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Abstract

We show that there is a computable Boolean algebra B and a computably enu-

merable ideal I of B such that the quotient algebra B=I is of Cantor{Bendixson rank

1 and is not isomorphic to any computable Boolean algebra. This extends a result

of L. Feiner and is deduced from Feiner's result even though Feiner's construction

yields a Boolean algebra of in�nite Cantor{Bendixson rank.

1 Introduction and Notation

A Boolean algebra B is said to be computable if its universe is a computable
set of natural numbers and its operations ([;\, and 0) are computable partial
functions. B is said to be computably enumerable (c.e.) if it is the quotient of

a computable Boolean algebra by a computably enumerable ideal. L. Feiner
showed in [3, Theorem 5.1] that there is a c.e. Boolean algebra which is not iso-
morphic to any computable Boolean algebra. A simpli�ed version of Feiner's
proof is given by J. Thurber in [12, Corollary 3.4]. Both Feiner's and Thurber's

proofs make strong use of the n{th Cantor{Bendixson derivative of the con-

structed Boolean algebra for each n < ! and de�nitely produce Boolean al-
gebras of in�nite Cantor{Bendixson rank. Thus it would appear that some

totally new approach would be required to construct a Boolean algebra of
Cantor{Bendixson rank 1 which is c.e. but not isomorphic to any computable
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Foundation and by the Victoria University of Wellington.
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Boolean algebra. Nevertheless, in the current paper we deduce the existence of

such a Boolean algebra from the relativization of Feiner's theorem to 0(3). This

is done by \coding" an arbitrary countable Boolean algebra into one of rank

at most 1. This coding construction also shows that there are continuummany

pairwise nonisomorphic countable Boolean algebras of Cantor{Bendixson rank

1. Rather than working directly with Boolean algebras, we work with their

Stone spaces, represented as the set of paths through �nitely branching trees.

For background on computability theory, see Soare [10]. We follow its notation

and terminology except that the traditional terminology of \recursive" and

\recursively enumerable (r.e.)" is replaced by \computable" and \computably

enumerable (c.e.)" respectively in order to stress the intensional sense of these

concepts. Arguments for this change in terminology are given by Soare in

[11]. Other papers on (relative) computability of isomorphic copies of Boolean

algebras include [1,2,5,13].

2 Stone spaces and computable trees

The well{known Stone representation theorem gives a convenient method
of converting problems about Boolean algebras to problems about Boolean
spaces, i.e. compact Hausdor� spaces with a neighborhood basis consisting
of clopen sets. (See, for example, [7, Chapter 3] for a discussion of the Stone
representation theorem.) Speci�cally, the Stone space of a Boolean algebra B

is de�ned to be the set X of all ultra�lters of B. If b 2 B, the family of all
ultra�lters of B having b as an element is a typical basic open subset of X.
Going in the other direction, the clopen subsets of X form a Boolean algebra
of sets which is isomorphic to B. Two Boolean algebras are isomorphic i� their
respective Stone spaces are homeomorphic, and we use �= to denote both the

isomorphism relation on Boolean algebras and the homeomorphism relation
on topological spaces. The Boolean algebra B is countable i� its Stone space
X is separable.

If X is any Boolean space, let X 0 (the Cantor{Bendixson derivative of X)

be the set of non{isolated points of X, with the subspace topology. If B is a

Boolean algebra with Stone space X, then X 0 is homeomorphic to the Stone

space of the quotient of B by the ideal generated by its atoms. As is well{
known, this operation can be iterated into the trans�nite, but we are concerned

only with the �rst couple of steps. A Boolean algebra has rank 0 if its Stone
space X satis�es X 0 = X (i.e. X is perfect.) The countable atomless Boolean

algebra is the unique countable Boolean algebra (up to isomorphism) of rank

0, and of course it has a computable presentation. A Boolean algebra with
Stone space X has rank 1 if X 6= X 0 = X 00.
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A binary string is a �nite sequence of elements of f0; 1g and a ternary string

is a �nite sequence of elements of f0; 1; 2g. Let 2<! denote the set of binary

strings and 3<! denote the set of ternary strings. If � and � are strings, let

� � � denote that � is an initial subsequence of � , and let j�j denote the

length of �. We call � and � compatible if � � � or � � �, and otherwise

incompatible. For our purposes, a tree is a set T of ternary strings which is

closed downwards under �. If T is a tree, a function f : ! ! ! is called a

path through T if every string � with � � f is in T . Let [T ] denote the set of

paths through the tree T . If � 2 T , let T� denote the set of strings in T which

are compatible with �. If T is a tree, then T� is also a tree. Topologize [T ] by

letting the basic open sets be those of the form [T�] where � 2 T and T� 6= ;.

Then [T ] is a separable Boolean space. (To see that [T ] is compact use that

T is �nite{branching i.e. it contains only �nitely many strings of any given

length.) Going in the other direction, the Stone space of any countable Boolean

algebra is naturally homeomorphic to [T ] for some tree T � 2<!. To see this, let

fbngn2! be a listing of the universe of a countable Boolean algebra B. For any

string � 2 2<!, let b� 2 B be de�ned as \fbn : �(n) = 1g \ \fb0
n
: �(n) = 0g,

where b� = 1B by convention. Let T = f� 2 2<! : b� 6= 0Bg. If f 2 [T ] let
Uf = fbn : f(n) = 1g. It is easily seen that Uf is an ultra�lter of B and that
the mapping f 7! Uf is a homeomorphism of [T ] onto the Stone space of B. We
say that the tree T represents the Boolean algebra B if [T ] is homeomorphic

to the Stone space of B. The following proposition gives connections between
the computability properties of Boolean algebras and their representing trees.
A string � is called a terminal node of a tree T if � 2 T and no string �

properly extending � is in T . We write � for the empty string.

Proposition 1 (Folklore)(i) Every computable Boolean algebra is represented

by some computable tree T � 2<! with no terminal nodes. Conversely, every
computable tree T � 2<! with no terminal nodes represents some computable
Boolean algebra.

(ii) Every c.e. Boolean algebra is represented by some computable tree T � 2<!.
Conversely, every computable tree T � 2<! represents some c.e. Boolean

algebra.

Proof. The �rst statement of the �rst part follows immediately by e�ectiviz-

ing the proof above that every countable Boolean algebra is represented by

some tree T � 2<!. The converse is also easy to check. For the second part,
assume that B is a c.e. Boolean algebra. The above argument produces a tree
T � 2<! which represent B and is co{c.e., i.e. 2<!�T is c.e. But then there is

a computable tree U � 2<! such that [U ] = [T ]. (Let U consist of all strings

� 2 2<! such that no string � � � has been enumerated out of T by stage j�j

in a �xed enumeration of 2<! � T .) The converse is easy to check because if
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T is a computable tree, f� 2 T : [T�] 6= ;g is co{c.e. (by K�onig's Lemma.)

2

Let A � !. A Boolean algebra B is said to be A{computable if its universe is a

set of natural numbers which is computable fromA and its Boolean operations

are partial A{computable functions. B is said to be A{c.e. if it is the quotient

of an A{computable Boolean algebra by an ideal which is c.e. in A. It is

clear that the results of Section 2 hold when relativized to A, i.e. computable

Boolean algebras are replaced by A{computable Boolean algebras, etc. The

following result shows that the 00{computable Boolean algebras coincide with

the c.e. Boolean algebras, up to isomorphism.

Proposition 2 (Feiner) If B is a c.e. Boolean algebra, then B is isomor-

phic to some 00{computable Boolean algebra. Conversely, each 00{computable

Boolean algebra is isomorphic to some c.e. Boolean algebra.

Proof. This result is implicit in [4]. However, we outline a direct proof here for
the convenience of the reader. The �rst part is very easy, as all c.e. sets are 00{
computable. For the converse, by Proposition 1 it su�ces to show that for any
00{computable tree [T ] � 2<! with no terminal nodes there is a computable

tree [U ] � 2<! such that [U ] �= [T ]. We sketch the idea of the construction of
U but leave the details to the reader. To each string � 2 T we assign a string
f(�) 2 U , where f will be a certain 00{computable partial function. We will
have that, for �; � 2 T , that f(�) � f(� ) i� � � � . From this it follows easily
(as T has no terminal nodes) that each string in the range of f is extendible

to a path in [U ]. Conversely, each string extendible to a path in [U ] will be
extendible to a string in the range of f . From this it follows that f induces a
homeomorphism ' from [T ] to [U ], i.e. '(g) = [��gf(�), for g 2 [T ].

To construct f and U , we use fTsgs2!, a recursive approximation to T . By
modifying this approximation if necessary, we may assume that for each s the
set Ts is a nonempty tree with no terminal nodes. Let s0 be the least number
s such that for all t � s and all strings � 2 2<! with j�j � 1, � 2 T i� � 2 Tt.

Then f(�) will be a string in U of length s0. Note that we may recursively

approximate s0 in such a way that our initial approximation is 0, and if our
approximation at s + 1 di�ers from that at s, then our approximation to s0
at stage s+1 is simply s. Thus our initial approximation to f(�) is �, and we
start the construction of U by letting it agree with T0 on strings of length at

most 1. (Note that T0 contains � and at least one string of length 1 since it

is a nonempty tree with no terminal nodes.) In building U at stage s+ 1, we
decide membership in U for all binary strings of length s+ 1, and we assume

inductively that U contains at least one string of length s. If our approximation
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to s0 changes at stage s+1, then we e�ectively choose a string � of length s in U

and let it be our new candidate for f(�). We want the rest of the construction

of U to take place above � , so we omit from U all strings of length s+1 which

do not extend � . Further, we act in the belief that the approximation Ts+1 to

T is correct on binary strings of length 1. Thus, for i � 1 we put �_i into U

i� < i >2 Ts+1. (This puts at least one string of length s + 1 into U because

Ts+1 contains at least one string of length 1.) Obviously, this process must

converge because our approximation to s0 converges. The inductive step for

de�ning f(�_i) for i � 1 given f(�) is similar. We will have f(�_i) � f(�)_i

and jf(�_i)j will be the least number s such that s > jf(�)j and for all t � s

and all j � 1, �_i_j 2 T i� �_i_j 2 Tt. We omit further details. 2

3 The basic construction

If X is a topological space, let I(X) denote the set of points in X which are

limit points of the isolated points of X, i.e. I(X) = X 0 \ (X �X 0). If X is a
Boolean space, then so is I(X) (in the relative topology), as I(X) is a closed
subspace of X. The following easy construction, which is fundamental for this
paper, shows that every separable Boolean space is homeomorphic to I(X)
for some separable Boolean space X of Cantor{Bendixson rank � 1.

De�nition 3 Let T � 2<! be a binary tree. De�ne a new tree F (T ) � 3<! by
starting with 2<! and then attaching an isolated path to each node of T . More
precisely, let F (T ) consist of all strings which are either in 2<! or consist of
a string in T followed by �nitely many 2's.

The paths through F (T ) are those in�nite strings which either consist entirely
of 0's and 1's or else consist of a string in T followed by an in�nite string

of 2's. The isolated paths in [F (T )] are clearly those of the latter form, so
I([F (T )]) = [T ]. It also follows from these remarks that [F (T )]0 = [2<!] which
is a perfect space. Hence the Cantor{Bendixson rank of [F (T )] is at most 1.

The above de�nition leads easily to the following result.

Proposition 4 There are continuum many pairwise nonisomorphic countable
Boolean algebras of Cantor{Bendixson rank 1.

Proof. There exist continuummany pairwise non{isomorphic countable Boolean

algebras (for example by [8, Corollary 2.1.2]), and hence continuummany pair-

wise non{homeomorphic spaces [T ] for T � 2<!. As I([F (T )]) = [T ] and the
homeomorphism type of I(X) depends only on the homeomorphism type of

X, it follows that there are continuum many homeomorphism types of sepa-
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rable Boolean spaces of Cantor{Bendixson rank � 1. As there is only one of

rank 0, the result follows from the Stone representation theorem. 2

4 The Main Result

It follows from Proposition 4 that there are countable Boolean algebras of

Cantor{Bendixson rank 1 which are not isomorphic to any computable Boolean

algebra. This gives a negative answer to Question 5.12 of [2]. Our main result

e�ectivizes this by showing that there are such Boolean algebras which are

c.e.

Theorem 5 There is a Boolean algebra B of Cantor{Bendixson rank 1 which

is isomorphic to a c.e. Boolean algebra but not to any computable Boolean

algebra.

Proof. Let B0 be a Boolean algebra which is 0(3){c.e. but not isomorphic

to any 0(3){computable Boolean algebra. Such a Boolean algebra may be ob-
tained by relativizing the proof of Feiner's theorem [3, Theorem 5.1] to 0(3).
Let T � 2<! be a 0(3){computable tree which represents B0. Such a tree T
exists by Proposition 1, relativized to 0(3). Finally, let B be a Boolean algebra
represented by F (T ), where F (T ) is as de�ned in De�nition 3. It is clear that

B has Cantor{Bendixson rank at most 1. The following lemmas will show that
B satis�es the rest of the conclusion of the theorem.

Lemma 6 B is not isomorphic to any computable Boolean algebra.

Proof. Suppose for a contradiction that B is isomorphic to B1, a computable
Boolean algebra. Let T1 be a computable tree without terminal nodes which

represents B1. Such a tree T1 exists by Proposition 1, and [T1] �= [F (T )] where
T is as chosen above. It follows that I([T1]) �= I([F (T )]) = [T ]. We now de�ne
a �0

2 tree T2 � T1 such that [T2] �= I([T1]). First, let I be the set of strings �
on T1 such that any two extensions of � on T1 are compatible. It is easily seen

(using the fact that T1 has no terminal nodes) that I is the set of nodes of T

which lie on a unique (necessarily isolated) branch of T . Let T2 be the set of
nodes � 2 T1 such that there exist incompatible strings �1; �2 which are each

in I and extend �. It is easy to see that I is �0
1, and so T2 is �0

2, and that
[T2] �= I([T1]). Finally, let T3 be the set of strings � 2 T2 such that there exists

f 2 T2 with f � �, i.e. T3 is the set of extendible nodes of T2. By K�onig's

Lemma, T3 is also the set of nodes � of T2 which have extensions in T2 of each
length � j�j, so T3 2 �0

3. Thus T3 is a 0
(3){computable tree, and it clearly has

no terminal nodes. But [T3] = [T2] �= I([T1]) �= [T ], so T3 represents B0. Thus
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by Proposition 1 , B0 is isomorphic to some 0(3){computable Boolean algebra,

in contradiction to our choice of B0. 2

Since B is not isomorphic to any computable Boolean algebra, it does not

have rank 0, so its rank is exactly 1. It remains to show that B is isomorphic

to some c.e. Boolean algebra. The following lemma (relativized to 00) will be

used to replace the 0(3){computable tree T by a �0
3 tree.

Lemma 7 If V is any 00{computable tree, there is a c.e tree W such that

[W ] = [V ].

Proof. Let fVsgs2! be a uniformly recursive sequence of sets with V = lims Vs
pointwise. De�ne

W = f� : (9s � j�j)(8� � �)[� 2 Vs]g

It is easy to check that this works. 2

The following lemma is the main step in showing that B is isomorphic to some

c.e. Boolean algebra.

Lemma 8 Let U � 2<! be a 0(2){computable tree. There is a computable tree

V � 3<! with no terminal nodes such that [V ] �= [F (U)].

Before giving the proof of this lemma we indicate how it is used to �nish
the proof of the theorem. Since T is 0(3){computable, the proof of Lemma 8

(relativized to 00) shows that there is a 00{computable tree V � 2<! with no
terminal nodes such that [V ] �= [F (T )]. Then by relativizing Proposition 1 to
00 it follows that V represents some 00{computable Boolean algebra B2, and
B2

�= B since they are represented respectively by V and F (T ). By Proposition
2, B1, being 00{computable, is isomorphic to some c.e. Boolean algebra, and

thus so is B. It remains to prove Lemma 8.

Proof. By Lemma 7, relativized to 00, we may assume without loss of gen-

erality that U is a 00{c.e. tree, and hence is �0
2. Hence there is a uniformly

recursive sequence of sets fUsgs2! with Us � 2! such that, for all � 2 2<!,

� 2 V i� (9s)(8t � s)[� 2 Vt] (see [10, Theorem IV.3.2]). Recall that F (U)

contains all strings in 2<! and all strings obtained by concatenating any string
� 2 U with a �nite number of 2's. Of course, we cannot expect F (U) to be

computable as U is only �0
2. However, we can de�ne a computable tree V

which \approximates" F (U) in the following way. We put all strings in 2<!

into V . Recall that, for � 2 3<! , V� denotes the set of strings in V which are
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compatible with �. We will ensure that if � 2 U then [V�_2] is a nonempty

�nite set. Further, for � 2 2<! � U we ensure that V�_2 is a perfect tree,

i.e. it is nonempty and each string in it has incompatible extensions in it. The

computable tree V is de�ned as follows. To start, V contains the empty string.

Now let  2 3<! and i < 3 be given. We decide whether _i 2 V , assuming

inductively that we have decided whether  2 V . If  2 2<!, put _i into

V . If  =2 V , don't put _i into V . Suppose now that  2 V � 2<!, and let

� be the longest string � �  such that � 2 2<!. If � =2 Ujj (in which case

we currently think that V�_2 should be a perfect tree), put _i into V i�

i = 0 or 1. If � 2 Ujj (in which case we currently think that [V�_2] should be

�nite), put _i into V i� i = 2. It is immediate from this de�nition that V is

a computable tree with no terminal nodes. Further, it is easy to see that the

sets V�_2 for � 2 2<! have the desired properties. For example, suppose that

� 2 U , and �x s > j�j with � 2 Ut for all t � s. Let D the set of strings in

V which extend �_2 and have length s. D is clearly a �nite non{empty set

of strings. Furthermore, [V�] consists precisely of the paths by concatenating

strings in D with an in�nite sequence of 2's. The proof that V�_2 is a perfect

tree for � 2 2<! � U is left to the reader.

It does not seem apparent that [V ] �= [F (U)]. Isolated paths through F (U) are
replaced by �nite nonempty sets of isolated paths in [V ]. Furthermore, perfect

subtrees are added to V which do not correspond to anything in [F (U)].
However, we are rescued by a result of Ketonen [6] which is a consequence of
a theorem of Vaught [7, Theorem 5.15].

Lemma 9 (Ketonen) [6, Lemma 1.13]. Let X and Y be separable uncount-
able Boolean spaces of Cantor{Bendixson rank � 1 each having in�nitely many

isolated points. Then X �= Y i� there is a homeomorphism ' : X 0 ! Y 0 such
that '(I(X)) = I(Y ).

Note that the conclusion of Lemma 8 is immediate if [U ] is empty. Thus we
assume without loss of generality that [U ] is nonempty, from which it follows

that [F (U)] and [V ] each have in�nitely many isolated points. We apply the
above lemma with X = [F (U)] and Y = [V ], which are clearly uncountable
and of Cantor{Bendixson rank at most 1. To construct ' as required in the
lemma, recall the well{known fact that any two separable perfect Boolean

spaces are homeomorphic. For each � 2 2<! �U , let '� be a homeomorphism

from ff 2 2! : f � �g onto [V�]. (Recall that V� is the set of strings in V

compatible with � and is a perfect tree for � 2 2<! � U .) Now, to de�ne ',
suppose that f 2 [F (U)]0 = 2! is given. If f 2 [U ], let '(f) = f . If f =2 [U ], let
� be the shortest string extended by f and not in U , and set '(f) = '�(f).

To conclude that [F (U)] �= [V ] we must show that ' is a homeomorphism of

[F (U)]0 onto [V ]0 such that '(I([F (U)]) = I(V ). We illustrate this routine

veri�cation by checking that f is 1-1 and leave the rest to the reader. Suppose
that '(f) = '(g). We must show that f = g. This is immediate if f and g
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are both in [U ]. Suppose now that f 2 [U ] and g =2 [U ]. Let � be the shortest

string extended by g which is not in U , so that '(g) = '�(g) � � =2 U . It

follows that '(g) =2 [U ], but '(f) = f 2 [U ], a contradiction. Suppose �nally

that f =2 [U ] and g =2 [U ]. Let �; � be the shortest strings not in U extended by

f; g respectively. Since '(f) = '(g) extends both � and � , it follows that � and

� are compatible. Hence, by the minimality of � and � , � = � . Hence f = g

since '� = '� is 1-1. We thus conclude from Lemma 9 that [V ] �= [F (U)].

This completes the proof of Lemma 8 and, as previously explained, our main

result follows. 2
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