
CDMTCS

Research Report Series

The Parameterized

Complexity of Some

Fundabmental Problems in

Coding Theory

Rodney G. Downey
Department of Mathematics

Victoria University

Wellington, New Zealand

Michael R. Fellows
Department of Computer Science

University of Victoria

Victoria, B.C. Canada

Alexander Vardy
Coordinated Science Laboratory

University of Illinois

Urbana, IL U.S.A

Geo� Whittle
Department of Mathematics

Victoria University

Wellington, New Zealand

CDMTCS-052

August 1997

Centre for Discrete Mathematics and

Theoretical Computer Science



The Parameterized Complexity of

Some Fundamental Problems

in Coding Theory

Rod G. Downey

Department of Mathematics

Victoria University, Private Bag 600

Wellington, New Zealand

downey@math.vuw.ac.nz

Michael R. Fellows

Department of Computer Science

University of Victoria

Victoria, B.C. V8W 3P6, Canada

mfellows@csr.uvic.ca

Alexander Vardy�

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

1308 W.Main Street, Urbana, IL 61801, USA

vardy@golay.csl.uiuc.edu

Geo� Whittle

Department of Mathematics

Victoria University, Private Bag 600

Wellington, New Zealand

geoff.whittle@math.vuw.ac.nz

June 10, 1997

Abstract

The parameterized complexity of a number of fundamental problems in the theory of linear
codes and integer lattices is explored. Concerning codes, the main results are thatMaximum-

Likelihood Decoding andWeight Distribution are hard for the parametrized complex-
ity class W [1]. The NP-completeness of these two problems was established by Berlekamp,
McEliece, and vanTilborg in 1978, using a reduction from 3-Dimensional Matching. On
the other hand, our proof of hardness for W [1] is based on a parametric polynomial-time
transformation from Perfect Code in graphs. An immediate consequence of our results
is that bounded-distance decoding is likely to be hard for linear codes. Concerning lattices,
we address the Theta Series problem of determining, for an integer lattice � and a positive
integer k, whether there is a vector x2� of Euclidean norm k. We prove here for the �rst
time that Theta Series is NP-complete, and show that it is also hard forW [1]. We further-
more prove that the Nearest Vector problem for integer lattices is hard for W [1]. These
problems are the counterparts of Weight Distribution and Maximum-Likelihood De-

coding for lattices, and are closely related to the well-known Shortest Vector problem.
Relations between all these problems and combinatorial problems in graphs are discussed.

Keywords: parametrized complexity, linear codes, decoding, codes in graphs, integer lattices.
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1. Introduction

Our main objective in this paper is to explore the parameterized complexity of certain funda-

mental computational problems in the theories of linear codes and integer lattices. There is a

natural close relationship between computational problems in these areas. We prove one main

combinatorial transformation, which we then use to show hardness for problems in both domains.

There has been a substantial amount of previous work on the complexity of the problems consid-

ered here. Although many of these problems are naturally parameterized, all the prior work was

in the framework of NP-completeness. The following three problems, considered by Berlekamp,

McEliece, and vanTilborg [BMvT78] in 1978, are of importance in the theory of linear codes:

Problem: Maximum-Likelihood Decoding

Instance: A binary m� n matrix H, a target vector s2 IFm
2
, and an integer k > 0.

Question: Is there a set of at most k columns of H that sum to s ?

Parameter: k

Problem: Weight Distribution

Instance: A binary m� n matrix H, and an integer k > 0.

Question: Is there a set of k columns of H that sum to the all-zero vector?

Parameter: k

Problem: Minimum Distance

Instance: A binary m� n matrix H, and an integer k > 0.

Question: Is there a set (6= ?) of at most k columns ofH that sum to the all-zero vector?

Parameter: k

Notice that the di�erence between the de�nitions of the Minimum Distance and Weight

Distribution problems is very slight. Weight Distribution requires exactly k columns in

a solution, while Minimum Distance requires at most k columns in a solution.

Berlekamp, McEliece and van Tilborg [BMvT78] proved that Maximum-Likelihood Decod-

ing andWeight Distribution are NP-complete, by means of a reduction from 3-Dimensional

Matching. They conjectured thatMinimumDistance is also NP-complete, and Vardy [Var97b]

recently proved this conjecture using a non-parametric reduction from Maximum-Likelihood

Decoding. Since 3-Dimensional Matching is �xed-parameter tractable, these earlier results

do not allow us to conclude anything about the parameterized complexity of the three problems.

Over the past few years, it was shown that many NP-complete problems are �xed-parameter

tractable. For exampleVertex Cover, a well-known NP-complete problem [GJ79, p. 53] which

asks whether a graph G on n vertices has a vertex cover of size at most k, can be solved [BFR96]

in time O(kn+ (4=
3
)kk2). Loosely speaking, the parametrized complexity hierarchy

FPT =W [0] � W [1] � W [2] � � � � �W [P] � � � � � XP

introduced by Downey and Fellows [DF95a, DF95b] distinguishes between those problems that

are �xed-parameter tractable and those that are not. For more details on the W hierarchy of

parameterized complexity, see x 4, the Appendix, and references therein, in particular [DF97b].
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One of our main results in this paper is a proof that Maximum-Likelihood Decoding and

Weight Distribution are hard for the parametrized complexity classW [1]. We also show that

both problems belong to the class W [2]. The proof of W [1]-hardness is based on a parametric

polynomial-time reduction from the Perfect Code problem for graphs. Such a proof estab-

lishes both W [1]-hardness and NP-completeness at the same time. Furthermore, an immediate

consequence of this result is that bounded-distance decoding is likely to be hard for binary linear

codes, unless the parametrized complexity hierarchy collapses with W [1] = FPT.

Three closely related problems in the theory of integer lattices are natural counterparts of the

three problems concerning linear codes, discussed above. These problems are de�ned as follows:

Problem: Nearest Vector

Instance: A basis X = fx1; x2; : : : ; xng � Z
n for a lattice �, a target vector s2Zn,

and an integer k > 0.

Question: Is there a vector x2�, such that kx� sk2 � k ?

Parameter: k

Problem: Theta Series

Instance: A basis X = fx1; x2; : : : ; xng � Z
n for a lattice �, and an integer k > 0.

Question: Is there a vector x2�, such that kxk2 = k ?

Parameter: k

Problem: Shortest Vector

Instance: A basis X = fx1; x2; : : : ; xng � Z
n for a lattice �, and an integer k > 0.

Question: Is there a non-zero vector x2�, such that kxk2 � k ?

Parameter: k

where a lattice � is de�ned as the set of all linear combinations with integer coe�cients of the

elements of its basis X, and k � k denotes the Euclidean norm. Again, notice that the di�erence

between the de�nitions of Shortest Vector and Theta Series is very slight. Theta Series

requires kxk2 = k in a solution, while Shortest Vector requires only the inequality kxk2 � k.

Peter vanEmdeBoas [vEB80] proved in 1980 that Nearest Vector is NP-complete, and con-

jectured that the Shortest Vector problem is also NP-complete. There has been a consid-

erable amount of work devoted to the proof of this conjecture | see [ABSS93] and [Var97a] for

a discussion. Ajtai [Ajt97] has recently proved that the Shortest Vector problem is hard

for NP under randomized reductions. This comes very close to proving the conjecture of [vEB80].

Akin to the situation with linear codes, nothing is currently known regarding the parametrized

complexity of the three problems discussed above.

Herein, we prove for the �rst time that theTheta Series problem is NP-hard. This seems to add

even further weight to the conjecture of [vEB80]. Moreover, since our reduction is parametric,

it also shows that Theta Series is hard for the parametrized complexity class W [1]. Along

similar lines, we prove that the Nearest Vector problem is also hard for W [1].

Our results are based on a powerful combinatorial transformation that uses many of the ideas

employed in the proofs of the main theorems in [DF95a, DF95b]. We feel that one of the most

interesting aspects of our work is a demonstration of the potential utility of parametric methods
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and perspectives in addressing issues in \classical" complexity theory. We will assume that the

reader has some familiarity with the parameterized complexity framework, such as can be found

in [DF95a, DF95b, DF95c, DF97b], for example. For the bene�t of readers that do not have this

background, some discussion and essential de�nitions are presented in x 4 and the Appendix.

In the interests of readability, we defer the proof of our main combinatorial transformation to x3.

In the next section, we prove the main results, using this transformation. In x4 we present an

outline of the proof of membership in W [2] for several of the problems considered in this paper.

We furthermore discuss the remaining open problems, and speculate on whether the techniques

used herein might be adapted to provide a proof of W [1]-hardness for Minimum Distance, or

of NP-hardness for the Shortest Vector.

2. The main results through red/blue graphs

We start with some notation and terminology. Let G = (V;E) be a graph. We say that two

distinct vertices u; v 2V are neighbors if they are adjacent in G, namely if (u; v)2E. A set of

vertices V 0 � V is said to be a perfect code in G if every vertex of V is either contained in V 0

or has a unique neighbor in V 0, but not both. The starting point for our transformations is the

parameterized problem of determining the existence of a k-element perfect code in a graph.

Problem: Perfect Code

Instance: A graph G = (V;E) and an integer k > 0.

Question: Is there a k-element perfect code in G?

Parameter: k

This problem was shown to be hard for W [1] in [DF95b]. Kratochv�il [KK88, Kra94] was the

�rst to prove that this problem is NP-complete, several years earlier.

Our general approach in what follows is based on constructing and manipulating linear codes,

and other sets of vectors, using bipartite graphs. Let G = (R;B; E) be a bipartite graph with

the partition of the vertices into the red set R and the blue set B. We make the following

de�nitions concerning special sets of red vertices in G.

De�nition. Suppose that G = (R;B; E) is a red/blue bipartite graph, and let R � R be a a

nonempty set of red vertices. We say that R is

� a dominating set if every vertex in B has at least one neighbor in R

� a perfect code if every vertex in B has a unique neighbor in R

� an odd set if every vertex in B has an odd number of neighbors in R

� an even set if every vertex in B has an even number of neighbors in R.

Notice that what we de�ne to be a perfect code is not the same for red/blue bipartite graphs

and for general (uncolored) graphs. Similarly, our de�nition of a dominating set in a red/blue
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graph does not coincide with the conventional de�nition of dominating sets in general graphs.

However, it will be always clear from the context which de�nition applies in each case.

We can now state the main problems concerning red/blue graphs that we consider in this paper.

Problem: Even Set

Instance: A red/blue graph G = (R;B; E) and an integer k > 0.

Question: Is there a non-empty set of at most k vertices R � R that is an even set inG ?

Parameter: k

Problem: Exact Even Set

Instance: A red/blue graph G = (R;B; E) and an integer k > 0.

Question: Is there a set of k vertices R � R that is an even set in G ?

Parameter: k

Problem: Odd Set

Instance: A red/blue graph G = (R;B; E) and an integer k > 0.

Question: Is there a set of at most k vertices R � R that is an odd set in G ?

Parameter: k

Problem: Exact Odd Set

Instance: A red/blue graph G = (R;B; E) and an integer k > 0.

Question: Is there a set of k vertices R � R that is an odd set in G ?

Parameter: k

We shall see shortly that all these problems are NP-complete. We will furthermore prove that

Exact Even Set, Odd Set, and Exact Odd Set are hard for W [1]. The following theorem

will serve as the main combinatorial engine in our proof.

Theorem 1. Let G be a graph on n vertices, and let k be a positive integer. In time polynomial

in n and k we can produce a red/blue bipartite graph G0 and a positive integer k0, such that:

P1. Every dominating set in G0 has size at least k0.

P2. Every dominating set in G0 of size k0 is a perfect code in G0.

P3. There is a perfect code of size k in G if and only if there is a perfect code

of size k0 in G0.

Notice that the red/blue graph G0 encodes the information about the existence of a k-element

perfect code in G. However, while the graph G is completely arbitrary, the red/blue graph G0

has a substantial amount of useful structure, expressed by the properties P1 and P2.

The theorem itself is established in the next section by means of a somewhat complicated

graph-theoretic transformation, that has a general architecture similar to the one employed in
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proving the main theorems of [DF95a] and [DF95b]. In what follows, we will use Theorem1

to yield signi�cant results that illustrate the applicability of our graph-theoretic approach to

parametrized problems concerning linear codes and integer lattices.

Parametrized complexity of problems concerning linear codes. First, note that we have

the following merely by observing that in a red/blue bipartite graph, by de�nition, a perfect

code is an odd set, and an odd set is necessarily a dominating set.

Theorem 2. Odd Set and Exact Odd Set are hard for W [1] and NP-complete.

Proof. Theorem1 immediately implies a polynomial-time parameterized transformation from

Perfect Code, which is a W [1]-hard and NP-complete problem, to Odd Set and to Exact

Odd Set. Given an instance G and k of Perfect Code, we construct G0 and k0 as in

Theorem1. It follows from properties P1{P3 that G0 contains an odd set of size at most k0 if

and only if G has a k-element perfect code, and the size of this odd set is, in fact, exactly k0. 2

We now observe that Odd Set is very similar to Maximum-Likelihood Decoding. This

immediately leads to the following.

Theorem 3. Maximum-Likelihood Decoding is hard for W [1].

Proof. Given an instance G = (R;B; E) and k of Odd Set, we construct an instance of Maxi-

mum-Likelihood Decoding as follows. The binary m � n matrix H = [hij ] is the red/blue

adjacency matrix of G, whose columns are indicators of the neighborhoods of vertices in R.

That is, w.l.o.g. we let R = f1; 2; : : : ; ng and B = f1; 2; : : : ;mg, and then set hij = 1 if and only

if i2B is adjacent to j 2R in G. Thus G is a Tanner graph for the binary linear code having

H as its parity-check matrix (cf. [Tan81, SS96]). We set the target vector s equal to the all-one

vector 1 of length m = jBj. It is easy to see that a set of k columns of H sums to s = 1 if and

only if the corresponding k vertices of R constitute an odd set in G. 2

We now employ Theorem1 in a slightly more elaborate way, to establish the following.

Theorem 4. Exact Even Set is hard for W [1] and NP-complete.

Proof. We again reduce from Perfect Code. Given an instance G and k of Perfect Code,

we �rst construct G0 = (R;B; E) and k0 as in Theorem1. Next, we let G1 = (R1;B1; E1) and

G2 = (R2;B2; E2) denote two identical replicas of G0. We can combine G1 and G2 into a single

red/blue graph H, by creating a new red vertex z and connecting it to all the vertices in B1
and B2. Finally, we obtain a red/blue graph H� by adjoining to H a set of jRj blue vertices B�,

one for each vertex of R, and connecting them as follows: every � 2B� is adjacent to one vertex

in R1 and one vertex in R2 which correspond to the same vertex of R, and every such pair of

vertices in R1 and R2 is connected through some vertex of B�. The construction of H� from G0

is illustrated in Figure 1. The instance of Exact Even Set is given by H� and 2k0 + 1.

Now suppose that G has a k-element perfect code. Then by property P3 of Theorem 1, the

red/blue graph G0 has a k0-element perfect code R � R. It is straightforward to verify that the

2k0 vertices corresponding to R in R1 and R2, together with the vertex z, constitute an even

set of size 2k0 + 1 in H�. Indeed, by construction, every blue vertex of B1 [ B2 is adjacent to z

and to exactly one vertex in the replica of R, either in R1 or in R2. Every blue vertex of B� is

either adjacent to both replicas of some vertex in R, or to none at all.
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In the other direction, suppose that S is an even set of size 2k0+1 in H�. If S contains a vertex

�2R1, then it must also contain the corresponding vertex ofR2, since otherwise the vertex of B
�

adjacent to � will have exactly one neighbor in S. It follows that jS \ R1j = jS \ R2j, and the

β ∈ B*

R

B B1 B2

R 1 R 2

z

β ∈ B*

corresponding red/blue graph H*red/blue graph G' = (R ,B,E )

Figure 1: Construction of H� from G0

vertices of S are paired in this way. Since the size of S is odd, we conclude that S must contain

the vertex z. This further implies that S \R1 is a dominating set in G1, as otherwise there is a

vertex � 2B1 which has the single neighbor z in S. Since jSj = 2k0 +1 and jS \R1j = jS \R2j,

the size of this dominating set is exactly k0. By property P2 of Theorem1, this dominating set

is a perfect code in G1 = G0, and property P3 implies that G has a perfect code of size k. 2

It is easy to see that Exact Even Set and Weight Distribution are essentially di�erent

ways to phrase one and the same problem. Thus we have

Theorem 5. Weight Distribution is hard for W [1].

Proof. This follows directly from Theorem4, by taking the matrix H inWeight Distribution

to be the red/blue adjacency matrix for the graph G = (R;B; E) in Exact Even Set, in the

same way as it was done in the proof of Theorem3. 2

Complexity of bounded-distance decoding. The fact thatMaximum-Likelihood Decod-

ing is hard for W [1], established in Theorem3, implies hardness for bounded-distance decoding

of binary linear codes, in a certain sense. We now explain this implication.

Maximum-likelihood decoding is a nearest neighbor search in the vector space IFn
2

endowed

with the Hamming distance d(x; y) = number of positions where x2 IFn
2

and y2 IFn
2

di�er.

Let H be an m � n binary matrix, and let C be the binary linear code de�ned by H, that is

C = fx2 IFn
2

: Hxt = 0g. Then for all y2 IFn
2
, amaximum-likelihood decoder for C always �nds

the closest codeword, that is x2 C such that d(x; y) is the minimum possible. If s = Hyt, this is

equivalent to �nding the smallest set of columns of H that sums to s; hence the corresponding

decision problem is precisely Maximum-Likelihood Decoding.
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While the complexity of maximum-likelihood decoding has been thoroughly studied [ABSS93,

Bar94, BMvT78, BN90, Ste93], almost nothing is presently known regarding the complexity

of bounded-distance decoding, even though most of the decoders used in practice are bounded-

distance decoders. A decoder is said to be bounded-distance if there exists a constant t > 0 such

that for all y2 IFn
2
, the decoder always �nds the closest codeword x2 C , provided d(x; y) � t.

Formally, for each positive integer t, we de�ne the problem

Problem: BDD(t)

Instance: A binary m� n matrix H, a target vector s2 IFm
2
, and an integer k � t.

Question: Is there a set of at most k columns of H that sum to s ?

Notice that BDD(t) is trivially in P for all t, since it can be solved in time O(nt) by simply

computing Hxt for every vector x in a Hamming sphere of radius t. Hence, the complexity of

bounded-distance decoding has to be studied in a di�erent framework. In particular, we would

like to have an algorithm that solves BDD(t) in time O(nc), where c is a constant independent

of t. That is, the multiplicative constant in O(�) may depend on t, but not the exponent.

The following corollary toW [1]-hardness ofMaximum-Likelihood Decoding shows that such

an algorithm does not exist, unless the W complexity hierarchy collapses with W [1] = FPT.

Theorem 6. Suppose that W [1] 6= FPT. Then for any positive constant c, there exists an

integer t0, such that BDD(t) is not solvable in time O(nc) for all t � t0, even if the multiplicative

constant in O(nc) may depend on t.

Proof. First observe that the claim of the theorem is equivalent to the following: for any positive

constant c, there exists an integer t0, such that BDD(t0) is not solvable in time O(nc). This

is so because if t � t0, then the set of possible instances of BDD(t0) is a subset of the set of

possible instances of BDD(t). Hence, if BDD(t0) cannot be solved in time O(nc), then neither

can BDD(t) for all t � t0.

Now, assume to the contrary that for some c, we can solve BDD(t) in time O(nc) for all t. Given

an instance ofMaximum-Likelihood Decoding, we set t = k and query an oracle for BDD(t),

which provides an answer to the question of Maximum-Likelihood Decoding in time O(nc).

The constant in O(nc) may depend on t = k, let us denote this constant by ak. Setting f(k) = ak,

we see that Maximum-Likelihood Decoding is solvable in time f(k)nc. Hence, it is �xed-

parameter tractable, which is possible only if W [1] = FPT in view of Theorem3. 2

Parametrized complexity of problems concerning integer lattices. The combinatorial

transformation in Theorem1 can be also used to show both NP-completeness andW [1]-hardness

for Nearest Vector and Theta Series. We start with the Nearest Vector problem.

Theorem 7. Nearest Vector is hard for W [1].

Proof. Given an instance G and k of Perfect Code, we again construct G0 = (R;B; E) and

k0 as in Theorem1. W.l.o.g., let R = f1; 2; : : : ; rg and B = f1; 2; : : : ; bg, and let H be the r � b

blue/red adjacency matrix of G0, which is the transpose of the matrix constructed in Theorem3.

That is, the rows of H are now indicators of the neighborhoods of the vertices in R. If c is a real

constant and A = [aij ] is an integer matrix, we let cA = [caij ] denote the matrix obtained by
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multiplying each entry of A by c. We choose c to be a large integer, so that c > k0, and construct

an instance of Nearest Vector as follows. First, we de�ne a (b+ r)� (b+ r) integer matrix

M =

2
64 cH Ir

2cIb 0

3
75 (1)

where Ir is the r � r identity matrix, and 0 stands for the b � r all-zero matrix. It is easy to

see that M has n = r + b linearly independent rows, which constitute a basis for a sublattice

� of Zn. We take the target vector as s = (c; c; : : : ; c; 0; 0; : : : ; 0)2Zn so that the �rst b entries

of s are equal to c, while the last r entries are equal to zero. Then �, s, and k0 is the instance

of Nearest Vector, to which the instance G and k of Perfect Code is transformed.

If there is a perfect code of size k in G, then by property P3 of Theorem1 there is a perfect

code R � R of size k0 in G0. For convenience, we let M 0 denote the r� (b+ r) matrix consisting

of the �rst r rows of M . Thus each row of M 0 is naturally indexed by a unique vertex of R. Let

x = (x1; x2; : : : ; xn)2� be the sum of those k0 rows of M 0 that are indexed by the vertices of

the perfect code R. Then it is easy to see that xi = c in the �rst b positions, and kx� sk2 = k0.

In the other direction, suppose that there is a vector x = (x1; x2; : : : ; xn)2� with kx� sk2 � k0,

and denote y = (y1; y2; : : : ; yn) = x � s. First observe that yi � 0 mod c for i = 1; 2; : : : ; b,

by the construction of M and s. Since c > k0 while kyk2 � k0, it follows that yi = 0 in the

�rst b positions. This further implies that xi = c for i = 1; 2; : : : ; b. Now let R be the subset

of R consisting of all the vertices that index those rows of M 0 that are included in the linear

combination comprising x (with a non-zero coe�cient). We claim that R is a dominating set

in G0. Indeed, if some vertex i2B does not have a neighbor in R, then xi � 0 mod 2c in the

corresponding position, contrary to the fact that xi = c which we have already established.

Hence, by property P1 of Theorem1, we have that jRj � k0. Together with kx � sk2 � k0 this

implies that kx � sk2 = jRj = k0, and R is a perfect code in G0 by property P2 of Theorem1.

Property P3 of Theorem1 now implies that G has a perfect code of size k. 2

By modifying the argument of Theorem7 only slightly, we can prove that Theta Series is also

hard for W [1]. The idea is to incorporate the target vector s in the generator matrix M for �.

The same argument furthermore shows, for the �rst time, that Theta Series is NP-complete.

Theorem 8. Theta Series is hard for W [1] and NP-complete.

Proof. We proceed as in the proof of Theorem7, except that we now choose c so that c > 4k0+1,

and replace the matrix in (1) by the slightly more elaborate (b+ r + 1)� (b+ r + 1) matrix

M =

2
666664

cH 0 2Ir

c2Ib 0 0

c c � � � c 1 0 0 � � � 0

3
777775 (2)

where 0 is used to denote both the all-zero column and the b�r all-zero matrix. We again think

of the n = r + b+ 1 rows of M as a basis for a sublattice � of Zn. Thus an instance G and k

of Perfect Code is transformed by Theorem1 into the red/blue graph G0 = (R;B; E) and k0,

which is further transformed into the instance � and 4k0 + 1 of Theta Series.
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Suppose that G contains a k-element perfect code, and let R � R be the corresponding

k0-element perfect code in G0. We again letM 0 denote the r�(b+r+1) submatrix ofM consisting

of the �rst r rows that are naturally indexed by the vertices of R. Let x = (x1; x2; : : : ; xn)2�

be the following linear combination of k0+1 rows of M : k0 rows ofM 0 indexed by the k0 vertices

of the perfect code R, with coe�cient +1, and the last row of M with coe�cient �1. Then it is

easy to see that xi = 0 in the �rst b positions, and kxk2 = 4k0 + 1.

In the other direction, suppose that there exists x = (x1; x2; : : : ; xn)2� with kxk2 = 4k0 + 1.

Write x = a1v1+a2v2+� � �+anvn, where a1; a2; : : : ; an are integers, not all zero, and v1; v2; : : : ; vn
are the rows of M , listed in a top-to-bottom order. First, we again observe that xi � 0 mod c

for i = 1; 2; : : : ; b, by the construction of M . Since c > 4k0 + 1, it follows that xi = 0 in the

�rst b positions. Further observe that xi � 0 mod 2 in the last r positions. Together with

kxk2 � 1 mod 4, this implies that xb+1 = an must be non-zero. Notice that

a2
n

= x2
b+1
� kxk2 = 4k0 + 1 < c (3)

As in the proof of Theorem7, let R be the subset of R consisting of the vertices that index those

rows of M 0 which have a non-zero coe�cient in the linear combination comprising x. We again

claim that R is a dominating set in G0. Otherwise, let i2B be a vertex which does not have a

neighbor in R, and let y = x� anvn. We have already shown that xi = 0. Hence yi = �anc 6= 0

and jyij < c2 in view of (3). This is a contradiction, since if i does not have neighbors in R,

then yi � 0 mod c2 by the construction of M . From this point on, the proof is exactly the

same as in Theorem7. Referring to Theorem1, we conclude that jRj � k0, which together with

kxk2 = 4k0 + 1 implies that jRj = k0 and R is necessarily a perfect code in G0. This, in turn,

further implies the existence of a k-element perfect code in G. 2

As a �nal remark in this section, we observe that a theorem of Cai and Chen [CC93] states that

if the optimization problem naturally associated to an integer-parameter problem has a fully

polynomial-time approximation scheme (see [GJ79] for an exposition of this concept), then the

corresponding parameterized problem is �xed-parameter tractable. We can draw from this the

following corollary.

Corollary 9. There is no fully polynomial-time approximation scheme for any of the problems

discussed in this section, unless W [1] = FPT.

In the next section, we prove our principal combinatorial transformation (Theorem1), which

served us so well in this section.
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3. The combinatorial engine

Our proof of Theorem1 has many similarities with the proofs of the main theorems of [DF95a]

and [DF95b], to which the reader may wish to refer. Notice that an implicit assumption in

Theorem1 is that the constant k0 may depend on k, but not on n. This assumption is essential for

all the parametrized transformations in the previous section (for more on this, see the Appendix).

We now restate Theorem1, while specifying a precise value for k0 in terms of k.

Theorem 1. Let G = (V;E) be a graph on n vertices, and let k be a positive integer. In time

polynomial in n and k we can produce a red/blue bipartite graph G0 = (R;B; E0), and the

positive integer

k0 = (2k + 1) + 3
�
2k(k + 1) + (k + 1)2

�
such that:

P1. Every dominating set in G0 has size at least k0.

P2. Every dominating set in G0 of size k0 is a perfect code in G0.

P3. There is a perfect code of size k in G if and only if there is a perfect code

of size k0 in G0.

We start the proof with some notation. In describing the construction of G0 from G it is

convenient to identify V with the set of integers f1; : : : ; ng. An interval of vertices is de�ned to

be a subset of V consisting of consecutive integers, for example f3; 4; 5; 6g, and may be empty.

Let J denote the set of all nonempty intervals having a size of at most n� k, that is:

J = f J : J is an interval in V and 1 � jJ j � n� k g

For an interval J 2J , de�ne the initial boundary @(J) of J to be the largest non-negative

integer strictly less than the smallest element of J . For example @(f2; 3; 4g) = 1, @(f6g) = 5,

@(f1; 2g) = 0. De�ne the terminal boundary @0(J) to be the smallest positive integer strictly

greater than the largest element of J . Thus @0(f2; 3; 4g) = 5, for example.

We will also need to refer to empty intervals, but we will still need to indicate where these

empty intervals begin and end. For this purpose, we introduce the special symbols �0; �1; : : : ; �n
and extend the de�nitions of @ and @0 as follows, For u = 0; 1; : : : ; n, we de�ne @(�u) = u and

@0(�u) = u+ 1. Thus �u represents the \interval" of vertices in V that is empty, but \located"

between u and u+ 1. We let J � denote the set of nonempty intervals J augmented with these

empty intervals, that is J � = J [ f �u : 0 � u � n g.

If u; v 2V with u < v, we de�ne the interval between u and v as J(u; v) = fu + 1; : : : ; v � 1g,

provided v � u � 2. If v = u + 1 then J(u; v) = �u. Similarly, for u2V we de�ne the interval

preceding u to be J(0; u) = f1; : : : ; u�1g if u � 2, and if u = 1 then J(0; u) = J(0; 1) = �0. The

interval succeeding u2V is de�ned as J(u;1) = fu+ 1; : : : ; ng if u < n, and J(n;1) = �n.

Let [k] denote the set of integers f1; 2; : : : ; kg, and let [k]� denote the set of integers f0; 1; : : : ; kg.

Part of our construction of G0 = (R;B; E0) will be quanti�ed over the set [k]� � [k]� of ordered

pairs of elements of [k]�, while other parts of the construction will be quanti�ed over subsets

of this set, namely [k] � [k]� and [k]� � [k]. This distinction between [k] and [k]� is basically a

technicality, which is needed to account for the boundary cases in the construction.
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The red foundation. Our description of G0 starts with �ve sets of red vertices R1; R2; : : : ; R5.

We will refer to the vertices of R1; R2; : : : ; R5 as basic red vertices. All the blue vertices, as well

as some additional red vertices, will be added to G0 as the construction progresses. The �ve

sets R1; R2; : : : ; R5 are employed in our construction to represent the structure of each possible

choice of a k-element subset of the set of vertices of G. Each one of the �ve sets is, in a sense,

a gadget designed to capture a di�erent aspect of this structure. We now describe these sets,

along with their roles in the construction of G0 and the notation used to refer to their vertices:

� Gadgets that indicate the k chosen vertices:

R1 = f a(i; u) : i2 [k]; u2V g

� Gadgets that indicate the intervals between chosen vertices:

R2 = f b(i; J) : i2 [k]�; J 2J � g

� Gadgets that indicate pairs of intervals:

R3 = f c(i; i0; J; J 0) : i; i0 2 [k]�; J; J 0 2J � g

� Gadgets that indicate choice/interval pairs:

R4 = f c0(i; i0; u; J) : i2 [k]; i0 2 [k]�; u2V; J 2J � g

� Gadgets that indicate interval/choice pairs:

R5 = f c00(i; i0; J; u) : i2 [k]�; i0 2 [k]; J 2J �; u2V g

It will be convenient to organize the basic red vertices into blocks. These blocks will constitute

a partition of the basic red vertices, and there will be altogether

k00 = 1 + 2k + 2k(k + 1) + (k + 1)2 (4)

blocks. Speci�cally, we partition R1 into k blocks, R2 into k+1 blocks, R3 into (k+1)2 blocks,

and R4; R5 into k(k + 1) blocks each. These blocks are de�ned as follows.

A(i) = fa(i; u) : i2 [k]; u2V g for i = 1; 2; : : : ; k

B(i) = fb(i; J) : i2 [k]�; J 2J �g for i = 0; 1 : : : ; k

C(i; i0) = fc(i; i0; J; J 0) : J; J 0 2J �g for i2 [k]� and i0 2 [k]�

C0(i; i0) = fc0(i; i0; u; J) : u2V; J 2J �g for i2 [k] and i0 2 [k]�

C00(i; i0) = fc00(i; i0; J; u) : J 2J �; u2V g for i2 [k]� and i0 2 [k]

We let R0 denote the set of k
00 red blocks de�ned above. These will be referred to as the basic

blocks. Additional blocks of blue and red vertices will be added to G0 later in the construction.
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The semantics of the reduction. Our semantic intentions in the design of G0 = (R;B; E0)

can be summarized as follows. The k blocks of R1 represent the choice of k vertices of V that

may form a k-element perfect code in G. The k+1 blocks of R2 represent the intervals between

the consecutive choices of vertices of V represented in R1. The blocks of R3; R4; R5 do not carry

any meaning with respect to G; these blocks are needed to impose an internal structure on G0.

Although we have only started to describe G0, enough is already visible to enable us describe,

at least in part, the solution translations of the reduction. This description may serve to moti-

vate and clarify some of the forthcoming details of the proof. There are two di�erent solution

translations, namely translations in the

forward direction: the manner in which a k-element perfect code in G translates

into a k0-element perfect code in G0;

backward direction: the manner in which a k0-element perfect code (or dominat-

ing set) in G0 translates into a k-element perfect code in G.

The forward solution translation. In the forward direction, suppose that the elements of a perfect

code of size k in G = (V;E) are given by u1; u2; : : : ; uk, and w.l.o.g. assume that

u1 < u2 < � � � < uk

Let J0 = J(0; u1). In other words, J0 is the interval (set) of elements of V that precede u1. For

i = 1; 2; : : : ; k�1, let Ji = J(ui; ui+1). Thus Ji is the interval of elements of V that are properly

between ui and ui+1. Finally let Jk = J(uk;1) be the interval of elements of V following uk.

Now consider the sets:

S1 = f a(i; ui) : i2 [k] g (5)

S2 = f b(i; Ji) : i2 [k]�g (6)

S3 = f c(i; i0; Ji; Ji0) : i2 [k]�; i0 2 [k]�g (7)

S4 = f c0(i; i0; ui; Ji0) : i2 [k]; i0 2 [k]�g (8)

S5 = f c00(i; i0; Ji; ui0) : i2 [k]�; i0 2 [k] g (9)

and let S = S1 [ S2 [ � � � [ S5. Notice that S contains precisely one vertex from each of the k00

basic red blocks, where k00 is given by (4). Our construction of G0 = (R;B; E0) will ensure that

the set S may be extended to a perfect code in G0. This extension is accomplished by adding

two more vertices for each vertex in S3, S4, and S5, as speci�ed later in our construction.

The backward solution translation. Our construction of G0 will also ensure that any k0-element

dominating set S in G0 must be distributed so that there is exactly one element of S in each of

the k00 basic blocks of R0. Furthermore, S will be forced to have the restricted form of a perfect

code in G0. The construction will ensure that for such a set S, the u-indices of the k elements

of S \R1 are distinct, and that these indices correspond to a k-element perfect code in G.

The construction. We will describe G0 = (R;B; E0) by starting with the k00 basic red blocks

of R0, and applying various operators to these blocks. Each application of an operator results

in further blocks of red and blue vertices being created, along with various edges. A high-level

blueprint for G0 = (R;B; E0) in terms of these operators is shown in Figure 2.
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In constructing G0 = (R;B; E0), operators are only applied to argument sets of red blocks.

Thus each blue vertex � 2B is created by a single speci�c application of an operator, and the

neighborhood of � is completely established by this application. This allows us to argue a series

of claims concerning properties of G0, as we continue to describe the steps of the construction.
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Figure 2: The blueprint for G0 in terms of basic blocks and operators (example for k = 2)

The block guard operator �1. The operator �1 takes as an argument a single red block X

and adds one blue vertex connected to every red vertex in X .

The last step of the construction of G0 = (R;B; E0) will be to apply this operator to each of the

red blocks of the construction. When we get to the last step, there will be k0 red blocks, the

collection of which will be denoted R. Thus, we have

The last step: Apply the block guard operator �1 to every red block of the construction.

We cannot make this the �rst step of the construction, as some of the k0 red blocks to which

�1 is to be applied have yet to be created by applications of operators in earlier steps of the
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construction. However, �1 does provide a simple initial example of an operator (the action of

the block guard operator is illustrated in Figure 3), and we can easily prove certain important

properties of G0 = (R;B; E0) having only this much information about the construction.

red

blue

block

legend:

X

Figure 3: The block guard operator �1

For example, the following lemma follows directly from the de�nition of �1. This simple lemma

already establishes property P1 of Theorem1.

Lemma1. Every dominating set in G0 = (R;B; E0) has size at least k0, and contains at least

one vertex from each of the k0 red blocks of R.

Proof. Let S � R be a dominating set in G0, and let X 2R be a red block. If S \ X = ?, then

the blue vertex � 2B created by the application of �1 to X does not have a neighbor in S. 2

Next, we need a de�nition. Let � be an operator; let A denote the union of the red blocks that

either provide the arguments for the application of �, or that are created by the application

of �, and let B denote the set of blue vertices created by the application of �.

De�nition. We say that the operator � is locally perfect if the following condition is satis�ed

for every subset S of A that contains exactly one vertex from each red block contained in A: if

every vertex in B has at least one neighbor in S, then every vertex in B has a unique neighbor

in S. In other words, if S contains one vertex from each red block and is \locally" a dominating

set, then S is necessarily a \local" perfect code.

The above de�nition is motivated by the observation that if every application of an operator in

the construction of G0 = (R;B; E0) is locally perfect, then property P2 of Theorem1 will hold.

This observation is a corollary to the following lemma.

Lemma2. Every k0-element dominating set S in G0 must contain exactly one vertex from each

of the k0 red blocks of R, and the last step in the construction of G0 is locally perfect.

Proof. Since each of the k0 blocks of R must contain at least one element of S by Lemma1, each

block must contain exactly one element of S. Local perfection of �1 is trivial. 2
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The branch operator �2. The arguments to the �2 operator are two red blocks X and X 0,

given together with a partition of X 0 into jX j or more non-empty classes, and an injective

assignment to each element of X of a di�erent class in the partition of X 0, that is

x2X 7! Sx � X
0

so that Sx \ Sy = ? for x 6= y. The result of applying �2 to X and X 0 with this assignment is:

a. The creation of the set of jX j blue vertices

f�(x) : x2X g

b. For each blue vertex �(x) in this set, the creation of edges connecting �(x) to

x2X and to all the red vertices in X 0 that belong to Sy for some y 6= x in X .

Sx

Sz

X'
X

Sy

x

z

y

Figure 4: The branch operator �2

Lemma3. The branch operator �2 is locally perfect. In particular, suppose that this operator is

applied to the red blocks X and X 0, and let S be a k0-element dominating set in G0 = (R;B; E0).

Then S \ X = fxg, and S \ X 0 = fx0g for some x0 2Sx.

Proof. The fact that S intersects each of the blocks X and X 0 at a single vertex, say x and x0,

follows immediately from Lemma2. The vertex x2X is adjacent to the single blue vertex �(x).

If x0 2X 0 belongs to a partition class that is not assigned to a vertex of X , then x0 is not adjacent

to any of the blue vertices created by �2, and the set S dominates only the single vertex �(x),

a contradiction. Similarly, if x0 2Sy for some vertex y 6= x in X , then the blue vertex �(y) is

not adjacent to either x or x0. Hence �(y) is not dominated by S, again a contradiction. Thus

x0 2Sx, which is the only remaining case. It now follows that every blue vertex created by �2

has a unique neighbor in S. The unique neighbor of �(x) is x, and x0 is the unique neighbor of

every other blue vertex. Thus, the branch operator �2 is locally perfect. 2
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A useful special case of the application of �2 is as \equality" enforcer. For this, we assume that

the arguments to �2 are isomorphic sets, with the isomorphism given by the correspondence:

x2X  ! e(x)2X 0

and in applying the operator �2, we use the natural assignment x 7! Sx = fe(x)g. In this

situation, assuming that S is a k0-element dominating set in G0, we observe that S \ X = fxg

and S \ X 0 = fyg necessarily implies that y = e(x), in view of Lemma3. With �2 at hand, we

are �nally ready to describe the �rst two steps of our construction.

Step 1. For i = 1; 2; : : : ; k�1, apply the operator �2 to the arguments X = A(i) and X 0 = B(i),

with the assignment:

a(i; u) 7! f b(i; J) : J 2J �; @(J) = u g (10)

Also apply �2 to the arguments X = A(k) and X 0 = B(k), with the assignment:

a(k; u) 7! f b(k; J) : J 2J �; @(J) = u and @0(J) =1g (11)

Step 2. For i = 2; 3; : : : ; k, apply the operator �2 to the arguments X = A(i) and X 0 = B(i�1),

with the assignment:

a(i; u) 7! f b(i� 1; J) : J 2J �; @0(J) = u g (12)

Also apply �2 to the arguments X = A(1) and X 0 = B(0), with the assignment:

a(1; u) 7! f b(0; J) : J 2J �; @0(J) = u and @(J) = 0 g (13)

The �rst two steps of the construction operate on the vertices in R1 and R2 that represent,

respectively, the choice of k vertices of G, and the intervals between these chosen vertices. The

purpose of the these two steps is re
ected in the following lemma.

Lemma4. Suppose that S is a k0-element dominating set inG0 = (R;B; E0). Then the k+(k+1)

vertices of S \ R1 and S \ R2 consistently represent k vertices of G = (V;E) and the intervals

between these vertices, in the following way:

a. If S \A(1) = fa(1; u)g, then S \ B(0) = fb(0; J(0; u))g.

b. For i = 1; 2; : : : ; k � 1, if S \A(i) = fa(i; u)g and S \A(i+ 1) = fa(i+ 1; v)g,

then S \ B(i) = fb(i; J(u; v))g.

c. If S \A(k) = fa(k; u)g, then S \ B(k) = fb(k; J(u;1))g.

d. For all i < i0, if S \A(i) = fa(i; u)g and S \A(i0) = fa(i0; u0)g, then u < u0.

Proof. Referring to the last application of the operator �2 in Step 2, it follows from Lemma3 that

if S\A(1) = fa(1; u)g, then S\B(0) consists of a vertex x0 which belongs to the set assigned to

a(1; u) on the righ-hand side of (13). But this set consists of the single element b(0; J(0; u)), which
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establishes part (a). Part (c) follows in a similar fashion from Lemma3 and (11). Part (b) follows

from Lemma3 along with the combination of (10) and (12). Indeed, assuming the condition of

part (b), it follows from Lemma3 that S\B(i) = fx0g, where x0 belongs to the intersection of the

set assigned to a(i; u) in (10) with the set assigned to a(i+1; v) in (12). Thus x0 = b(i; J), where

@(J) = u and @0(J) = v, that is J = J(u; v). Part (d) follows immediately from part (b). 2

The product operator �3. The arguments for the operator are three red blocks X1, X2, and Z,

where Z is isomorphic to the product X1 �X2, together with a one-to-one correspondence:

z 2Z  ! (x1; x2) 2 X1 �X2 (14)

We write z = z(x1; x2) to denote the element of Z that corresponds to the pair (x1; x2)2X1�X2

in (14). An application of �3 augments G0 = (R;B; E0) in the following ways:

a. Two auxiliary blocks of red vertices are created:

P1 = f �1(x1; x2) : x1 2X1; x2 2X2 g

P2 = f �2(x1; x2) : x1 2X1; x2 2X2 g

b1. The operator �2 is applied to the arguments X = X1 and X
0 = P1 with

the assignment:

x2X1 7! f �1(x; y) : y2X2 g (15)

b2. The operator �2 is applied to the arguments X = X2 and X
0 = P2 with

the assignment:

y2X2 7! f �2(x; y) : x2X1 g (16)

c. The operator �2 is applied as an equality enforcer to the arguments

X = P1 and X
0 = P2 with the assignment:

�1(x1; x2) 7! f �2(x1; x2) g (17)

d1. The operator �2 is applied as an equality enforcer to the arguments

X = P2 and X
0 = Z with the assignment:

�2(x1; x2) 7! f z(x1; x2) g (18)

d2. The operator �2 is applied as an equality enforcer to the arguments

X = Z and X 0 = P1 with the assignment:

z(x1; x2) 7! f �1(x1; x2) g (19)

Lemma5. The product operator �3 is locally perfect. In particular, suppose that this operator

is applied to the three red blocks X1;X2, and Z, and let S be a k0-element dominating set in

G0 = (R;B; E0), with S \ X1 = fxg and S \ X2 = fyg. Then S \ Z = fz(x; y)g.

Proof. It follows from Lemma2 that S intersects each of the red blocks P1;P2, and Z at a single

vertex, say �1(x
0; y0)2P1, �2(x

00; y00)2P2, and z 2Z, respectively. We can now argue a series of
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simple observations regarding �1(x
0; y0); �2(x

00; y00), and z, which follow from Lemma3 in conjun-

ction with the assignments in (15) { (19). In view of (15), respectively (16), we have that x0 = x,

respectively y00 = y. By the equality enforcing assignment in (17), we have x0 = x00 and y0 = y00.

Thus x00 = x0 = x and y00 = y0 = y. It now follows from either (18) or (19) that z = z(x; y).

Since the product operator �3 is composed from �ve applications of the branch operator �2,

the local perfection of �3 follows from the local perfection of �2 established in Lemma3. Alter-

natively, this can be proved directly by verifying that each of the jX1j + jX2j + 3 jX1jjX2j blue

vertices created by �3 is adjacent to one, and only one, of the �ve red vertices x2X1, y2X2,

�1(x; y)2P1, �2(x; y)2P2, and z(x; y)2Z, regardless of the choice of x2X1 and y2X2. 2

example of blue
vertex connections

X 2

Z

X1

example of blue
vertex connections

P1

P2

example of blue
vertex connections

Figure 5: The product operator �3

With the product operator �3 at hand, we can now describe the next three steps in our construc-

tion of G0 = (R;B; E0). These three steps establish a relation between the blocks in R3; R4; R5

and the blocks of R1; R2 which represent the choice of some k vertices of G according to Lemma4.
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Step 3. For each pair (i; i0) with i; i0 2 [k]�, apply the operator �3 to the arguments X1 = B(i),

X2 = B(i
0) and Z = C(i; i0) with the product correspondence:

c(i; i0; J; J 0)2 C(i; i0)  ! (b(i; J); b(i0 ; J 0))2 B(i)� B(i0)

Step 4. For each pair (i; i0) with i2 [k] and i0 2 [k]�, apply the operator �3 to the arguments

X1 = A(i), X2 = B(i
0) and Z = C0(i; i0) with the product correspondence:

c0(i; i0; u; J)2 C0(i; i0)  ! (a(i; u); b(i0; J))2 A(i)� B(i0)

Step 5. For each pair (i; i0) with i2 [k]� and i0 2 [k], apply the operator �3 to the arguments

X1 = B(i), X2 = A(i
0) and Z = C00(i; i0) with the product correspondence:

c00(i; i0; J; u)2 C00(i; i0)  ! (b(i; J); a(i0; u))2 B(i)�A(i0)

At this stage of the construction, the red/blue graph G0 = (R;B; E0) is highly structured, but

the adjacency structure of G0 is independent of the adjacency structure of G = (V;E). The

following operator will �nally establish the connection between G = (V;E) and G0 = (R;B; E0).

The G-adjacency operator �4. This operator takes as arguments all the vertices of R1, that

is, all the A-blocks A(1);A(2); : : : ;A(k). A set of n = jV j blue vertices

f�(u) : u2V g

is created. These vertices are connected as follows. For each i = 1; 2; : : : ; k, the blue vertex �(u)

is connected to a(i; u), and to a(i; v) for all v 2V that are adjacent to u in G.

It is easy to see that an application of �4 essentially amounts to replicating k times the original

graph G = (V;E) as a red/blue bipartite graph with the set of red vertices A(i) and the set of

blue vertices f�(u) : u2V g, both isomorphic to V . This is precisely what we do next.

Step 6. Apply the G-adjacency operator �4 to all of the A-blocks A(1);A(2); : : : ;A(k).

Let S be a k0-element dominating set in G0 = (R;B; E0). We know from Lemma2 that S inter-

sects each of the red blocks, in particular each of the blocks A(1);A(2); : : : ;A(k), at a single

vertex. Thus for each i = 1; 2; : : : ; k, we can de�ne vi to be the unique vertex of V , such that

S \A(i) = fa(i; vi)g. With this notation, let V (S) = fv1; v2; : : : ; vkg.

Lemma6. The set V (S) is a k-element dominating set in G. Furthermore, if S is a perfect

code in G0 = (R;B; E0), then V (S) a k-element perfect code in G.

Proof. It follows from Lemma4 that v1; v2; : : : ; vk are all distinct (in fact v1 < v2 < � � � < vk).

Hence jV (S)j = k. The rest is immediate from the de�nition of �4: a vertex u2V has a (unique)

neighbor in V (S) if and only if the vertex �(u) created by �4 has a (unique) neighbor in S. 2

Notice that the G-adjacency operator �4 is not locally perfect, unless V (S) is actually a perfect

code in G = (V;E) for every k0-element dominating set S in G0 = (R;B; E0). However, the

following operator ensures that the latter condition is always satis�ed.
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We say that two distinct vertices u and u0 in G = (V;E) are close if there is a path length 1 or 2

between them (notice that a vertex u is not considered close to itself). It is easy to see that

a dominating set in G is also a perfect code if and only if it does not contain close vertices.

The perfection operator �5. This operator takes as arguments all of the C; C0, and C00 blocks.

An application of the operator results in:

a. The creation of a set of blue vertices, with one vertex for each ordered pair (u; u0)

of close vertices in G, that is:

f�(u; u0) : u is close to u0 in G g (20)

b. The creation of edges connecting each blue vertex �(u; u0) in this set to all the

red vertices contained in one of the following three sets

C (u; u0 ) = f c(i; i0; J; J 0) : i; i0 2 [k]�; u2J; u0 2J 0 g

C
0 (u; u0) = f c0(i; i0; u; J) : i2 [k]; i0 2 [k]�; u0 2J g

C
00 (u; u0) = f c00(i; i0; J; u0) : i2 [k]�; i0 2 [k]; u2J g

The idea of the perfection operator �5 is to ensure that if V (S) contains close vertices then S

cannot be a dominating set in G0 = (R;B; E0). This is accomplished in the following step.

Step 7. Apply the perfection operator �5 to all of the C; C0, and C00 blocks.

Next, we need some more notation. We again let S denote a k0-element dominating set in G0,

and de�ne the sets J0; J1; : : : ; Jk as follows:

Ji = J(u; v) � V so that S \ B(i) = fb(i; J(u; v))g for i = 0; 1; : : : ; k

It follows from Lemma4 that the sets J0; J1; : : : ; Jk are well de�ned, and the sequence of sets

J0; fv1g; J1; fv2g; J2; : : : ; Jk�1; fvkg; Jk constitutes a partition of the vertex set V of G.

Lemma7. The perfection operator �5 is locally perfect, and the set V (S) = fv1; v2; : : : ; vkg

does not contain close vertices.

Proof. With the notation just de�ned, it follows from Lemma5 along with Steps 3, 4, and 5 of

our construction that

S \ C(i; i0) = f c(i; i0; Ji; Ji0) g for all i2 [k]� and i0 2 [k]�

S \ C0(i; i0) = f c0(i; i0; vi; Ji0) g for all i2 [k] and i0 2 [k]�

S \ C00(i; i0) = f c00(i; i0; Ji; vi0) g for all i2 [k]� and i0 2 [k]

Now consider a pair (u; u0) of close vertices in G. Since J0; fv1g; J1; fv2g; J2; : : : ; Jk�1; fvkg; Jk is

a partition of the vertex set V of G, exactly one statement is true on the following list, describing

where u is to be found and where u0 is to be found.

Case 1: u2Ji and u0 2Ji0

In this case �(u; u0) in (20) is adjacent to a single red vertex in S. Speci�cally �(u; u0)

is connected to c(i; i0; Ji; Ji0)2 C (u; u
0), where f c(i; i0; Ji; Ji0) g = S \ C(i; i0).
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Case 2: u = vi and u0 2Ji0

In this case �(u; u0) in (20) is adjacent to a single red vertex in S. Speci�cally �(u; u0)

is connected to c0(i; i0; vi; Ji0)2 C
0 (u; u0), where f c0(i; i0; vi; Ji0) g = S \ C0(i; i0).

Case 3: u2Ji and u0 = vi0

In this case �(u; u0) in (20) is adjacent to a single red vertex in S. Speci�cally �(u; u0)

is connected to c00(i; i0; Ji; vi0)2 C
00(u; u0), where f c00(i; i0; Ji; vi0) g = S \ C00(i; i0).

Case 4: u = vi and u0 = vi0

In this case �(u; u0) is not adjacent to any of the vertices of S.

In each case, we see that a blue vertex �(u; u0) created by �5 is adjacent to at most one vertex of S,

which implies that �5 is locally perfect. Furthermore, since S is a dominating set by assumption,

Case 4 above cannot happen. In other words, there is no pair of close vertices in the set V (S)

\chosen" by a k0-element dominating set S in G0 = (R;B; E0). 2

Lemma8. The set V (S) is a k-element perfect code in G = (V;E).

Proof. By Lemma6, the set V (S) is a k-element dominating set in G, and by Lemma7 it does

not contain close vertices. Hence V (S) is a perfect code. 2

We can now complete our construction, and complete the proof of Theorem1. As mentioned in

the beginning of this section, the last step in the construction is:

Step 8. Apply the block guard operator �1 to every red block constructed thus far.

Theorem1 now follows from a series of easy observations. Property P1 of Theorem1 is es-

tablished in Lemma1. The fact that V (S) is necessarily a perfect code in G, established in

Lemma8, further implies that the G-adjacency operator �4 is locally perfect. Thus all the op-

erators used in our construction are locally perfect, and property P2 of Theorem1 holds. The

\if" part of property P3 then follows directly from Lemma8. The reader can now verify the few

remaining details to see that the forward translation of a k-element perfect code in G = (V;E)

to a k0-element perfect code in G0 = (R;B; E0), outlined in (5) { (9), works correctly.

4. Membership in the parametrized complexity class W [2]

All of the hardness results for parameterized complexity that we derive in this paper are by

reduction from the Perfect Code problem. This particular problem has eluded exact classi-

�cation in the W [t] hierarchy for a number of years. What is known [DF95b] is that Perfect

Code is hard for W [1] and belongs to W [2]. It may be a representative of a natural parameter-

ized complexity degree, which is intermediate between the W [1] and W [2] complexity classes.

This remains an interesting open problem in the structure of the parametric complexity classes,

especially in view of connections to one-per-clause satis�ability problems.

In this section we indicate how some of the problems considered in this paper, namelyMaximum-

Likelihood Decoding, Weight Distribution, and Minimum Distance, can be shown to
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belong to the parameterized complexity class W [2]. A wide variety of problems are known to be

complete or hard for W [2], including Dominating Set, Bandwidth, Length-k Factoriza-

tion of Monoids, Longest Common Subsequence for k-Sequences, and k-Processor

Precedence Constrained Scheduling | see [BFH94, CCDF96, BDFW95, BF95].

To establish the necessary background for Theorem10 below, we now brie
y recall the de�nition

of the classes of the W [t] hierarchy based on problems about bounded-depth circuits. We will

generally follow the exposition in [DF95a]. We �rst de�ne circuits in which some logic gates have

bounded fan-in and some have unrestricted fan-in. It is assumed that fan-out is never restricted.

De�nition. A Boolean circuit is of mixed type if it consists of circuits having gates of the

following kinds:

small gates: : gates, ^ gates and _ gates with bounded fan-in; we will usually

assume that the bound on fan-in is 2 for ^ gates and _ gates, and 1 for : gates

large gates: ^ gates and _ gates with unrestricted fan-in

The depth of a circuit C is de�ned to be the maximum number of gates (small or large) on an

input-output path in C. The weft of a circuit C is the maximum number of large gates on an

input-output path in C. We say that a family of decision circuits F has bounded depth if there

is a constant h such that every circuit in the family F has depth at most h. We say that F has

bounded weft if there is constant t such that every circuit in the family F has weft at most t.

Let F be a family of mixed type decision circuits. We allow that F may have many di�erent

circuits with a given number of inputs. To F we associate the following parameterized circuit

problem LF = f (C; k) : C 2F accepts some input vector of weight kg, where the (Hamming)

weight of a Boolean vector x is the number of 1's in the vector.

De�nition. A parameterized language L belongs to W [t] if L reduces to the parameterized

circuit problem LF (t;h) for the family F (t; h) of mixed type decision circuits of weft at most t,

and depth at most h, for some constant h.

De�nition. A parameterized language L belongs to W �[t] if it belongs to W [t] with the de�-

nition of a small gate being revised to allow fan-in bounded by a �xed arbitrary function of k,

and where the depth of a circuit is allowed to be a function of k as well.

It is an important open problem whether W �[t] = W [t] for all t. The signi�cance of this

question is that for purposes of establishing membership in the W [t] hierarchy, we would like to

have the most generous possible characterization ofW [t] available to work with. It is shown that

W �[1] =W [1] and W �[2] =W [2], in [DFT96] and [DF97b], respectively. For t � 3 the question

is still open. Our argument here makes essential use of the result of [DF97b] that W �[2] =W [2].

Theorem 10. Weight Distribution belongs to W [2].

Proof. Given an instance H and k of Weight Distribution, we describe how to compute a

pair (E; k0), consisting of a Boolean expression E and a positive integer k0, such that the circuit

corresponding to E has a form allowed by the de�nition of W �[2] = W [2], and such that H; k

is a yes-instance of Weight Distribution if and only if E is satis�ed by a weight k0 truth

assignment. In order for this to be a parametric reduction, we must have k0 computed purely

as a function of k. Our reduction is simple in this regard: we take k0 = k.
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Suppose that H is an m � n binary matrix, and let h1; h2; : : : ; hn denote the columns of this

matrix. For j = 1; 2; : : : ;m, we will write hi[j] to denote the j-th component of hi. The set V

of Boolean variables for E is:

V = f v[b; i] : b = 1; 2; : : : ; k and i = 1; 2; : : : ; n g

Intuition can be served by viewing V as consisting of k \choice blocks," each of size n. The

expression E is constructed so that any satisfying truth assignment must make exactly one

variable in each of these blocks true, and will in this way indicate a set of k columns of H.

Let E denote the set of all subsets of f1; 2; : : : ; kg of even cardinality. For each j 2f1; 2; : : : ;mg

and �2E , de�ne the Boolean expressions:

E+(�; j) =
^
b2�

^
i: hi[j]= 0

:v[b; i]

E�(�; j) =
^
b62�

^
i: hi[j]=1

:v[b; i]

E(�; j) = E+(�; j) ^ E�(�; j)

Then the expression E has the form:

E = E1 ^ E2 ^ E3

where:

E1 =
^

1�b<b0�k

n^
i=1

(:v[b; i] _ :v[b0; i])

E2 =
k^

b=1

 
n_
i=1

v[b; i]

!

E3 =
m^
j=1

_
�2E

E(�; j)

It is easy to see that if the de�nition of a small gate allows fan-in bounded by a function of k, then

each of the subexpressions E1 and E2 has weft one, while the subexpression E3 has weft two.

The depth of E1, E2, and E3 is 4, 2, and 6, respectively, so that the depth of E itself is 7. Thus

E belongs to a family of weft-two circuits allowed by the de�nition of W �[2]. We next argue the

correctness of the reduction. Note the validity of the following easy claims.

Claim1. The subexpression E2 is satis�ed by a weight k truth assignment to the variables

of V if and only if exactly one variable in each of the k blocks is assigned the value true.

Claim2. The subexpression E0 = E1 ^ E2 is satis�ed by a weight k truth assignment to the

variables of V if and only if exactly one variable in each of the k blocks is assigned the value

true, in such a way that the second indices of the true variables are all distinct.
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Let � be a weight k truth assignment that satis�es E0. It follows from Claim1, that for each

b2f1; 2; : : : ; kg, there is a unique i2f1; 2; : : : ; ng such that v[b; i] is assigned the value true by � .

Thus � and b together specify the unique i-th column of H. For j = 1; 2; : : : ;m, we let �(b; j; �)

denote the binary value to be found in the j-th row of this column, that is �(b; j; �) = hi[j].

Claim3. The expression E3 is satis�ed by a weight k truth assignment � : V ! ftrue; falseg

that also satis�es E0 = E1 ^E2, if and only if for each j 2f1; 2; : : : ;mg there is some �2E such

that the following equality holds: � = fb : �(b; j; �) = 1g.

Now suppose that H; k is a yes-instance of Weight Distribution, and let hi1 ; hi2 ; : : : ; hik be

the k columns of H that sum to the all-zero vector. Let � be the truth assignment that assigns

the variables v[1; i1]; v[2; i2]; : : : ; v[k; ik ] to be true, and assigns all the other variables in V the

value false. Clearly � has weight k. It follows from Claim2 that � satis�es E0 = E1 ^E2. For

j = 1; 2; : : : ;m, let �j be the subset of f1; 2; : : : ; kg consisting of all b such that hib [j] = 1. Since

hi1 [j] + hi2 [j] + � � �+ hik [j] = 0 (mod 2)

for all j, it follows that the number of such indices b must be even. Hence �j 2E for all j. It

is not di�cult to see that for the truth assignment � speci�ed above, �j is precisely the set

fb : �(b; j; �) = 1g. Hence by Claim3, � also satis�es E3, and therefore E itself.

Conversely, suppose that E has a truth assignment � of weight k. By Claim2, there are k distinct

indices i1; i2; : : : ; ik such that � assigns to the k variables v[1; i1]; v[2; i2]; : : : ; v[k; ik ] the value

true, and assigns all other variables in V the value false. By Claim 3, the number of elements

in the set fb : �(b; j; �) = 1g = fb : hib [j] = 1g must be even for each j = 1; 2; : : : ;m. Hence the

k columns hi1 ; hi2 ; : : : ; hik of H sum to the all-zero vector. 2

The above argument can be easily modi�ed to show that Maximum-Likelihood Decoding

andMinimum Distance also belong to W �[2] =W [2]. We conjecture that all of these problems

are equivalent to the Perfect Code problem.

5. Concluding discussion and open problems

We have shown that four of six fundamental computational problems in the domains of linear

codes and integer lattices are NP-complete and hard for the parametrized complexity classW [1].

The obvious outstanding open problems are:

� Is the Minimum Distance problem, recently proved to be NP-complete in [Var97b],

also hard for W [1]?

� Is the Shortest Vector problem hard for NP and W [1]?

A consequence of the proof in [Var97b] that the Minimum Distance problem is NP-hard is

that Even Set is NP-hard. This leaves us in the curious situation that the only known proof

of this seemingly quite combinatorial result is by means of sophisticated algebraic techniques,

deeply rooted in coding theory. Is there a direct combinatorial proof? Understanding this issue

may shed some light on whether the combinatorial methods used here to show NP and W [1]

hardness for Theta Series can be extended to the Shortest Vector problem.
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A. Appendix: short survey of parameterized complexity

Over the past several years, it has become increasingly clear that classical complexity frameworks

such as NP-completeness and PSPACE-completeness are not adequate to address intractability

questions for problems that are naturally parameterized, and for which the important applica-

tions are covered by parameter values of, say k � 50.

For example, consider the Vertex Cover problem, which asks whether a graph G on n vertices

has a vertex cover of size at most k. This is one of the six NP-complete problems singled out

for attention by Garey and Johnson [GJ79]. The best known result, presently, is that Vertex

Cover can be solved in time O(kn+(4=3)kk2), with a very small hidden constant [BFR96]. This

means that although the problem is NP-complete, it is well-solved for input graphs of unlimited

size, as long as k is at most 70 or so. Strong tractability results such as this seem to be not

uncommon when problems are qualitatively classi�able as �xed-parameter tractable, meaning

that they belong to the parametrized complexity class FPT, formally de�ned below. Three of

the six basic NP-complete problems considered by Garey and Johnson in [GJ79, Chapter 3] are

�xed-parameter tractable.

In general, a variety of metrics can be applied to the input of a computational problem. The total

length of the input is one basic measurement, but it is by no means the only important one. It is

natural to try to understand how di�erent input measurements interact in determining problem

complexity. Furthermore, it is essential to understand such interactions, in order to exploit the

opportunities for designing algorithms that are sensitive to natural input distributions.

A generic example of a parameterization is provided by the many well-known decision problems

concerning graphs, that take as input a graph G and a positive integer k. The parameter k

appears to contribute to the complexity of such problems in two qualitatively di�erent ways.

Graph Genus,Min-Cut Linear Arrangement, Vertex Cover, and Feedback Vertex

Set for Undirected Graphs (see, for example [GJ79], for de�nitions) can all be solved

in time O(f(k)nc), where c is a constant independent of k, and f(�) is some (arbitrary) function.

This \good behavior" is termed �xed-parameter tractability in the theory introduced in [DF95a].

As is the case with polynomial-time complexity, the exponent c is typically small. One can

equivalently de�ne �xed-parameter tractability to mean solvability in time O(f(k)+nc), that is,

with only an additive contribution from the parameter [CCDF97]. There is a rich collection of

distinctive techniques for devising FPT algorithms (see [DF95c, DF97b, KST94, LeC97, Ste92]).

Contrasting complexity behavior is exhibited by the naturally parameterized problems such

as Clique, Dominating Set, and Bandwidth, for which the best known algorithms have

running times O(nck). These problems have been shown to be complete or hard for the various

levels of the W hierarchy of parameterized complexity

W [1] �W [2] � � � � �W [P ] � � � � � XP

which can be taken as evidence that they are unlikely to be �xed-parameter tractable [BFH94].

With these problems, we seem to hit a natural \wall" requiring brute force e�ort, much as is

typically the case with NP-complete problems. For example, essentially no better algorithm is

known for the k-Dominating Set problem than checking all k-subsets.

As in the theory of NP-completeness, there are roughly two kinds of arguments that can be of-

fered for believing that parameterized problems that are complete or hard forW [1] are not likely

to be �xed-parameter tractable. The �rst kind of argument is, roughly speaking, sociological.
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So many di�erent kinds of problems stand or fall together that the combination of e�orts ex-

pended unsuccessfully from the various vantages compels a belief in inherent intractability. The

second kind of argument is some form of direct intuition concerning the nature of the computa-

tions that de�ne the issue | e.g., nondeterministic as opposed to deterministic polynomial-time.

For parameterized complexity, both kinds of arguments can be made. Although the amount of

unsuccessful e�ort that has been expended in an attempt to show �xed-parameter tractability for

W [1]-hard problems is much less than the total e�ort expended to date in attempting to develop

polynomial-time algorithms for NP-complete problems, it is still considerable and accumulating.

The parameterized complexity class W [1] is particularly interesting and important, for several

reasons: there is a substantial list of natural and useful computational problems that are pre-

cisely W [1]-complete. This list includes Clique, Independent Set, Vapnik-Chervonenkis

Dimension, Monotone Data Complexity for Relational Databases, Square Tiling,

k-Step Derivation for Context Sensitive Grammars, m-Length Common Subse-

quence for k Sequences, and k-Length Post Correspondence, among other problems.

Direct intuition about W [1] is also available. It is shown in [DFKHW94, CCDF96] that the

k-step halting problem for nondeterministic Turing machines is W [1]-complete. This problem is

formally de�ned as follows.

Problem: Short Turing Machine Acceptance

Instance: A nondeterministic Turing machine M and a positive integer k.

Question: Does M have a computation path accepting the empty string in at

most k steps?

Parameter: k

This is a problem so generic and opaque that it is hard to imagine that there is any algorithm for

it that radically improves on simply exploring the n-branching depth-k tree of allowed transitions

exhaustively. This is essentially the same intuition as the belief that Cook's Theorem provides

a basis for the intractability of NP-complete problems.

For a de�nition of theW [t] complexity classes and the fundamentals of parameterized complexity,

we refer the reader to x 4 and [DF95a, DF95b, DF95c, DF97b]. Here, we will brie
y review the

basic de�nitions of a parametrized problem and �xed-parameter tractability.

De�nition. A parameterized problem is a set L � �� � ��, where � is a �xed alphabet.

For convenience, we can think of a parameterized problem as a subset L of �� �N , where N

is the set of nonnegative integers.

De�nition. We say that parameterized problem L is (uniformly) �xed-parameter tractable

if there is a constant � and an algorithm �, such that � decides if (x; k)2L in time f(k)jxj�

where f : N ! N is an arbitrary function.

Let A and B be parameterized problems. We say that A is (uniformly many : 1) reducible to B

if there is an algorithm � which transforms (x; k)2���N into (x0; g(k)) in time f(k)jxj�, where

f; g : N ! N are arbitrary functions and � is a constant independent of k, so that (x; k)2A

if and only if (x0; g(k))2B. Such an algorithm � may be called a parametric transformation.

It is easy to see that if A reduces to B, and B is �xed-parameter tractable, then so too is A.
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