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Abstract

We prove that the theory of EXPTIME degrees with respect to

polynomial time Turing and many-one reducibility is undecidable. To

do so we use a coding method based on ideal lattices of Boolean alge-

bras which was introduced in [7]. The method can be applied in fact

to all hyper-polynomial time classes.

1 Introduction

If h is a time constructible function which dominates all polynomials, then,

by the methods of the deterministic time hierarchy theorem, DTIME(h)

properly contains P . Therefore, a polynomial time reducibility like poly-

nomial time many{one or Turing reducibility induces a nontrivial degree

structure on DTIME(h), which is an uppersemilattice with least element

0. By the methods of Ladner ([6], also see [4], Chapter I.7), this degree

structure is dense. This was so far the only fact known to hold in general

for all such structures. Here we prove that all those degree structures are
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necessarily complicated, because they have an undecidable �rst{order the-

ory. In fact, this holds for the degree structure induced on any class of

computable languages which contains DTIME(h). Thus, for instance the

polynomial T-degrees and many{one degrees of languages in EXPTIME or

in DTIME(2n) have an undecidable theory.

Our results improve previous undecidability results for degree structures

in complexity theory, where no reasonable bound on the complexity of the

languages involved could be given. Slaman and Shinoda [8] proved that the

theory of the polynomial time T-degrees of computable languages is unde-

cidable, and in fact interprets Th(N). Ambos{Spies and Nies [3] showed the

undecidability of the theory of the polynomial time T-degrees of computable

languages. Both proofs make use of the speed{up technique introduced in

[1] (which is reminiscent of Blum's speed{up theorem) in order to show

that computably presented ideals can be represented as the intersection of

two principal ideals. This technique necessarily produces languages of high

complexity (usually nonelementary languages).

Most proofs that a problem is undecidable are indirect: one gives a

reduction of a problem which is already known to be undecidable to the

problem in question. A theory is a consistent set of �rst order sentences

in some language which is closed under logical inference. For theories of

structures, a particular type of reduction based on the notion of interpre-

tations of structures is used. It makes use of the following stronger notion

of undecidability: call a theory T in a �rst{order language L hereditarily

undecidable (h.u.) if each set X � T which contains the valid L{sentences

(i.e. the sentences which can be inferred from ;) is undecidable. The trans-

fer principle states that, if A is an L1{structure, B is an L2{structure and

A can be interpreted in B with parameters, then

Th(A) h.u. ) Th(B) h.u. (1)

See [5], Chapter 5 for a detailed de�nition of the concept of interpretations

of structures. Here we only need the special case that A is a partial order.

Then, an interpretation of A in B with a list of parameters p is given by

formulas 'U(x; p) and '�(x; y; p) such that, with an appropriate assignment

of a list of elements b in B to p, the second formula de�nes a preordering on

fc : B j= 'U (c; bg so that the partial order obtained by taking the quotient

is isomorphic to A

We make use of coding methods developed in [7], where it is shown that
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intervals of the lattice E of r.e. languages under inclusion are either boolean

algebras or have an undecidable theory. As a tool, in [7] an undecidability

result for ideal lattices of certain boolean algebras was proved. Then, an

interpretation of such an ideal lattice in intervals of E is given. Our proof

proceeds along the same lines: we give an interpretation of the lattice of

�0
2{ideals of an appropriate �0

2-boolean algebra, which satis�es the criteria

needed for the auxiliary undecidability result in [7]. By an applications of

the transfer principle, this gives the desired undecidability result for our

degree structures. The boolean algebra used here is �0
2 because, within a

computably presented class (Ai)i2!, the question \Ai �
p
r Aj" is �

0
2 in i; j.

We assume that all alphabets contain the symbols 0; 1. For languages

X; Y;X � Y denotes the language 0X [ 1Y .

2 �
0
2{ boolean algebras

We give a version of the concepts and result from [7] which is suitable for our

use. A �0
2{boolean algebra is a boolean algebra B which can be represented

as a model

(N;�;_;^)

such that � is a �0
2{ relation which is a preordering, _;^ are total com-

putable binary functions, and the quotient structure

B = (N;�;_;^)=�

is a boolean algebra (where n � m, n � m ^ m � n).

A �0
2{boolean algebra B is e�ectively dense if there is a computable function

F such that

x 6� 0) 0 � F (x) � x: (2)

We will identify sublanguages S of B with the corresponding preimages

fn 2 N : n=� 2 Sg. Thus, an ideal of B is called �0
2 if the preimage

is. The �0
2{ ideals form a sublattice I(B) of the distributive lattice of all
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ideals, because, for �0
2{ ideals I; J , the in�mum I \ J and the supremum

I _ J = fb _ c : b 2 I ^ c 2 Jg� are �0
2 again.

Theorem 2.1 ([7]) Suppose B is a �0
2{ boolean algebra which is e�ectively

dense. Then I(B) has a hereditarily undecidable theory.

Proof. Relativize the proof in [7] of the corresponding result for r.e. boolean

algebras to ;0 in order to show that E4 of �0
4{languages under inclusion

can be interpreted in I(B) with parameters. Since E4 has a h.u. theory, an

application of the transfer principle gives the desired result. (This works in

fact if the function F in (2) is only �0
2.) }

3 Undecidability Results

In the following, let �p
r be one of the reducibilities �

p
m;�

p
1�tt;�

p

btt
;�

p
tt or�

p
T .

Suppose that h : N 7! N is an increasing time constructible function with

P � DTIME(h), so that h eventually dominates all polynomials. Dr(h)

denote the degree structure induced by �p
r on DTIME(h).

Theorem 3.1 The elementary theory of Dr(h) is undecidable

Proof. In a sequence of lemmas, we give an interpretation of I(B), for an

appropriate e�ectively dense �0
2{boolean algebra B. The plan of the proof is

to make B a very easy, well controlled part ofDr(h), but to use all ofDr(h)

to sort out �0
2{ideals of B. We begin with B. For a degree a 2 Dr(h), we

let B(a) be the set of complemented elements in [0; a]Dr(h), i.e.

B(a) = fx � a : 9y x ^ y = 0 ^ x _ y = ag: (3)

We will work with an a which is the r{degree of a setA enjoying the following

strong sparseness property introduced by Ambos-Spies.

De�nition 3.2 ([1, 2]) A language A is called supersparse if there is a

strictly increasing computable function f with domain N, and a procedure
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M such that

(i) x 2 A implies x = 0f(q) for some q.

(ii) A(0f(n)) is computable via M in time f(n+ 1) + c.

(iii) k = f(d)? is polynomial time in k; d.

Note that a string encoding fz : z 2 A^jzj � f(n)g (e.g. using 1 as a symbol

separating between string of 0's) can be computed in time O(nf(n)). The

property (iii) is called \polynomially honest" in [2]. The numbers k; d are

represented in unary.

Ambos-Spies ([2], Theorem 3.2) constructed a supersparse language in

DTIME(2n). His proof works in fact for any class DTIME(h), h as above.

The function f is obtained by iterating h, i.e. f(0) = 1; f(n+ 1) = h(f(n)).

Thus one obtains

Lemma 3.3 ([2]) There is a supersparse computable A 2 DTIME(h)�P.

}

In what follows, we �x such a supersparse A, let a be the r{degree of A and

let B = B(a). A split of a language X is a languages B such that for some

e, B = X \ Pe. We denote this by B @ X via Pe. The advantage taking a

supersparse a is that not only is B(a) indeed a boolean algebra, but in fact

it is canonically isomorphic to the boolean algebra of splittings of A, modulo

the equivalence relation where two splittings are identi�ed if there symmetric

di�erence is in P . The isomorphism is obtained by mapping a split to its

degree. In this way, B is indeed well controlled as desired. (We could in

fact easily ensure that A has no in�nite P sublanguages. In that case B is

isomorphic to the boolean algebra of splits modulo �nite languages.)

We �rst show that decomposing A into splits gives complements.

Lemma 3.4 (Ambos-Spies [1]) Suppose that A is supersparse and A1 @

A via Pe. Let A2 = A�A1. Then the polynomial time T -degrees of A1 and

A2 form a minimal pair, in the sense that if Q �P
T A1; A2, then Q 2 P .

Proof. Suppose that Q �P
T A1; A2, with MAi

i = Q in time jxjn and i =

1; 2. We de�ne a procedure � and an auxiliary relation R to compute Q
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in polynomial time. Inductively, suppose that � is correct on all strings

of length � s. For simplicity, as A in not in P , and f is supersparse, we

may assume that for all c, f(c + 1) > f(c)n. (This assumption can be

eliminated by the use of a table look-up for a �nite initial segment of A in

the de�nition of � below.) For a string of length s+ 1, �rst see if for some

e � s, f(e) = (s+1)n. If not then let R(s+1) = R(s). If f(e) = k � (s+1)n

note that by the assumption above, k is unique. We de�ne R(s+ 1) = 2 if

0k 2 Pe, and R(s + 1) = 1 if 0k 2 Pe: Then for q with jqj = s + 1 de�ne

�(q) = M
AR(s+1)

R(s+1)
(q). (Let r = R(s+1). Basically, consider the computation

of MAr

r (q). If an oracle question is has length exceeding f(e� 1) then when

we query Ar the answer will be 0, since Ar has no elements of length between

f(e � 1) and f(e + 1), so we can simply answer no and be correct. If an

oracle question has length � f(e�1) then as A is supersparse we can decide

membership of A on such questions and hence membership of Ar . Thus

�(q) can be computed in polynomial time.) }

Now we show that, conversely, each pair of complements is represented

by a decomposition into splits.

Lemma 3.5 Suppose that a1 [ a2 = a and a1 \ a2 = 0. Then there exists

a split A1 @ A such that A1 2 a1 and A2 = A� A1 2 a2.

Proof. It follows from [2], Theorem 4.5, that the polynomial time T-degree

of any set B �
p

T
A collapses to a single 1{tt{degree. Thus it is su�cient to

consider the case that r 2 fm; 1{ttg. It is well known that �p
m and �p

1�tt

induce distributive uppersemilattices on the computable languages. This is

because, if X �
p
r Y � Z, then there is P 2 P such that X \ P �

p
r Y and

X \ P �
p
r Z (provided that r 2 fm; 1{ttg). Now, pick languages Bi 2 ai

and apply this to A �
p
r B1�B2 in order to obtain P . It is su�cient to show

that in fact A1 = A \ P �
p
r B1 and A2 = A \ P �

p
r B2. For the �rst, say,

notice that since B1 �
p
r A1 � A2, there is Q 2 P such that B1 \ Q �

p
r A1

and B1 \Q �
p
r A2. But B1; A2 form an r{ minimal pair, so B1 \Q 2 P and

therefore B1 �
p
r B1 \Q �

p
r A1. }

Finally , we show that the order is preserved when passing from splits to

degrees.

Lemma 3.6 Let P;Q 2 P. Then
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A \ P �p
r A \Q, A \ (P �Q) 2 P :

Proof. The implication from right to left is immediate. For the other im-

plication, notice that A \ P splits into A \ P \ Q and A \ (P � Q). But

A \ (P � Q) and A \ Q form a minimal pair by lemma 3.4. Therefore

A \ (P �Q) 2 P . }

We have obtained a representation of B in the sense of section 2: Let

e 2 N represent degr(A \ Pe). The computable functions _;^ on N are

obtained by taking unions and intersections of polynomial time languages.

Clearly, \A \ Pe � A \ Pi" is �
0
2 in e; i.

Lemma 3.7 B is e�ectively dense.

Proof. By Ladner's uniform diagonalization technique, given a splitting

A \ Pe, we can e�ectively obtain Q = PF (e) � Pe such that such that

A \ Pe 62 P implies that A \ Q;A\ (P �Q) 62 P }

This concludes our analysis of B. Next we show how to obtain an in-

terpretation of I(B) in Dr(h). The idea is to represent a �0
2{ ideal I by a

degree cI such that

I = fb 2 B : b � cIg:

Clearly any ideal de�ned in this way must be �0
2 (even if cI is just the

degree of any computable set, not necessarily in DTIME(h)). The �nal

lemma will show that, conversely, each �0
2 ideal can be represented in that

way by a degree cI 2 Dr(h). Then one obtains the desired interpretation of

B in Dr(h) as follows: the domain formula 'U(x; a) is vacuous (say x = x)

since each degree represents an ideal. Let

'�(c1; c2; a) � 8x(x complemented in [0; a]) (x � c1 ) x � c2)):

Lemma 3.8 For each �2 ideal I of B, there exists CI 2 DTIME(h) such

that

I = fe : A \ Pe �
P
r CIg:
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The proof of the following fact is straightforward (see [10]).

Suppose that q : N 7! N and that q �T ;0. The there is a linear time

computable g : N�N 7! N such that for each n, lims g(n; s) = q(n):

Proof of lemma 3.8. If I is a �2 ideal of B(A) then, since the �
0
2 languages

are just the ranges of ;0-computable functions there exists q �T ;
0 such that

9x(q(x) = e), A \ Pe 2 I:

By the fact above, we may suppose a linear time computable q such that

9x(lim
s
q(x; s) = e) i� A \ Pe 2 I:

We meet the requirements below (where C = CI).

Re : q(e) = lims q(e; s) exists ) A \ Pq(e) �
p
m C.

Hhe;ki : Pk \ A 6= MC
e or Pk \ A 2 I:

As usual, Hhe;ki must live with Rp for p � he; ki: At each stage s 2 N we

will �rst compute h(s), using its time constructability, and then perform

h(s) steps of the stage s construction below. This ensures that the language

C = CI constructed below is in DTIME(2h) = DTIME(h). We shall call

n 2 N relevant if it is of the form n = f(k) for some k.

At stage s we do nothing unless s is relevant. In the case that s is rele-

vant, while h permits us (i.e. for h(s) many steps), we consider requirements

in decreasing order of priority, beginning with R0. Once a Hj requirement

has been satis�ed (see below) it is no longer considered. Suppose that we

are ready to consider requirement D and this is being done at substage t of

stage s.

Case 1. D = Re. Let bin(z) denote the binary representation of z 2

N. Let r = he; q(e; s)i: De�ne the e-coding location of 0s to be ce(0
s) =

bin(r)b0s�jrj. Declare that

0s 2 A \ Pq(e;s) i� ce(0
s) 2 C:

Case 2. D = Hhe;ki. Let Ct denote what C would be were it the case

that stage s were to �nish after substage t � 1. (In particular, no codings
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will be performed for Rj for Rj of lower priority than Hhe;ki.) Here we are

supposing that h(s) is large enough to be able to compute Ct. The key idea

is to see if

Pk \ A(0s) 6= MCt

e (0s):

If so we declare that Rhe;ki is satis�ed forever, and �nish stage s here. (In

e�ect, initializing all lower priority requirements.)

If Pk \ A(0s) 6= MCt

e (0s) then do nothing save to move on to substage

t + 1, ready to consider the next requirement.

It is clear that C 2 DTIME(2h) and since a requirement can be initial-

ized only �nitely often, since h eventually dominates all polynomials, and

since A 2 DTIME(h), eventually we consider a requirement D at almost

all stages. Speci�cally, at each stage s, we �rst quickly (in linear time)

determine if s is relevant. If it is not we move to the next stage. If it is

relevant, then we compute A(0s) which is in DTIME(h). having done this

to compute the action of a requirement of the form Re requires q(e; s) (lin-

ear time) and then Pe(0
s) which needs time se. Of course since h dominates

jxje, eventually we have enought time to consider Re. Similar comments

apply to Hhe;ki:

Since lims q(e; s) = q(e) exists, we see that for almost all n,

0n 2 A \ Pq(e) i� ce(0
n) 2 C:

and hence A \ Pq(e) �
P
m C:

Finally, suppose that we fail to declare that Hhe;ki satis�ed at any stage.

Suppose that s is any stage exceeding a stage s0 where

(i) all the higher priority H do ever be declared satis�ed have already be

so declared,

(ii) for all j � he; ki, and for all u � s0, q(j; u) = q(j; s0), and

(iii) for all u � s0, h(u) is su�ciently large that we have time to consider

Hhe;ki.

The we claim that if MC
e = A \ Pk, then A \ Pk 2 I . Here is the

requction. If z is not of the from 0s or s is not relevant, then z 62 A\ Pk . If

z = 0s and s is relevant, then at the substage t of the stage s construction
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when we compute Ct, this is computable from A \ Pq(0); :::; A\ Pq(b) where

Rb is the lowest priority R-type requirement of priority exceeding that of

Hhe;ki. (I.e. together with a table from stages � s0.) The it can only be

that A\Pk(0
s) = MCt

e (0s): (The reader should note that in them-reduction

case we don't need to compute all of Ct for this step, only the single query

to Ct which can be computed in an m-way from �j�bA \ Pq(j).)

Hence we se that if we fail to ever declare Hhe;ki satis�ed, then A\Pk 2 I;

since A \ Pk � �j�bA \ Pq(j). }
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