Implementation. Birkh�auser,

Boston, 1997.

[29] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-

Verlag, Berlin, Heidelberg, 1989.

[30] H. Rogers, Jr. Theory of Recursive Functions and E�ective Computability. McGraw{

Hill Book Company, New York, 1967.

[31] V. Stoltenberg-Hansen and J. V. Tucker. E�ective algebras. In S. Abramsky, D. M.

Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,

Vol. IV: Semantic Modelling, pages 357{526. University Press, Oxford, 1995.

[32] G. S. Tseytin. Algorithmic operators in constructive metric spaces. Amer. Math. Soc

Transl., 2(64), 1967. (Trudy Mat. Inst. Steklov. 67 (1962), 259{361).

[33] K. Weihrauch. Type 2 recursion theory. Theor. Comp. Science, 38:17{33, 1985.

[34] K. Weihrauch. Computability. Springer-Verlag, Berlin, 1987.

[35] K. Weihrauch. Computability on computable metric spaces. Theor. Comp. Science,

113:191{210, 1993.

[36] K. Weihrauch. A simple introduction to computable analysis. Technical Report 171,

FernUniversit�at Hagen, July 1995. 2nd ed.

34

[37] K. Weihrauch. A foundation for computable analysis. In D. S. Bridges et al., ed-

itor, Combinatorics, Complexity, and Logic, Discrete Mathematics and Theoretical

Computer Science, pages 66{89, Singapore, 1997. Springer-Verlag. Proceedings of

DMTCS'96, Auckland.

[38] K. Weihrauch and C. Kreitz. Representations of the real numbers and of the open

subsets of the real numbers. Annals of Pure and Applied Logic, 35:247{260, 1987.

35

