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Abstract

A parameterized problem hL; ki belongs to W [t] if there exists k0 computed from k such that

hL; ki reduces to the weight-k0 satis�ability problem for weft-t circuits. We relate the fundamental

question of whether the W [t] hierarchy is proper to parameterized problems for constant-depth

circuits. We de�ne classes G[t] as the analogues of AC0 depth-t for parameterized problems, and

N [t] by weight-k0 existential quanti�cation on G[t], by analogy with NP = 9 � P. We prove that

for each t, W [t] equals the closure under �xed-parameter reductions of N [t]. Then we prove,

using Sipser's results on the AC0 depth-t hierarchy, that both the G[t] and the N [t] hierarchies

are proper. If this separation holds up under parameterized reductions, then the W [t] hierarchy

is proper.

We also investigate the hierarchy H[t] de�ned by alternating quanti�cation over G[t]. By

trading weft for quanti�ers we show thatH[t] coincides withH[1]. We also consider the complexity

of unique solutions, and show a randomized reduction from W [t] to Unique W [t].



1 Parameterized Problems and the W Hierarchy

Many important and familiar problems have the general form

Instance: An object x, a number k � 1.

Question: Does x have some property �k that depends on k?

For example, the NP-complete Clique problem asks: given an undirected graph G and natural

number k, does G have a clique of size k? The Vertex Cover and Dominating Set problems

ask whether G has a vertex cover, respectively dominating set, of size k. Here k is called the

parameter .

Formally, a parameterized language is a subset of �� �N. A parameterized language A is

said to be �xed-parameter tractable, and to belong to the class FPT, if there is a polynomial p, a

function f : N! N, and a Turing machine M such that on any input (x; k), M decides whether

(x; k) 2 A within f(k)�p(jxj) steps. A is in strongly uniform FPT if the function f is computable.

Note that if M runs in time polynomial in the length of (x; k) then it meets this condition with

f computable. Examples of problems in FPT for which the only f are uncomputable are given

in [DF93], while [DF95c] describes natural problems in FPT for which the only known f are not

known to be computable.

The best known method for solving the parameterized Clique problem is the algorithm of

Nesetril and Poljak [NP85] that runs in time O(n(
2+�

3
)k), where 2+� represents the exponent on the

time for multiplying two n� n matrices (best known is 2:376 : : :, see [CW90]). For Dominating

Set we know of nothing better than the trivialO(n1+k)-time algorithm that tries all vertex subsets

of size k. Vertex Cover, however, belongs to FPT, via a depth-�rst search algorithm that runs

in time 2k�O(n) (see [DF95c]). Quite a few other NP-complete problems, with natural parameter

k, are in FPT via algorithms of time f(k)�O(n) through f(k)�O(n3), while many others treated

in [DF95a] seem to be hard in the manner of Clique and Dominating Set. The established

way in complexity theory of comparing the hardness of problems is by formulating appropriate

notions of reducibility and completeness. Here the former is provided by

De�nition 1.1. A parameterized language A FPT-many-one reduces to a parameterized lan-

guage B, written A �fpt
m B, if there are a polynomial q, functions f; g : N ! N, and a Turing

machine T such that on any input (x; k), T runs for f(k)�q(jxj) steps and outputs (x0; g(k)) such

that (x; k) 2 A () (x0; g(k)) 2 B.

The reduction is strongly uniform if f is computable. Then (strongly uniform) FPT is closed

downward under (strongly uniform) FPT reductions. Note that g is computable, and the param-

eter k0 = g(k) in the reduction does not depend on x.

For the completeness notion, Downey and Fellows [DF95a] de�ned a natural hierarchy of

classes of parametrized languages

FPT �W [1] �W [2] �W [3] � : : : �W [poly ]; (1)

and showed that the parameterized version of Clique is complete forW [1] under FPT reductions,

while that of Dominating Set is complete for W [2]. This gives a sense in which Dominating

Set is apparently harder than Clique. The formal de�nition of the W hierarchy is deferred to

the next section, but the main idea can be seen by examining the logical de�nitions of Clique

and Dominating Set. For each k, the language of graphs with a clique of size k is de�ned by
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the existential formula

�k := (9u1 : : : uk) :
^

i;j�k

E(ui; uj);

where E(�; �) formalizes the adjacency relation for graphs. By contrast, the language of graphs

with a dominating set of size k is requires two blocks of like quanti�ers to de�ne in �rst-order

logic, such as by the �2 formula

 k := (9u1 : : : uk) : (8v)
_

i�k

(v = ui _ E(v; ui)):

Both problems are about searching for a set of vertices of size k that satisfy the condition following

the `:', but in  k the condition is more complex, because it has the extra quanti�er over vertices

v. Put another way, once candidate vertices have been assigned to u1; : : : ; uk, the condition for

Clique is entirely \local" in a sense studied for parameterized languages in [Reg89], while that for

Dominating Set requires a \global" reference to other parts of the graph. Some parameterized

problems on graphs have conditions that make several alternating �rst-order quanti�cations over

the graph, and are known to belong to W [t] only for higher values of t. Other problems have

conditions that are not �rst-order de�nable at all, and some of these are complete for W [poly ]

(see [ADF95, DFHKW94]). Intuitively, the question

Does W [1] =W [2]?

asks whether a local check of a �xed-size substructure can do the same work as a global check.

The question

For all t, does W [t] =W [2]?

asks whether the simple check over vertices v in the W [2]-complete Dominating Set problem

su�ces to verify any condition that is de�nable by circuits of bounded weft t. Similarly, if

W [poly ] = W [2] then �xed-parameter many-one reductions have an enormous power to simplify

the checking of properties. Note that \k-slices" of Vertex Cover have logical de�nitions of

form similar to that of  k and yet are �xed-parameter tractable. The parameterized versions of

the NP-complete problems Perfect Code, Subset Sum, and Subset Product (see [GJ79,

DF95a, FK93]) are known to belong to W [2] and to be hard for W [1], and are equivalent to each

other under FPT reductions.

Earlier work [ADF95, DF93, DF95a] noted that if the W hierarchy is proper, or so long as

FPT 6=W [poly ], then P 6= NP. The paper [DF93] constructed a recursive oracle relative to which

P 6= NP and yet W [poly ] = FPT, so the above questions are in a sense stronger than P =?NP.

Our results in this paper provide some evidence for a positive answer to the question,

Are all classes in (1) distinct?

We also compare the structure of the W hierarchy to that of the polynomial hierarchy. Our larger

purpose is to examine how the W hierarchy can be characterized in ways that are important to

other aspects of complexity theory.

We make the following progress on the above questions: First, each class W [t] is shown to

be de�nable via existential quanti�cation on the class of parameterized languages recognizable

by polynomial-sized circuits of constant weft t, analogous to the way NP is de�ned by existential

quanti�cation on P. The circuits we obtain are actually AC0 circuits of depth t except for extra

layers of gates of fan-in 2, and providing also for parameterization, we call them G[t] circuits. In

symbols we have W [t] = hN [t]i, where N [t] = 9�G[t]. Also W [poly ] = N [poly ] =def 9�G[poly ],
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without the closure notation. Then we show that not only is the G[t] hierarchy proper, but

more importantly the N [t] hierarchy is proper. Thus among the three \elements" of the W

hierarchy, namely parameterized languages, circuit weft, and FPT-reductions, only the last can

be responsible for any collapse. We explain how these results rule out any \normal" argument for

collapse of the W hierarchy, and give this as evidence that the hierarchy doesn't collapse.

Second, by analogy with the polynomial hierarchy, we de�ne for each t a hierarchy H[t] using

alternating 8� and 9� quanti�cation over G[t]. The hierarchy over G[1] contains all levels of all of

the hierarchies: For all t > 1, H[t] equals H[1].

Natural �xed-parameter analogues of the BP�and ��operators on complexity classes can also

be de�ned, and all of this raises questions about the relationships between classes de�ned by these

operators. For example, it would be interesting to know if

9�G[t] = N [t] � BP��G[t]

holds, which would be an analog of the Valiant-Vazirani lemma NP � BP ��P. Although this

remains an open problem, we show by similar techniques that there is a randomized reduction of

W [t] to Unique W [t].

2 Parameterized Circuit Complexity and the W [t] Classes

Boolean circuits are said to be of mixed type if they may contain both small gates of fan-in � 2

and large AND and/or OR gates of unbounded fan-in. We consider only decision circuits; i.e.,

those with a single output gate. The weft of such a circuit is the maximum number of large gates

on a path from an input to the output. The n inputs are labeled by variables x1; : : : ; xn, and

the Hamming weight wt(x) of an assignment x 2 f 0; 1 gn equals the number of bits that are set

to 1. The circuit is monotone if it has no NOT gates, and anti-monotone if all wires from an

input go to a NOT gate, and these are the only NOT gates in the circuit. A pure �t circuit

as de�ned by Sipser [Sip83] consists of t levels of large gates that alternate ^ and _ with a

single _ gate at the top (i.e., the output), and with the bottom-level gates connected to the

input gates x1; : : : ; xn and their negations �x1; : : : ; �xn. A pure �t circuit is similarly de�ned with

a large ^ gate at the output. In both cases, \pure" means that the circuit has no small gates. A

Boolean expression is the same as a circuit in which each gate has fan-out 1. We call a Boolean

expression t-normalized if it forms a pure �t circuit. For t = 2 this is the same as an expression

in conjunctive normal form. For t = 3 this is product-of-sums-of-products (P-o-S-o-P) form; for

t = 4 this is P-o-S-o-P-o-S form, and so on.

For all constants h; t > 0, the parameterized Weighted Circuit Satisfiability problem

is de�ned by:

WCS (t; h)

Instance: A circuit C of weft t and overall depth t+ h.

Parameter: k.

Question: Does C accept some input of Hamming weight exactly k?

Then for all t � 1, W [t] may be de�ned to be the class of parameterized languages A such

that for some h, A �fpt
m WCS (t; h) (see [DF95a]). Also W [poly ] equals the class of problems

that FPT many-one reduce to the problem WCS with no restriction on depth or weft. WCS

is the parameterized version of the standard NP-complete Circuit Satisfiability problem, of

which SAT is the specialization to the case where the circuit is a Boolean formula (in conjunctive
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normal form). An interesting aspect of the W [�] theory is that more-extreme special cases of the

parameterized versions remain complete. For all t � 2 de�ne:

Weighted t-Normalized Boolean Expression Satisfiability WBES(t)

Instance: A t-normalized Boolean expression E.

Parameter: k.

Question: Is there some assignment a of Hamming weight exactly k such that

E(a) = true?

Monotone WBES (t) (MWBES(t))

Restriction of WBES(t) to instances E that are monotone.

Anti-Monotone WBES(t) (AWBES(t))

Restriction of WBES(t) to instances E that are anti-monotone.

For t = 1, also de�ne AWBES(1; 1) to be the restriction of WCS (t; 1) to instances consist of

a single large AND gate, with input from a layer of binary OR gates, with the OR gates connected

to negated inputs only.

Theorem 2.1 ([DF95a]) (a) For all even t � 2, MWBES(t) is complete for W [t] under �fpt
m .

Hence so is WBES(t).

(b) For all odd t � 3, the problem AWBES(t) is complete for W [t] under �fpt
m . Hence so is

WBES (t).

(c) The problem AWBES(1; 1) is complete for W [1] under �fpt
m .

For t = 1, the extra level of small OR gates is necessary (unless W [1] = FPT) [DF95b].

The methods there and in Section 4 in [ADF95] remove this layer of small gates from earlier

completeness proofs for odd t � 3.

We point out one important aspect of FPT reductions that strongly governs the size of the

objects one can produce. Suppose A �fpt
m WCS (t; h), and take the polynomial q and functions

f; g : N ! N from De�nition 1.1. Since T on input (x; k) must run in time f(k)q(n) (n = jxj),

the circuits Cx;k it produces have size polynomial in n for �xed k, and most importantly, the

exponent of the polynomial is independent of k. Let n0 = f(k)q(n) and k0 = g(k), the latter being

the Hamming weight parameter for Cx;k and independent of x.

De�nition 2.1. A parametric connection is a function � : (N�N)! (N�N) : (n; k) 7! (n0; k0),

a polynomial q, and arbitrary functions f; g : N ! N with n0 = f(k)q(n) and k0 = g(k). A

parametric connection is nice if g(k) is recursive and � can be computed in time h(k)p(n) where

h is an arbitrary function and p is a polynomial.

To economize on notation we write n; k; n0; k0; n00; k00; : : : to indicate that the �rst four quantities

represent one parametric connection, the third through sixth another, and so on. The connection

relation is transitive. This notion enables us to de�ne circuit complexity directly for parameterized

problems:

De�nition 2.2. A parameterized family of circuits is a bi-indexed family of circuits F = fCn;k g
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such that each Cn;k has n inputs and size at most n0, where n0 is part of a connection with n; k.

We say that such a family is FPT-uniform if there is a algorithm to produce the circuit Cn;k in

time O(n0).

The idea of bounded Hamming weight in the weighted circuit satis�ability problems has

been very successful in classifying many problems to belong to, and be complete for, the W [t]

classes [BFH94, DF95a, DF95b, DFHKW94, FK93]. We suspect that it is really central in �xed-

parameter theory. We bring this idea down to tractable parameterized problems, and then use it

in a notion of limited nondeterminism.

De�nition 2.3. G[t] (Uniform G[t]) is the class of parameterized languages L � �� � N for

which there is a parameterized (uniform) family of weft t circuits F = fCn;k g such that for all

x and k, with n = jxj, (x; k) 2 L () Cn;k(x) = 1. If there is no restriction on the circuit

weft, then we obtain the class of parameterized languages G[poly ]. Monotone G[t] and Uniform

Monotone G[t] are de�ned in exactly the same way for monotone circuit families.

Proposition 2.2 Uniform G[poly ] = FPT.

Proof. If a parameterized language L is in Uniform G[poly ] then membership of (x; k) in L,

jxj = n, can be decided in the right amount of time O(n0) by generating the circuit Cn;k and

evaluating it on input x. The converse also holds by imitating the usual proof that languages in

P have polynomial-sized circuits.

Thus the classes Uniform G[t] contain problems that are all �xed-parameter tractable. Now

we can build upon them in much the same way that NP is de�nable by bounded existential

quanti�cation over P. NP uses a polynomial length bound, while our classes N [t] use bounds on

Hamming weight.

De�nition 2.4. (a) For any class C of parameterized languages, 9 � C stands for the class of

parameterized languages A such that for some B 2 C there are nice parametric connections

(n; k; n0; k0; n00; k00) giving for all (x; k), (x; k) 2 A () (9y 2 �n0

)[wt(y) = k0 ^ (xy; k00) 2

B]. (Here n = jxj, n0 = jyj, and n00 = n+ n0.)

(b) For all t � 1, N [t] stands for 9 �Uniform-G[t], and N [poly ] stands for 9 �Uniform-G[poly ].

In a corresponding way, we can de�ne \bounded weight" versions of the other familiar class

operators 8, �, and BP. Combining the latter two formally, we have that a language A belongs

to BP � � � C if there exists B 2 C and nice connections giving for all (x; k), (x; k) 2 A =)

Pry2f 0;1 gn0

;wt(y)=k0 [kf z 2 f 0; 1 g
n00

: wt(z) = k00 ^ (xyz; k000) 2 B gk is odd] > 3=4;

while (x; k) =2 A =) Pr[: : :] < 1=4. If the latter probability is zero (i.e., we have one-sided error),

then we write A 2 RP � � �G[t].

De�nition 2.5. If C is any class of parameterized languages, then by < C > we denote the

parameterized languages that are reducible to a language in C, and refer to this as the FPT-

closure of C.
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3 A Computational Characterization of W Classes

Despite the obvious success of the W hierarchy as a classi�cation mechanism for concrete param-

eterized problems, the classes W [t] often seem a bit strange. One of the central issues is that they

do not seem to embody any \computational mechanism" but are rather de�ned by reducibility

to a particular problem, Weighted t-Normalized Satisfiability. The main theorem of this

section gives a more computational characterization of W [t].

Theorem 3.1 For all t � 1, W [t] = hN [t]i.

To see what is interesting about this theorem, consider the special case of t = 2 and the

W [2]-complete parameterized problem Dominating Set. The original criterion for showing

Dominating Set to be in W [2] requires constructing, for each graph G and positive integer k, a

weft 2 circuit CG that accepts a weight k input vector i� G has a k-element dominating set. The

point is that for each graph G we construct a di�erent circuit, thus perhaps 2(
n

2
) di�erent circuits

for graphs of order n for a �xed value of k. By contrast, to show that Dominating Set belongs

to the FPT-closure of N [t], we must refer all of the graphs of order n (for a �xed value of k) to a

single circuit Cn0;k0 . The input to Cn0;k0 consists of the concatenation xy of a string x representing

G and a string y representing the k log n bits of nondeterminism. For this particular instance our

proof must devise a bi-indexed family of weft 2 circuits, each circuit Cn0;k0 of which is \universal"

for the dominating set problem for graphs of order n and for the parameter k. These \universal

circuits" resemble programmable logic arrays.

Proof. Assume �rst that t � 2 and that t is even. Let L be a parameterized language in W [t].

We can assume without loss of generality that the reduction showing membership of L in W [t]

maps (x; k) to (Cx; k
0) where:

1. Cx is a t-normalized circuit

2. Cx has n0 inputs

3. Cx has exactly n00 gates on each level other than the input and output levels (achievable by

padding)

4. k0, n0 and n00 are described by nice parametric connections.

Let the gates (including inputs) of Cx be described by the set

fg[s; i] : 0 � s � t; 1 � i � n00g:

Here the level of the gate is indicated by the �rst index. Note that on level t only one gate (the

output) is important (the padding is just a notational convenience). We may assume the output

gate is g[t; 1].

We consider the following uniform circuit family FL = fCm;k0 g, m = t(n00)2+n0. (To arrange

for FL to have one circuit for each possible pair of indices, simply pad with nonaccepting empty

circuits for index pairs not of the indicated form.)

The circuit Cm;k0 is described as follows. There are 2t + 1 levels of gates L0; :::; L2t. The

inputs to the circuit constitute level 0. The gate sets are described as follows:

L0 = faX [s; i; j] : 1 � s � t; 1 � i � n00; 1 � j � n00g [ faY [i] : 1 � i � n0g;
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and for s = 1; :::; t,

L2s = fc[2s; i] : 1 � i � n00g

L2s�1 = fb[2s� 1; i; j] : 1 � i � n00; 1 � j � n00g

According to our assumption that t is even, we assign the following logic functions to these

gates: for s = 1; :::; 2t the gates of Ls are ^ gates if s is congruent to 0 or 1 mod 4; the other

levels are _ gates.

The gates in the circuit Cm;k0 are connected as follows.

1. For s = 1; :::; t the gate c[2s; i] receives input from each of the gates b[2s � 1; i; j] for j =

1; :::; n00.

2. For s odd, 2 � s � t, the gate b[2s� 1; i; j] computes the Boolean expression c[2(s� 1); j]^

aX [s; i; j].

3. For s even, 2 � s � t, the gate b[2s� 1; i; j] computes the Boolean expression c[2(s� 1); j]_

:aX [s; i; j].

4. The gate b[1; i; j] computes the Boolean expression aY [j] ^ aX [1; i; j].

The aX [�; �; �] inputs to the circuit have the role of describing the circuit Cx. The aY [�] inputs

represent the (nondeterministic) inputs to Cx. The gates on even-indexed levels L2s provide a

PLA-type template on which to simulate the circuit Cx. Note that these are large gates of the

same logical character as the gates on level s of Cx. The gates on odd-indexed levels L2s�1 are

small gates whose function is to interpret the description of Cx so that Cx can be simulated.

The aX [�; �; �] inputs describe Cx in the following way. Set aX [s; i; j] = 1 if and only if in

Cx the gate g[s; i] takes input from g[s � 1; j]. Let �(Cx) denote the length t(n00)2 0-1 vector

that describes Cx in this way. The following claim establishes that the the circuit Cm;k0 works

correctly.

Claim 1. For all y 2 �n0

of weight k0, Cm;k(�(Cx) � y) = 1 if and only Cx(y) = 1.

Claim 1 is easily proved by induction on the levels of the circuit simulation.

An essentially identical argument handles t odd, t � 3. The case of t = 1 presents additional

di�culties and must be handled as a special case. (The simulation above would would result in

universal circuits of weft 2.)

It su�ces to show a \universal" family of circuits for the W [1]-complete problem Indepen-

dent Set. What we want is a weft 1 circuit that takes as input the concatenation of two strings x

and y where x describes a graph of order n, and y represents the candidate k-element independent

set. We can accomplish this by having the �rst part of the input x = (x[1; 2]; x[1; 3]; :::; x[n�1; n])

represent the adjacencies of G as a 0-1 string of length
�n
2

�
, and letting y = (y[1]; :::; y[n]) (the

nondeterministic part of the input) have length n and weight speci�cation k. The circuit can

simply represent the Boolean expression

C =
Y

1�i<j�n

(:x[i; j] _ :y[i] _ :y[j]):

The above arguments show that W [t] � N [t]. To see that this inclusion reverses, suppose L

is a parameterized language in N [t]. Then (x; k) 2 L, jxj = n, if and only if 9y 2 �n0

of weight

k0, such that a nicely produced weft t circuit Cn00;k00 accepts xy. To exhibit a reduction from L to

Weighted Circuit Satisfiability for weft t, we may just take the image of the reduction to be
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Cn00;k00 with the �rst n00�n0 inputs \removed" by being �xed to the value of x. From N [t] �W [t]

we obtain < N [t] >�W [t] by the trasitivity of parameterized reducibility.

In a similar way we can prove the following characterization of W [poly ].

Theorem 3.2 W [poly ] = N [poly ].

Proof. The proof is essentially the same as for Theorem 3.1. Note that the standard argument

proving Proposition 2.2 can be used to show that hN [poly ]i = N [poly ], by \folding the reductions

into the circuits."

4 Separation Result

Let �
poly

d stand for the class of languages recognized by depth-d unbounded fan-in Boolean circuits

of polynomial size having a single OR gate at the output, as described in the survey by Boppana

and Sipser [BS90]. Let �
poly

d stand for the complements of these languages, which are recognized

by depth-d circuits with an AND gate at the output. Sipser [Sip83] showed that for all d � 1,

�
poly

d 6= �
poly

d . It is not surprising that this carries over to the parameterized setting to show that

the G[t] hierarchy is proper, but it is noteworthy that it extends to our nondeterministic classes:

Theorem 4.1 For all t � 1, N [t] � N [t+ 1].

Proof. Suppose N [t] = N [t+1], and let A0 be a language in �
poly
t+1 . De�ne a simple parameterized

language A by A = f (x; k) : x 2 A0 g. Then A 2 G[t+1] � N [t+1]. By our supposition, A 2 N [t].

By the de�nition of N [t] there exists a parameterized language B 2 G[t] accepted by a bi-indexed

family of circuits C = fCn;k g such that we have for all x and any �xed integer k0:

x 2 A0 () (x; k0) 2 A () (9y 2 f 0; 1 gn
0

)[wt(y) = k00 ^ (xy; k000 ) 2 B]

() (9y 2 f 0; 1 gn
0

)[wt(y) = k00 ^ Cn00;k00

0
(xy) = 1]:

Here again the priming indicates that n and the �xed k0 are part of nice parametric connections,

with n00 = jxyj = n+ n0.

Using Cn00;k00

0
as a building block, we can create a circuit ~Cn00;k00

0
that evaluates Cn00;k00

0
(xy) for

all possible y, with an output _ gate on all these possibilities. There are
�n0

k0

0

�
possible y, but this

is permitted since k00 is a constant. The family of circuits constructed from C in this way over all

n show that A0 2 �
poly
t+1 , contradicting the fact that �

poly
d is not contained in �

poly
d , for all d.

The above theorem does not prove, of course, that the W [t] hierarchy is proper. If we could

prove that, then we would have P 6= NP. What it does show is that any \normal" approach of the

kind often employed in the study of the W classes, namely the use of additional (bounded-weight)

nondeterminism, will necessarily fail. For example, to show that W [t + 1] collapses to W [t] we

might hope to design some sort of gadgetry whose operation can be described by a weft t circuit

C 0, that would correctly verify that a circuit C of weft t+ 1 accepts a particular weight k input

vector x on the basis of some additional k0 log n bits of nondeterministic information. Collapse

would then follow by using C 0 to process two guesses: the input x to C and the \proof" that

C(x) = 1. Since x has bounded weight and the size of C 0 can involve a blowup in size of f(k)ng(t)

for jCj = n and arbitrary functions f and g, we might well believe that there is some hope for

8



this project. However, if this program were to succeed then we would in fact have shown that

G[t + 1] � N [t]. By the following easy but important proposition, in which the transitivity of

parametric connections enables us to \coalesce" two like quanti�ers into one, we would then have

N [t+ 1] � N [t], contradicting Theorem 4.1.

Proposition 4.2 Let C be any class of parameterized languages. Then 9 � 9 � C = 9 � C.

Although the parameterization of A0 in the proof of Theorem 4.1 is trivial by itself, the

manner in which the parameter interacts with the de�nition of 9 � Uniform-G[t] and with the

switch between �d and �d circuits is noteworthy, and overall the information in the theorem

seems surprisingly good. It lends support to the conjecture that the W [t] hierarchy is proper.

5 The Hierarchy H[t]

The classes N [t] are de�ned by a single bounded-weight existential quanti�cation. It is natu-

ral to consider corresponding classes de�ned by universal and by alternating bounded weight

quanti�cation.

De�nition 5.1. For each t � 1, de�ne �1[t] =W [t] = h9� Uniform G[t]i. Correspondingly de�ne

�1[t] = h8 � Uniform G[t]i. For i � 2 de�ne �i[t] = h9 � �i�1[t]i and �i[t] = h8 � �i�1[t]i. De�ne

�0[t] = �0[t] = hG[t]i = FPT. Finally, for each t de�ne H[t] to be the union of these classes, viz.

H[t] =
1[

i=0

�i[t] [�i[t]:

As one would expect, the �i[t] classes consist of the complements of parameterized languages

in the �i[t] classes. Moreover, by the methods of [DF95a] and induction on i, it follows that the

�i-quanti�ed analogue of Weighted t-Normalized Boolean Expression Satisfiability is

complete for �i[t].

The next theorem shows that in contrast to the proper inclusions of the N [t] hierarchy, the

H[t] hierarchy collapses to H[1].

Theorem 5.1 For all t � 1, H[t] = H[1]

Proof. By induction, it su�ces to show that H[t] � H[t� 2], for t odd. Let L 2 �s[t]. We argue

that L 2 �s+2[t� 2]. By the above remarks, L is FPT-reducible to the �s-quanti�ed version of

WBES(t). Accordingly, let E be a Boolean expression over a set of variables V that is partitioned

into sets V = V1 [ � � � [ Vs with Vi \ Vj = ; for 1 � i < j � s, such that E has the form

E =
mY

i=1

miX

j=1

mijY

k=1

E[i; j; k];

where E[i; j; k] is a literal if t = 3, and is otherwise a weft t � 3 expression that is a large _

of weft t � 4 subexpressions. Let (k1; :::; ks) be a sequence of positive integers. The quanti�ed

satis�ability question for E is whether

9 a weight k1 truth assignment to the variables of V1, such that
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8 weight k2 assignments to the variables of V2,

: : : ,

such that E is satis�ed. Now we describe an expression E0 over a set of variables

V 0 = V [ V8 [ V9; where

V8 = fa[i] : 1 � i � mg and

V9 = fe[i; j] : 1 � i � m; 1 � j � mig;

such that the answer to the quanti�ed satis�ability question for E is \yes" if and only if the

answer to the quanti�ed satis�ability question for E0 is \yes." The latter is de�ned to hold i�

9 a weight k1 assignment to V1, such that

8 weight k2 assignments to V2,

: : : ,

8 weight 1 assignments to V8,

9 a weight 1 assignment to V9,

such that E0 is satis�ed.

The expression E0 is described by E0 = E0
1 � E

0
2, where the two factors are

E0
1 =

mY

i=1

miY

j=1

(e[i; j] ! a[i]); and

E0
2 =

mY

i=1

miY

j=1

mijY

k=1

(E[i; j; k] _ :e[i; j]):

For t > 3, since E[i; j; k] is a large logical sum of subexpressions and has weft t� 3, the same

is true for (E[i; j; k] _ :e[i; j]), and therefore E0 has weft t � 2. If t = 3 then E0 is a product

of sums of size 2, and thus has weft 1. The veri�cation that the construction works correctly is

straightforward and is left to the reader.

This proof does not tell us whether �s[t] is equal to �s+2[t � 2], and in general we do not

know exactly how the hierarchies H[t] intercalate for di�erent t.

6 Randomized Reduction of W [t] to Unique W [t]

It would be interesting to know quite a bit more than we presently do about the calculus of the

operators 9�, 8�, BP �, RP � and
L
� over the G[t] classes. For example, do the following analogs

of the theorems (respectively) of Valiant and Vazirani [VV86] and Toda [Tod91] hold?

(1) N [t] � BP �
L
�G[t]

(2) H[t] � BP �
L
�G[t]

Analogs in parameterized complexity (if they exist) of familiar structural theorems generally

present signi�cant and novel di�culties and are in most cases not presently known. A parameter-

ized analog of Ladner's density theorem remains elusive, although substantial partial results have

been obtained [DF93]. A parameterized analog of Mahaney's theorem on the complexity of sparse

sets is proved in [CF96]. In this section we prove an analog of the Valiant-Vazirani theorem that

nevertheless falls short of (1). Our proof is modeled on (and will make use of) the proof of the
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Valiant-Vazirani result in x1.4.1 of [KST93]. The main di�culty is in �tting that argument into

weft 1 constructions. This can be accomplished by employing additional nondeterminism that is

uniquely determined.

De�nition 6.1. A randomized (fpt, many-one) reduction from a parameterized language L to a

parameterized language L0 is a randomized procedure that transforms (x; k) into (x0; k0) subject

to the following conditions:

(1) The running time of the procedure is bounded by f(k)jxjc for some constant c and arbitrary

function f (i.e. the procedure is �xed-parameter tractable).

(2) There is a function f 0 and a constant c0 such that for all (x; k),

(x; k) 2 L ) Prob[(x0; k0) 2 L0] � 1=f 0(k)jxjc
0

(x; k) =2 L ) Prob[(x0; k0) 2 L0] = 0

In x2 we gave the usual de�nition of the W [t] hierarchy in terms of the Weighted Circuit

Satisfiability problem. We consider here the following unique-solution variant.

Unique WCS(t,h)

Instance: A circuit C of weft t and overall depth t+ h.

Parameter: k.

Question: Is there a unique input of Hamming weight k that is accepted by C?

De�nition 6.2. For all t � 1, Unique W [t] is the class of parameterized languages L such that

for some h, L is fpt many-one reducible to Unique WCS(t,h).

Our proof will make use of a technical but generally useful lemma showing that a restricted

form of Weighted t-Normalized Satisfiability is complete for W [t]. This lemma is essen-

tially implicit in earlier work. The variant is de�ned as follows.

Separated t-Normalized Satisfiability

Instance: A t-normalized Boolean expression E over a set of variables V that is

partitioned into k disjoint sets V1; :::; Vk of equal size,

Vi = fvi;1; :::; vi;ng for i = 1; :::; k.

Parameter: k.

Question: Is there a truth assignment of weight k making exactly one variable in each

of the Vi true and all others false and that furthermore satis�es the condition

that if vi;j is true, then for all i0 > i and j0 � j, vi0;j0 is false.

Lemma 6.1 Separated t-Normalized Satisfiability is complete for W [t] for all t � 1.

Proof. We give separate arguments for t even and t odd. For t even we reduce fromMonotone

t-Normalized Satisfiability and use the construction described in [DF95a]. Suppose the

parameter is k and that F is the monotone expression. The reduction is to a normalized expression

F 0 and the parameter k0 = 2k. The key point is that the variables for F 0 consist of 2k disjoint

blocks, and that any weight 2k truth assignment for F 0 must make exactly one variable true

in each block. The blocks can be padded so that they are of equal size. Including additional

enforcement for the condition in the de�nition of Separated t-Normalized Satisfiability is

straightforward. It is possible for this to be done in such a way that monotonicity is preserved.
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Fot t odd we similarly employ the reduction described in [DF95b], starting from Anti-

Monotone t-Normalized Satisfiability. In this case, antimonotonicity can be preserved.

Theorem 6.2 For all t � 1 there is an fpt many-one randomized reduction of W [t] to Unique

W [t].

Proof. We reduce from Separated t-Normalized Satisfiability. Let E be the relevant

t-normalized Boolean expression over the k blocks of n variables:

Xi = fx[i; 1]; :::; x[i; n]g for i = 1; :::; k

Let X denote the union of the Xi and assume for convenience (with no loss of generality) that n

is a power of 2, n = 2s, and that k � 1 divides s.

We describe how to produce (by a randomized procedure) a weft t expression E0 of bounded

depth, and an integer k0 so that the conditions de�ning a randomized reduction are met.

The reduction procedure consists of the following steps:

(1) Randomly choose j 2 f1; :::; k logng.

(2) Randomly choose j length n 0-1 vectors

yi = (y[i; 1]; :::; y[i; n]); 1 � i � j:

(3) Randomly choose m 2 f1; :::; 12g.

(4) Output

E0 = E1 ^E2 ^ � � � ^E9 and k
0

where the constituent subexpressions Ei and the weight parameter k0 are as described below.

The set X 0 of variables for E0 is

X 0 = X 0
1 [X

0
2 [X

0
3

where

X 0
1 = fu[a; b; c] : 1 � a � m; 1 � b � k; 1 � c � ng

X 0
2 = fv[a; b] : 1 � a � k(k � 1); 1 � b � ng

X 0
3 = fw[a; b] : 1 � a � m� 1; 1 � b � kg

We next describe the various constituent subexpressions of E0.

The subexpression E1.

Write X 0
1(i) to denote the variables of X 0

1 that have �rst index i, for i = 1; :::;m. That is,

X 0
1(i) = fu[i; b; c] : 1 � b � k; 1 � c � ng

Note that the set X 0
1(i) can be paired in a natural way with the set of variablesX of the expression

E by the correspondence:

x[b; c]$ u[i; b; c]

Let E1(i) denote the expression obtained from E (essentially, a copy of E) by substituting the

variables of X 0
1(i) for the variables of X according to this correspondence.

E1 =
mY

i=1

E1(i)

12



The role of E1 is to hold each of the m copies of the variables of E accountable for satisfying a

copy of E.

The subexpression E2.

E2 =
mY

a=1

kY

b=1

Y

1�c<c0�n

�
:u[a; b; c] _ :u[a; b; c0]

�

The role of E2 is to enforce that at most one variable is set true in each \block" of the variables

of X 0
1 (there are km blocks, corresponding the m copies X, each copy consisting in a natural way

of k blocks).

The subexpression E3.

E3 =
mY

a=1

kY

b=1

nY

c=1

kY

b0=b+1

cY

c0=1

�
u[a; b; c]! :u[a; b0; c0]

�

The role of E3 is to enforce the ascending order condition on truth assignments (with respect to the

k blocks of variables) that occurs in the de�nition of Separated t-Normalized Satisfiability.

This condition is enforced for each of the m copies of the variables of E.

The subexpression E4.

We view X 0
3 as consisting of m� 1 blocks:

X 0
3(a) = fw[a; b] : 1 � b � kg

E4 =
m�1Y

a=1

Y

1�b<b0�k

(:w[a; b] _ :w[a; b0])

The role of this subexpression is to enforce that at most one variable is set true in each of

the blocks of X 0
3 in any any satisfying truth assignment for E0.

The subexpression E5.

E5 =

k(k�1)Y

a=1

Y

1�b<b0�n

(:v[a; b] _ :v[a; b0])

The role of this subexpression is to enforce that at most one variable is set true in each of

the k(k � 1) blocks of X 0
2.

The subexpressions E6 and E7.

E6 =
m�1Y

a=1

kY

b=1

b�1Y

b0=1

Y

c6=c0:1�c;c0�n

(:w[a; b] _ :u[a; b0; c] _ :u[a+ 1; b0; c0])

E7 =
m�1Y

a=1

kY

b=1

Y

1�c0�c�n

(:w[a; b] _ :u[a; b; c] _ :u[a+ 1; b; c0])

The m � 1 variables that are set true in the blocks of X 0
3 in a satisfying assignment for

E0 provide evidence that the m \solutions" for E recorded in the m blocks of X 0
1 are distinct

and recorded in the m blocks in increasing lexicographic order. The nature of this evidence is
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an indication of the �rst of the k choice blocks in which two consecutive solutions di�er. The

subexpressions E6 and E7 enforce the increasing lexicographic ordering based on this evidence.

The subexpressions E8 and E9.

In order to describe the subexpressions E8 and E9 we �rst must construct an interpretation

of the variables of X 0
2. This consists of the following information:

(1) Each a 2 f1; :::; k(k � 1)g is assigned a subset Ja � f1; :::; jg so that jJaj = logn=(k � 1) andS
1�a�k(k�1) = f1; :::; jg.

(2) Each even-cardinality subset S� � f1; :::; kg is assigned a unique 0-1 vector � of length k� 1.

(Note that this is possible, since there are 2k�1 such even-cardinality subsets.)

(3) Each variable v[a; b] 2 X 0
2 is interpreted as assigning an even-cardinality subset S(j0; a; b) to

each j0 2 Ja. This assignment is made in the following way. The index b can be regarded as a 0-1

vector of length logn. This index vector can be read as a sequence of jJaj blocks of size k � 1. If

the rth block is � then the rth element of Ja is assigned the even-cardinality subset S�.

E8 =
mY

p=1

Y

1�a�k(k�1)

Y

1�b�n

Y

j02Ja

Y

r2S(j0;a;b)

Y

q:y[j0;q]=0

(:v[a; b] _ :u[p; j0; q])

E9 =
mY

p=1

Y

1�a�k(k�1)

Y

1�b�n

Y

j02Ja

Y

r=2S(j0;a;b)

Y

q:y[j0;q]=1

(:v[a; b] _ :u[p; j0; q])

The variables that are set true in X 0
2 in a satisfying truth assignment for E0 are intended

to indicate a proof (that can be checked by a weft 1 circuit) that each of the m weight k truth

assignments that are solutions for E recorded in them blocks ofX 0
1 are orthogonal to the randomly

chosen length n 0-1 vectors yi. The proof that is indicated consists of showing that an even subset

of the k positions set to true in X 0
1 have corresponding positions that are 1 in the yi. A variable

v[a; b] indicates part of such a proof, according to the interpretation mechanism described above.

The subexpressions E8 and E9 provide an enforcement for the interpretation.

The parameter.

The description of the reduction is completed by specifying the parameter that accompanies

E0.

k0 = mk + k(k � 1) + (m� 1)

We now argue for the correctness of the reduction. Half of this is easy. If E is not satis�able

by a weight k truth assignment, then because of E2 and E1 there is no weight k
0 truth assignment

that satis�es E0 (never mind whether it is unique).

For the other half we must argue that if E has a weight k truth assignment, then with the

required probability bound, E0 has a unique weight k0 truth assignment. Let X0 = fx[1]; :::; x[n]g.

The weight k truth assignments to X that satisfy the additional conditions that de�ne Separated

t-Normalized Satisfiability can be put in a natural 1:1 correspondence weight k truth as-

signments to X0. The correspondence is that if the r
th variable assigned the value 1 in X0 is x[s]

then x[r; s] is assigned 1 in the truth assignment for X. Because of this correspondence we can

speak of a weight k truth assignment to X0 that satis�es E.

It follows from the arguments in [KST93] x1.4.1 that if there is any weight k truth assignment

to X0 that satis�es E (and noting that there are no more than nk such assignments), then with

probability at least 1
24k logn there are exactly m distinct weight k truth assignments that satisfy
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E and that are hashed by the function

h(x[1]; :::; x[n])[s] =
nM

i=1

(x[i] ^ y[s; i])

to 0j .

We argue that in this case, E0 is uniquely satis�ed by a weight k0 truth assignment to X 0. The

subexpressions E1, E2, E3, E4, E6 and E7 can be satis�ed if the m distinct truth assignments are

represented in lexicographically increasing ascending order in the blocks of X 0
1, and if the evidence

for the lexicographic ordering is represented in X 0
3. It is easy to check that if there are exactly

m distinct weight k truth assignments that satisfy E, then there is a unique truth assignment to

X 0
1[X

0
3 that satis�es these subexpressions, and it must have weight mk+(m�1). The key point

for this assertion is that the subexpressions E6 and E7 are su�ciently restrictive that not only is

increasing lexicographic ordering enforced, but also the evidence for this is uniquely determined.

In the above situation, the subexpressions E5, E8 and E9 can be satis�ed by a weight k(k�1)

assignment to X 0
2 that represents the hash function condition. Because this is also uniquely

determined, there is a unique weight k0 truth assignment for E0.

The subexpressions E2 through E9 have weft 1, and therefore the weft of E0 is the same as

the weft of E.

There are several obstacles to a proof of the statement (1) discussed at the beginning of this

section. Among these is the matter that our proof of Theorem 6.2 uses kn logn random bits, while

the de�nition of the BP� operator provides only k log n random bits. Furthermore, a method of

probability ampli�cation would be needed (also employing only k logn random bits). How to

achieve this with weft 1 circuits is unclear. The question of whether (1) and (2) hold is quite

interesting, since together with Theorem 5.1 they would yield that Unique Clique is as hard

any parameterized problem in the W [t] hierarchy.

7 Conclusion

We have placed the W hierarchy on a computationally more useful basis. Indeed, we have proved

that the N [t] classes giving W [t] = hN [t]i arise naturally from a notion G[t] of \AC0 circuits for

parameterized problems" and form a proper hierarchy. Thus in the e�ort to determine whether

the W [t] hierarchy itself is proper, we need to focus attention on FPT-reductions themselves. Put

another way, the structure provided by the ideas of circuit weft and bounded Hamming weight

is robust by itself. A number of interesting and challenging questions remain open about the

structure of the H[t] hierarchy, especially about the calculus of complexity operators on the G[t]

classes.
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