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Computational Complementarity and So�c Shifts �

Cristian S. Caludey and Marjo Lipponenz

Abstract

Finite automata (with outputs but no initial states) have been extensively used

as models of computational complementarity, a property which mimics the physical

complementarity. All this work was focussed on \frames", i.e., on �xed, static, local

descriptions of the system behaviour. In this paper we are mainly interested in the

asymptotical description of complementarity. To this aim we will study the asymptot-

ical behaviour of two complementarity principles by associating to every incomplete

deterministic automaton (with outputs, but no initial state) certain so�c shifts: au-

tomata having the same behaviour correspond to a unique so�c shift. In this way, a

class of so�c shifts reecting complementarity will be introduced and studied. We will

prove that there is a strong relation between \local complementarity", as it is per-

ceived at the level of \frames", and \asymptotical complementarity" as it is described

by the so�c shift.

Key words: Complementarity principles, �nite automata, so�c shifts.

1 Motivation

Physical systems are normally described by measurements. For example, a gas is described

by the position and momentum of its molecules and a swinging pendulum is characterized

by its angle from the vertical and its angular velocity. In the simplest case the set of

possible values describing a system can be arranged in a sequence, a �lm which is in�nite

in both directions: each frame of the �lm|describing the system in a �xed interval of

time|depends upon the previous one, usually in a continuous way.

The notion of measurement is strongly connected to physical complementarity: the

observer either experiences one certain type of observation, (exclusive) or a di�erent,

complementary one. The \folklore" understanding of complementarity, in general, and of

Heisenberg's uncertainty relation, in particular, is the existence of certain (complementary)

features of quantum systems which cannot be measured and predicted simultaneously with

arbitrary accuracy. In other words, any description of properties of microscopic objects in

classical terms generates pairs of complementary variables; the accuracy in one member
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of the pair cannot be improved without a corresponding loss in the accuracy of the other

member.

Extensive work done by various authors (e.g. Moore [18], Ginsburg [12], Gill [11],

Chaitin [6], Conway [7], Finkelstein and Finkelstein [8], Brauer [2], Grib and Zapatrin

[14], Schaller and Svozil [20, 21], Svozil [22], Calude, Calude, Svozil, Yu [4], Calude,

Calude and Khoussainov [3], Calude and Lipponen [5]) was devoted to modeling physical

complementarity by computational complementarity, i.e., by means of complementarity

properties displayed by various types of �nite automata. All this quoted work was fo-

cussed on \frames", i.e., on �xed, static, local descriptions of the system behaviour. In

this paper we take another view as we are mainly interested in the asymptotical description

of complementarity. We will study the asymptotical behaviour of two complementarity

principles|motivated by Moore's work [18] (see also Conway [7, p. 21] and Svozil [22])

and introduced by Calude, Calude, Svozil, Yu [4]|by associating to every incomplete

deterministic automaton (with output, but no initial state)|studied in Calude and Lip-

ponen [5]|certain so�c shifts. A class of so�c shifts reecting complementarity will be

introduced and studied. We will prove that there is a strong relation between \local

complementarity", as it is perceived at the level of \frames", and \asymptotical comple-

mentarity" as it is described by the so�c shift, as automata having the same behaviour

correspond to a unique so�c shift.

2 Notations

If S is a �nite set, then jSj denotes the cardinality of S. A partial function f : A
�

! B

is a function de�ned for some elements from A. In case f is not de�ned on a 2 A we

write f(a) = 1. Let D(f) = fa 2 A j f(a) 6= 1g denote the domain of f . If D(f) = A,

we say that f is total. Two partial functions f and g are equal, when D(f) = D(g) and

f(a) = g(a), for every a 2 D(f). For any two sets A and B, we denote their symmetrical

di�erence by 4, A4 B = (A n B) [ (B n A). If � is a �nite set, called alphabet, then

�� stands for the set of all �nite words over � and the empty word, denoted by �,

whereas �Z is the set of all bi-in�nite words over �. An element of �Z is a sequence

x = (xn)n2Z= : : : x�1x0x1 : : :

Let � and O be two �nite, nonempty alphabets; � is the set of input symbols, and

O the set of output symbols. A deterministic (�nite) incomplete automaton over

the alphabets � and O is a system A = (SA;�A; FA), where the set of states SA is a

�nite, nonempty set, the transition table �A is a partial function from SA � � to the

set of states SA, and the output function FA is a total mapping from the set of states

SA into output alphabet O.

The transition diagram �A is naturally extended to a partial function, �A : SA��
�

�

!

SA as follows: for every s 2 SA, w 2 �� and � 2 �, �A(s; �) = s, and �A(s; �w) =

�A(�A(s; �); w) if �A(s; �) 6=1.

Furthermore, for all p 2 SA, the set WA(p) = fw 2 ��
j �A(p;w) 6=1g consists of all

words leading to complete computations on state p. Following Ginsburg [13], we say that

a word u is applicable to the state p if u 2WA(p).

If �A is a total function, we will say that the automaton A is complete, so every

complete automaton is a special case of an incomplete automaton.
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An automaton A = (SA;�A; FA) is strongly connected if for every pair of states

p; q 2 SA there is a word w 2WA(p) such that �A(p;w) = q.

In this paper we will deal only with strongly connected deterministic incomplete au-

tomata, shortly automata, if not otherwise stated.

Following Calude and Lipponen [5], the response of an automaton A = (SA;�A; FA)

to an input signal is the partial function RA : SA���
�

! O� de�ned such that for every

s 2 SA, RA(s; �) = FA(s), and

RA(s; �1 : : : �n) = FA(s)FA(�A(s; �1))FA(�A(s; �1�2)) : : : FA(�A(s; �1 : : : �n));

if �1 : : : �n 2WA(s), �i 2 �, n � 1 and 1 � i � n.

Example 2.1 Let � = fa; bg, O = f0; 1g, and consider the three-state automaton A

presented below. The state p emits an output 0, FA(p) = 0, and the states q and r emit

0p

r

q
b

|

|

| a

ba

1

1A:

an output 1, FA(q) = FA(r) = 1. The responses to an input aba are RA(p; aba) = 0111,

RA(q; aba) = 1101, and RA(r; aba) =1.

Responses are used in Calude and Lipponen [5] to de�ne the behavioral simula-

tion (shortly �-simulation) of an automaton by another one, meaning that an automa-

ton can perform all computations performed by another automaton. Formally, let

A = (SA;�A; FA) and B = (SB;�B ; FB) be two automata. Then A is �-simulated

by B if there is a mapping h : SA ! SB such that for all s 2 SA, WA(s) = WB(h(s)),

and RA(s; w) = RB(h(s); w), for all w 2 WA(s). If A and B both �-simulate each other,

we say that A and B are �-equivalent. If, moreover, the mapping h : SA ! SB is one-

to-one and onto, and for all s 2 SA and � 2WA(s) \ �, h(�A(s; �)) = �B(h(s); �), then

A and B are isomorphic. An automaton A is minimal if every automaton B which is

�-equivalent to A has at least as many states as A, jSAj � jSB j.

3 Computational Complementarity

Following the study initiated in Moore [18], think of an automaton as a black box. Assume

that we want to \distinguish" between two states p and q of the automaton A by means

of a \measurable experiment", i.e. by the responses of the automaton to an input w 2 ��.

Following Calude and Lipponen [5], we say that the experiment is not relevant if it is

applicable to neither p nor q; hence, another experiment is required. On the other hand,

if the experiment is relevant then we have three further possibilities: w is applicable to

either p or q but not to both, or RA(p;w) 6= RA(q; w), or RA(p;w) = RA(q; w). In the �rst

two cases w distinguishes between p and q, and in the third case w does not distinguish
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between p and q. To summarise, w distinguishes between p and q if RA(p;w) 6= RA(q; w)

(meaning that either w is applicable to both p and q and the responses are di�erent or w

is applicable to only one of the states). In the remaining cases, w may not distinguish or

may not be relevant for distinguishing between p and q.

Consequently, two states p; q 2 SA of an automaton A = (SA;�A; FA) are indistin-

guishable i�

WA(p) =WA(q) and RA(p;w) = RA(q; w); for all w 2WA(p):

If the states p and q are not indistinguishable, we say that they are distinguishable,

and every word from the set

fw 2WA(p) [WA(q) j RA(p;w) 6= RA(q; w)g

is said to distinguish between p and q. Hence a word w cannot distinguish between p

and q if RA(p;w) = RA(q; w) or w 62WA(p) [WA(q).

Following the terminology of Calude, Calude, Svozil, Yu [4], we now de�ne the prop-

erties A, B, C (for an automaton A) as follows:

A Every pair of the distinct states of A are distinguishable.

B For every state p of A there exists a word which distinguishes p from all the other

states.

C There exists a word which distinguishes between any two distinct states of A.

(These properties are decidable, see Calude, Calude, Svozil, Yu [4] and Calude and Lip-

ponen [5].)

According to Calude and Lipponen [5], an automaton is minimal i� it has property A,

that is all its states are distinguishable. In fact, since indistinguishability is an equivalence

relation, using equivalence classes of states we can construct a minimal automaton M(A)

for every automaton A: M(A) is �-equivalent to A and has a minimal number of states.

Two complementarity principles can now be de�ned: CI means that an automaton

has A but not B and CII means that an automaton has B but not C.

4 Shift Spaces

A subset X of �Z is a shift space if it is topologically closed (with respect to the natural

metric on �Z) and shift invariant, �(X) = X, where � : �Z ! �Z is the shift trans-

formation �(x)i = xi+1. The set �Z is called the full shift. The language of a shift

X is the set B(X) of all subwords of sequences in X. Two shift spaces X and Y are

conjugate if there is a one-to-one onto morphism � : X ! Y which commutes with the

shift transformation, � � �X = �Y � �. For more details, see Lind and Marcus [17].

To each automaton A = (SA;�A; FA) we associate three shift spaces (of bi-in�nite

sequences):

1) the automaton shift,

SA = f(qi; ai; xi)i2Z j qi 2 SA; ai 2 �; xi 2 O;�A(qi; ai) = qi+1; xi = FA(qi)g;

4



2) the label-output shift,

S
�;O
A = f(ai; xi)i2Z j (qi; ai; xi) 2 SA; for some (qi)g;

3) the output shift,

S
O
A = f(xi)i2Z j (qi; ai; xi) 2 SA; for some (qi) and (ai)g:

Other relations between �nite automata (with initial states) and so�c shifts were ex-

plored by various authors; see B�eal and Perrin [1], K _urka [15, 16] and Perrin [19].

In what follows we are mainly interested in expressing complementarity principles of

automata in terms of their induced shifts. The �rst result proves that there is no such

possibility for output shifts.

Proposition 4.1 There exist two complete automata A and B such that A satis�es prin-

ciple CI, B satis�es principle CII, and SOA = S
O
B.

Proof. Consider the following automata. The output shift in both cases is the full

shift f0; 1gZ.

| 0q1 | 0q2

q4 | 0 q3

b, c

| 1

c

b

c

a, b

ac

b

q1 | 0

q4 | 0

c q2 | 0

a a

q3 | 1

bA: B:a, c

a, c

a

a, b bb, c

The automaton A has clearly propertyA since all its distinct states are distinguishable;

for instance, w = c distinguishes between q2 and q4 (RA(q2; w) = 00 6= 01 = RA(q4; w)).

But A does not have property B. If the experiment starts with a or b then it cannot

distinguish between the states q1 and q4, and if the experiment starts with c then it

cannot distinguish between q1 and q2. So there is no experiment which distinguishes q1
from the other states.

In the same way we can prove that the automaton B has B but not C. 2

The automaton shift completely describes the automaton, i.e., the shifts SA and SB
are conjugate i� A and B are isomorphic. Accordingly, there is no real advantage in

using SA instead of A. It turns out that the label-output shift has the most interesting

properties.

Theorem 4.2 Let A and B be two automata. Then A is �-equivalent to B i� S
�;O
A =

S
�;O
B .
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Proof. Assume �rst that A and B are �-equivalent and let h1 : SA ! SB
and h2 : SB ! SA be the corresponding mappings. Consider all possible subwords

of the sequences of S
�;O
A and S

�;O
B . Then B(S

�;O
A ) = B(S

�;O
B ). Indeed, if ! =

(a1; x1) : : : (am; xm) 2 B(S
�;O
A ), then there exist a state p 2 SA and an output xm+1 2 O

such that RA(p; a1 : : : am) = x1 : : : xmxm+1, hence RB(h1(p); a1 : : : am) = x1 : : : xmxm+1,

so ! 2 B(S
�;O
B ).

Conversely, let M(A) and M(B) be the minimal automata of A and B, respectively.

We have

S
�;O
M(A)

= S
�;O
A = S

�;O
B = S

�;O
M(B)

:

In view of Corollary 6.7, M(A) is isomorphic to M(B), so in particular, they are �-

equivalent, hence also A and B are �-equivalent. 2

By Calude and Lipponen [5], two minimal automata are �-equivalent i� they are

isomorphic. The following result shows that for the label-output shifts, the minimal au-

tomaton presenting the shift is unique up to an isomorphism.

Corollary 4.3 Let A and B be two minimal automata. Then A and B are isomorphic

i� their label-output shifts S
�;O
A and S

�;O
B are equal.

This result can be used to express complementarity principles in terms of properties

of label-output shifts.

Corollary 4.4 Let A and B be two automata. If A has CI and B has CII, then their

label-output shifts are not equal.

Corollary 4.5 Let A and B be minimal automata such that their label-output shifts S
�;O
A

and S
�;O
B are equal. If A has CI, then B has CI, and if A has CII, then B has CII.

Notice that Theorem 4.2 is not valid for automata which are not strongly connected.

Example 4.6 The automata A and B below have the same label-output shifts but they

are not �-equivalent. We also notice that A satis�es principle CII while B satis�es

principle CI.

0q 0 p ||
B:b cA:

a

0|r

0|p

c
a

c
b

q 0| | 0

b
a

0|r

c a

s
b b

The following example shows that conjugacy cannot replace equality in Corollaries 4.4

and 4.5.
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| 0q1 | 0q2

q4 | 0 q3

a,c

| 1c

b

q1 | 0

q4 | 0

q2 | 0

q3 |

A: B:

ab

a

c

a

b

c

c

b

b

0

d

b

a,c

Example 4.7 Consider the automata A and B presented below. A has principle CII

and B has principle CI; nevertheless, X = S
�;O
A and Y = S

�;O
B are conjugate via the

extension of the morphism � : fa; b; c; dg � f0; 1g ! fa; b; c; dg � f0; 1g, �((a; 1)) = (d; 0),

�((a; 0)) = (a; 0), �((b; 0)) = (b; 0), �((b; 1)) = (b; 1), �((c; 0)) = (c; 0), �((c; 1)) = (c; 1),

�((d; 0) = (a; 1), �((d; 1)) = (d; 1). We will return to this example in Example 5.3.

5 So�c Shifts

A so�c shift X is a subset of �Z consisting of all bi-in�nite walks on some graph G. Here

G is a pair (S;�), where S is the set of vertices and the transition function � : S��
�

! S

de�nes the labeled edges between the vertices; � is the underlying alphabet. We say that

G is a presentation of X, and we write X = XG.

Notice that the graphs we consider are right-resolving, that is, for each vertex p 2 S

the edges starting at p carry di�erent labels. Such graphs have a \deterministic behaviour"

in the sense that for every word w 2 �� and every vertex p, there is at most one path

labeled with w and starting from p. This property \reects" the deterministic behaviour

of the automata considered in this paper.

In what follows, we will consider mainly strongly connected graphs (a property which

is de�ned in the same way as for automata). This property corresponds to irreducibility of

the so�c shifts. Recall that a shift X having the property that for every words u; v 2 B(X)

there is a word w 2 B(X) such that uwv 2 B(X) is called irreducible. By Lind and

Marcus [17], XG is irreducible i� G is strongly connected.

We will now show that the label-output shifts are actually so�c shifts. The idea is to

transform the underlying automaton A into a labeled graph GA (over the alphabet ��O)

without a�ecting the represented shift.

Example 5.1 Consider the following automaton A and graph G. The label-output shift

S
�;O
A is clearly the same as the so�c shift XG.

Formally, let A = (SA;�A; FA) be an automaton. The graph GA = (SA;�GA) has

the states of A as vertices and the transition table �GA : SA ���O
�

! SA is de�ned by

�GA(p; (a; x)) = �A(p; a) if a 2 WA(p) and x = FA(p); otherwise, �GA(p; (a; x)) is not

de�ned. It follows immediately that a 2 WA(p) i� (a; FA(p)) 2 WGA(p), where WGA(p)

7



0p q 0|

a

|

a

b
A:

r | 1

(b,0)

(a,0)(a,1)

(b,0)

p

r

q

(a,0)
ba G:

consists of words ! 2 (��O)� for which �GA(p; !) 6=1. Consequently S
�;O
A = XGA , so

we have proved the following result:

Theorem 5.2 Let A be an automaton. Then the label-output shift S
�;O
A is a so�c shift.

Example 5.3 We will now return to Example 4.7. The graphs GA and GB below are

represented by the automata A and B; it is easy to see that the so�c shifts XGA and XGB

are conjugate via the extension of the mapping �.

q4 3q

1q 2q

(b,0)

1q

4q

G   :A (b,0)

(a,1)

G   :B
(a,0)

(c,0)

(d,0)

(b,0)

3q

2q

(c,0)

(b,0) (c,0) (b,0) (c,0)

(a,0)(a,0)
(c,0)(c,0) (a,0)

(b,0)

Notice that the graph GA is strongly connected and right-resolving i� the automaton

A is strongly connected and deterministic. The graph GA has also the following property:

For any vertex p, all outgoing edges (a; x) must have the same second label x (the output

emitted by the state p). This property is essential in proving that not all so�c shifts are

label-output shifts.

Theorem 5.4 There exists a so�c shift which is not a label-output shift.

Proof. For the graph G below there is no automaton A such that the shift space XG

is equal to the label-output shift S
�;O
A .

2qG:

(a,0)

(b,1)
q1(a,0)

Indeed, a typical word in B(XG) is of the form

(a; 0)i1(b; 1)(a; 0)i2 (b; 1) : : : (a; 0)ik (b; 1)(a; 0)ik+1 ;
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where k; i1; i2; : : : ; ik > 0 and ik+1 � 0. Assume, for the sake of a contradiction, that XG

is conjugate to some S
�;O
A . As k and the exponents ij may have arbitrarily large values,

it follows that there is a state q 2 SA such that �GA(q; (a; 0)) = q, and

a) �GA(q; (a; 0)) = q0 6= q for some state q0, or

b) �GA(q; (b; 1)) 6=1.

The �rst case is impossible as A is deterministic (and hence GA must be right-resolving);

the second variant is also impossible as it contradicts the speci�c property ofGA mentioned

above. 2

The following results show two more speci�c properties of label-output shifts.

Corollary 5.5

1. There is a shift of �nite type which is not a label-output shift.

2. The class of label-output shifts is not invariant under conjugacy.

Proof. Consider the shift XG in the proof of Theorem 5.4 which cannot be a label-

output shift for any automaton A. Thus the �rst claim follows from the fact that XG is of

�nite type, as the set of forbidden subwords of XG is �nite: f(b; 1)(b; 1); (a; 1); (b; 0)g. The

second statement is proved by considering the same shift XG and the conjugacy induced

by the morphism � : fa; bg � f0; 1g ! fa; bg � f0; 1g, �((b; 1)) = (b; 0), �((a; 0)) = (a; 0),

�((a; 1)) = (a; 1), �((b; 0)) = (b; 1). Then XG and S
�;O
A presented by the automaton A

below are conjugate.

q1 | 0
A:

q2 | 0
b

a
a

2

Comment. By a well-known result (presented in Lind and Marcus [17]), every so�c

shift has a right-resolving presentation, i.e., the graph G is right-resolving. However, the

proof of Theorem 5.4 shows that XG, in spite of being deterministic (as a graph), has

an intrinsic nondeterministic behaviour which cannot be described by any deterministic

automaton A.

6 More About Complementarity and So�c Shifts

By Corollaries 4.4 and 4.5 we already know that the complementarity principles CI and

CII are properties of the label-output shifts S
�;O
A . In this section we will approach this

fact from another point of view.

The follower set FG(p) of a vertex p in the graph G is the collection of labels of

paths starting at p. In the case of GA, the follower set of p coincides with the set of words

applicable to the state p, FGA(p) =WGA(p).

It turns out that the follower sets are closely related to indistinguishability. To prove

this we �rst need to prove the following lemma.
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Lemma 6.1 For an automaton A, (a1; x1)(a2; x2) : : : (ak; xk) 2 WGA(p) i� a1 : : : ak 2

WA(p) and RA(p; a1 : : : ak�1) = x1 : : : xk, where p 2 SA, ai 2 �, xi 2 O.

Proof. We will use the induction. By de�nition, (a; x) 2 WGA(p) i� a 2 WA(p)

and FA(p) = x. Assume now that the result holds for all words of length at most

k � 1. Let ! = (a1; x1) : : : (ak; xk) be a word from the set WGA(p) for some p. By

induction hypothesis, a1 : : : ak�1 2 WA(p) and RA(p; a1 : : : ak�2) = x1 : : : xk�1. Let

q = �GA(p; (a1; x1) : : : (ak�1; xk�1)). By de�nition, �A(p; a1 : : : ak�1) = q and since

(ak; xk) 2 �GA(q), we have ak 2WA(q) and FA(q) = xk. But now

RA(p; a1 : : : ak�1) = RA(p; a1 : : : ak�2)FA(�A(p; a1 : : : ak�1))

= x1 : : : xk�1FA(q) = x1 : : : xk:

This is clearly the case also for the converse implication. 2

Theorem 6.2 Two states p; q 2 SA are indistinguishable i� FGA(p) = FGA(q).

Proof. If the states p; q in A are indistinguishable then WA(p) = WA(q) and

RA(p;w) = RA(q; w) for all w 2 WA(p). We want to prove that WGA(p) = WGA(q).

Take any word ! = (a1; x1) : : : (ak; xk) 2 WGA(p). By Lemma 6.1, w = a1 : : : ak 2

WA(p) and RA(p; a1 : : : ak�1) = x1 : : : xk. In view of the hypothesis, w 2 WA(q) and

RA(q; a1 : : : ak�1) = x1 : : : xk. Hence, applying Lemma 6.1 again, the word ! belongs to

the set WGA(q), too. Changing the places of p and q in the above proof, we obtain the

equality WGA(p) =WGA(q).

Assume now that FGA(p) = FGA(q), in other words WGA(p) = WGA(q). We want

to prove that WA(p) = WA(q) and RA(p;w) = RA(q; w) for any word w 2 WA(p). So

assume that w = a1 : : : ak 2 WA(p), and let RA(p;w) = x1 : : : xk+1. Since A is strongly

connected, there has to be a letter, say ak+1, such that �A(p;wak+1) is de�ned and

RA(p;wak+1) = x1 : : : xk+1xk+2. By Lemma 6.1, ! = (a1; x1) : : : (ak; xk)(ak+1; xk+1) 2

WGA(p). By hypothesis, ! 2WGA(q) which again by Lemma 6.1 implies that a1 : : : ak+1 2

WA(q), consequently, a1 : : : ak 2 WA(q) and RA(q; a1 : : : ak) = x1 : : : xkxk+1. Thus the

states p and q are indistinguishable in A. 2

The following example shows that Theorem 6.2 does not hold if the automaton A is

not strongly connected.

Example 6.3 In the automaton A below the states q1 and q2 are distinguishable by

w = a; however, in GA the follower sets FGA(p) and FGA(q) are equal. Notice that the

shift S
�;O
A is still the same as the so�c shift XGA .

For an incomplete automaton A = (SA;�A; FA) the length of the shortest words to

check whether two states p; q 2 SA are distinguishable is jSAj�1 (see Calude and Lipponen

[5]) whereas for complete automata the bound is jSAj � 2 (see Calude, Calude, Svozil and

Yu [4]). We can prove that for incomplete automata the bound jSAj � 1 is needed only

when all outputs of states of A are the same, and moreover, the word w which distinguishes

between p and q belongs to WA(p)�WA(q). With this in mind we are able to improve the

bound presented in Lind and Marcus [17] for output-label shifts.

10



| 0q20|q1

1| q3q0|4q

a

b

b (b,0)

(b,0)
A:

a (a,0) (a,0)

G   :A q q1 2

4q 3

Proposition 6.4 Let GA be a graph corresponding to an automaton A and p; q 2 SA.

Then FGA(p) 6= FGA(q) i� there is a word ! of length jSAj�1 which belongs to FGA(p)4

FGA(q).

Proof. Assume �rst that the follower sets of the states p; q are di�erent. Then by

Lemma 6.2 the states p; q 2 SA are distinguishable. Let w = a1 : : : ak, ai 2 �, be the

shortest word which distinguishes these two states. We have two possibilities: If w 2

WA(p)4WA(q) then jwj � jSAj�1. Hence the word ! = (a1; x1)(a2; x2) : : : (ak; xk) which

is of the same length belongs to either FGA(p) or FGA(q) but not to both. On the other

hand, if w 2WA(p)\WA(q) then RA(p;w) 6= RA(q; w) and jwj � jSAj � 2. If RA(p;w) =

x1x2 : : : xkxk+1 then there is a letter ak+1 2 � (A is strongly connected) such that the

word ! = (a1; x1)(a2; x2) : : : (ak; xk)(ak+1; xk+1) belongs to the set FGA(p)4FGA(q).

The other implication is obvious. 2

We say that a graph G is follower-separated if all distinct vertices have distinct

follower sets. By Theorem 6.2, we easily obtain the following result:

Theorem 6.5 The automaton A has property A i� GA is follower-separated.

A graph H is a merged graph from G if the vertex set of H consists of disjoint

equivalence classes of vertices of G, where two vertices are equivalent if they have the

same follower sets. Hence by de�nition, the merged graph is always follower-separated.

Corollary 6.6 The automaton A is minimal i� GA is merged.

Corollary 6.7 If A and B are minimal automata satisfying the condition S
�;O
A = S

�;O
B ,

then they are isomorphic.

Proof. The proof will be essentially based on two results by Fischer [10, 9] which will

be quoted in the form given by Lind and Marcus [17]. Consider the graphs GA and GB

and notice that

X = XGA = S
�;O
A = S

�;O
B = XGB :

As A and B are minimal and strongly connected then GA and GB are merged and strongly

connected, so X is irreducible. By Corollary 3.3.20 (Lind and Marcus [17, p. 83]) it follows

that GA and GB are minimal presentations of X. Finally by Theorem 3.3.18 (Lind and

Marcus [17, p. 82]), GA and GB are isomorphic graphs which assures that A and B are

isomorphic automata. 2
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Comment. From the above analysis it follows that one can de�ne the analogues of

CI and CII for label-output shifts. These are properties of label-output shifts, i.e., they

do not depend on speci�c representations of label-output shifts. Further on, if X = S
�;O
A

and has CI (resp. CII) then A has CI (resp. CII) if it is minimal.
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