
CDMTCS

Research

Report

Series

On the Universal Splitting

Property

Rod Downey

Department of Mathematics

Victoria University

Wellington, New Zealand

CDMTCS-047

August 1997

Centre for Discrete Mathematics and

Theoretical Computer Science

On the Universal Splitting Property�

Rod Downey

Mathematics Department

Victoria University

P. O. Box 600

Wellington

New Zealand

February 9, 1996

Abstract

We prove that if an incomplete computably enumerable set has the

the universal splitting property then it is low2. This solves a question

from Ambos-Spies and Fejer [1] and Downey and Stob [7]. Some technical

improvements are discussed.

1 Introduction

Two computably enumerable sets A1 and A2 are said to split A if A = A1 [A2

and A1 \ A2 = ;. We write A1 t A2 = A in the case that A1 and A2 split A.

Splitting theorems for computably enumerable sets have played a central role in

the history of classical computability theory. For instance, Sack's splitting theorm

[14], demonstrated that every nonzero computably enumerable degree could be

�Downey's research supported by Cornell University, an IGC grant from Victoria University

and the New Zealand Marsden Fund via grant 95-VIC-MIS-0698 under contract VIC-509. Some

of these results were obtained whilst Downey was a Visiting Professor at Cornell University in

fall 1995.

1

decomposed into a pair of incomparible nonzero computably enumerable degrees.

Moreover the technique introduced for the proof of this result was the key to the

widespread use of the in�nite injury method. We refer the reader to Downey and

Stob [7] for a survey of results on splitting theorems in classical computability

theory.

Because of the natural relationship between the splittings of a computably

enumerable set and the R the upper-semilattice of computably enumerable de-

grees, it is natural to explore the possible structure of the following sets of com-

putably enumerable degrees.

S(A) = fdeg(A1) : (9A2)[A1 tA2 = A]g; and,

S2(A) = fhdeg(A1);deg(A2)i : A1 tA2 = Ag:

In this paper, our concerns are two questions implicit in Lerman and Remmel

[11, 12] and Ambos-Spies and Fejer [1], about the the property known as the

universal splitting property. By Sacks splitting theorem, we know that S(A) and

S2(A) have in�nitely many elements. The largest possible sets S(A) and S2(A)

can be are S(A) = fb : b � deg(A)g, and S2(A) = fhb1;b2i : b1[b2 = deg(A)g.

Following Lerman and Remmel [11, 12], we shall say a set A has the universal

splitting property if S(A) is as large as possible: A has a splitting in each possible

computably enumerable degree below deg(A), and following Ambos-Spies and

Fejer we say at A has the strong universal splitting property if S2(A) is as large

as possible.

There have been quite a number of results concerning the (strong) universal

splitting property. For instance, Downey [3] proved that every nonzero com-

putably enumerable degree degree contained a computably enumerable set with-

out ithe universal splitting property, and indeed, in [4], proved that no hypersim-

ple computably enumerable has the universal splitting property. (This is a kind

of splitting analogue to Stob's result [16] that a computably enumerable set is

simple i� it does not have computably enumerable supersets of each nonzero de-

gree. The Downey hypersimple set result says that the position of a computable

enumerable set in the lattice of computably enumerable sets similarly a�ects the

possible degrees of splittings.) On the other hand, Lerman and Remmel [11, 12]

constructed computable enumerable sets with the universal splitting property

and later Ambos-Spies and Fejer improved this to the strong universal splitting

property, and provided a partial characterization of the degrees with such sets.

2

The original construction in Lerman and Remmel [12] of a set with the uni-

versal splitting property resembled the construction of a contiguous degree in

Ladner and Sasso [10]. (Recall that a degree is contiguous Turing degree is one

containing a single computably enumerable wtt-degree.) The connection between

the wtt-degree structure of a T-degree was futher noted by Ambos-Spies and Fe-

jer who observed that if is A has the property that for all B �T A, B �wtt A

then A�! has the universal splitting property. (Following Downey and Jockusch

[5], we call deg(A) wtt-topped with top A.) It is known that all incomplete wtt-

topped degrees are low2, and all contiguous degrees are low2. Recently Downey

and Lempp [6] demonstrated that the contiguous degrees are de�nable in R. By

the work of Ambos-Spies and Fejer, [1], Proposition 2.1, the Downey-Lemmp

de�nition also proved that a computably enumerable degree is contiguous i� it

contains a set with the strong universal splitting property. Naturally this also

means that all sets with the strong universal splitting property are low2.

The goal of this paper is to delineate the connections between the universal

splitting property, the strong universal splitting property, jump classes, and the

wtt-degree structure of computably enumerable degrees. Our theorems are the

following.

Theorem 1.1 If A is incomplete and has the universal splitting property, then

A is low2.

Ambos-Spies and Fejer proved that a low set A has the universal splitting

property implies that A is a wtt-top of a wtt-topped degree. We deomonstate

that the Ambos-Spies and Fejer result cannot be extended to all sets, and hence

in some sense Theorem 1.1 is optimal.

Theorem 1.2 There are computably enumerable sets with the universal splitting

property which are not wtt�tops.

At this stage we do not know if Theorem 1.2 can be improved to say that there

is a non wtt-topped degree containing a set with the universal splitting property.

Our notation is standard and follows Soare [15]. We remind the reader that

all uses etc at stage s are bounded by s and are nondecreasing in both argument

and stage number. The hat convention applies throughout.

3

2 Proof of Theorem 1.1

Recall that given a computably enumerable set E we can construct the dump set

D(E) uniformly from E as follows. (Downey [3]) Let E = [sEs be a canonical

enumeration of E. We assume that at most one element as enters Es+1 � Es for

each stage s. De�ne D(A) = [Ds as follows.

Stage 0. D0 = ; and di;0 = i for all i. (Here fde;s : e 2 Ng will list the

complement of Ds in order of magnitude.)

Stage s + 1. Ds+1 = Ds if Es+1 = Es, and otherwise if dj;s = as, we let

Ds+1 = Ds [fdj;s; :::; dj+s;sg; putting di;s+1 = di;s if i < j and di;s+1 = di+s+1;s if

i � j.

Then it is not di�cult to establish that D(E) is hypersimple if E is non-

computable, D(E) �wtt E and D(E) �T E. Naturally, there is a computable

function f such that for all e, Wf(e) is the dump set of We.

We will need the following Lemma.

Lemma 2.1 Suppose that A and B are computably enumerable sets with B �T A

and suppose that A has the universal splitting property. Then D(B) �wtt A.

Once we have Lemma 2.1, Theorem 1.1 follows because it will prove that if

A has the universal splitting property then L = fe : We �T Ag will be a �0
3 set.

(e 2 L i� Wf(e) �wtt A. And fj : Wj �wtt Ag is �
0
3.) But then A is low2 since

fe :We �T Ag is �A
3 . (Jockusch [9].)

Proof of Lemma 2.1. Let B be a given dump set. Suppose that B �T A via

a reduction �A = B, yet B 6�wtt A. We construct a set C �T A via a reduction

�A = C to meet the requirements below.

R�;�;W;V : [�C = W ^ �W = C ^W t V = A]! (9wtt� reduction �)(�A = B):

Note that the construction of � depends upon h�;�;W; V i: Assuming that

B 6�wtt A, the argument is �nite injury. Thus it will su�ce to describe the action

of a single requirement R = R�;�;W;V . (Action by the R module simply initializes

all lower priority modules.)

4

We will assume that the reduction �A = B is given so fast that every stage s

is expansionary, so that the length of agreement exceeds s at every stage s. We

need the following auxiliary functions.

`(s) = `R(s) = maxfx : 8y < x[�W (y) = C(y)^

(8q � �(y)(�C(q) = W (q)) ^W t V (y) = A(y)]g[s]:

Naturally, `(s) is the C-controllable length of agreement at stage s. Since we

regard functionals as controlling the sets they compute. we will have that once

`(s) > z if we don't change Ct�Cs on the use of this computation, thenW � �(z)

and hence W � z is �xed. That is, elements entering A after stage s must enter

V .

We meet R via followers, of the form xn. These are coding markers for coding

\n 2 B". They are de�ned via cycles.

The cycle for n.

Step 1. Assume that we have completed the cycle for n � 1 and in particular

de�ned �A(j)[s] for j � n�1, and the stage is `(s)-expansionary with `(s) > xn�1.

Then we pick a fresh number xn large. (This number is reset if any j-module

acts for j < n before we de�ne �A(n).) Initialize all R0 of lower priority than R.

De�ne �A = C(xn) = 0[s] with a big use �(xn)[s] for which we will henceforth

ensure that

�(xn) > '(xn)[s
0]

for all s0 � s.

Step 2. Wait till `(t) > xn. If t occurs then initialize all R0 of lower priority

than R. De�ne �A(n) = (n)[t] with a big use �(n) > t. R now asserts control of

C � t. C is now �xed on this region unless some j � n-module acts via step 3

action below described for n.

Comment. We use the following strategy. If some number p � �(n) enters A

at stage d > s, then we make �A(n) unde�ned until the next `(s) expansionary

stage. This is okay since the reduction � is only predicated upon the hypotheses

of R being ful�lled.

Step 3. j � n enters B at stage v. Let j be the least such. Since we have kept

�(xj) > '(xj)[s
0] for all s(j) � s0 � v, we know that A has permitted �(xj)[v� 1]

5

and hence we can put xj; :::; xn into C at stage v. Note that

(*) since B is a dump set, j; :::; n have all entered B by stage v:

(The reader should note that our speeding up of the various enumerations does

not really a�ect this part of the dump property, since we can delay the de�nition of

�A(n) until B's enumeration of some j � n will cause n to enter too.) Our action

has the following e�ect. Since we have frozen C on (�(xj))[s(j)], if �
A(n)[v �

1] #= 0, then wemust have had `(v�1) > xn. Hence, ifA � �(n) = A � �(n)[v�1],

in particular, since �(n) > (�(xn))[v � 1], (by preservation), it must be that

�W (xn) 6= C(xn). In this case, the R module can only act j further times and

only for j0 < j.

Finally, if we get a stage u � v where �A(n) # it can only be that for all j � n

we have correctly computed B(j) up to stage u. Of course the module would

restart for n+ 1 at this stage.

If we assume that B 6�wtt A, then R can thus only act �nitely often, and this

observation completes the proof of the Lemma. 2

In passing we note the proof above has the following corollary.

Corollary 2.2 Suppose that A and B are any computable enumerable sets with

B �T A but D(B) 6�wtt A. Then there is a computably enumerable set C �wtt B

such that if W t V = A is a splitting of A, then W 6�T C.

3 Proof of Theorem 1.2

We need to construct a computable enumerable set A that is not a wtt-top, yet

A has the universal splitting property. While technically the more di�cult, this

result is the least interesting of all the results. Rather than simply quoting the

result (which is our inclination) we include a proof for completeness. However,

in view of its marginal interest, we will only sketch the proof.

We meet the requirements below, building a set Q �T A via a reduction

�A = Q.

R�;B : (�A = B ! (9W;V)[W t V = A ^ B �T W]:

6

P� : �A 6= Q:

Here, � denotes a partial wtt-reduction with computable use function �.

We begin by discussing the satisfaction of a P = P� requirement in isolation.

Let � be a node on the tree of strategies devoted to P�. The basic module for

P� consists of the following steps.

Step 1. At an � stage s1, pick a large follower x targeted for Q. Set �(x)[s1] = x.

Step 2. Wait for a � stage s2 > s1 where the follower is realized. That is, wait

till �A(x) = Q(x)[s2].

Step 3. Put �(x)[s1] into A, and lift �(x)[s2] to some s3 > s2.

Step 4. Wait for recovery at �. That is, we see an � stage s4 > s3 where

�A(x) = Q(x)[s4]. Freeze A � �(x)[s4] to preserve the �
A(x) # [s4] computation.

Step 5. Put �(x)[s4] into A[s4 + 1] and x into Q[s4 + 1] meeting P� by preser-

vation and the fact that �(x) > �(x)[s4]. Hence �
A(x)[s4 + 1] is unchanged, but

Q(x)[s4] = 0 6= 1 = Q(x)[s4 + 1].

The module above clearly succeeds and is really a �nitary requirement de-

spite the fact that we have written it in a complicated tree of strategies 000 way.

The machinery will be needed when we look at the interaction of the various

requirements below.

But �rst we turn to the R�;B requirements in isolation. On the tree of strate-

gies, there will be a node � devoted to building reductions �B = W and
W = B,

based on the hypothesis that `(s)!1, where

`(s) = maxfx : 8y � x(�A = B)[s]g:

Let � be a node on the priority tree devoted to meeting R�;B. Of course, at

�-expansionary stages it will be out responsibility to update the de�nitions of �

and
. The usual requirements for axioms are here. If x enters B then we must

change W below !(x)[s] and similarly, if y enters W it is our responsibility to

change B below �(y)[s].

The R�;B requirements have the potential to force us to add many numbers

into A as we now see. Suppose that at some stage s1 we happen to add some z

to A which is relatively small. At the next � stage s2 we see that B has changed

7

upon a medium number z0. Because of this we will apparently need to put z into

V (and not W) but need to put something into W to record z0's entry. Thus we

can delay the de�nition of W and V 's updates and �rst put !(z0) into A (noting

that we can keep �(x) > x for all x, so that z0 < �(!(z0)) and hence we will

be able to later update � too. Now this process can repeat itself at the next

� stage. Thus � has the potential to put many relatively small numbers into A

at relatively late stages, many stages removed from the initial enty of elements

into A which was the �rst cause of �A to potentially change B. However, note

that since we will surely not extend the de�nitions of � and
 this process will

eventually catch up with itself, and we will add the relevant least �(bz) to W . and

put the rest into A.

Notice that we have not yet exploited the ability we have to move the uses of

the reductions � and
. This is because the ideas above in isolation can be used

to make a set of contiguous degree1 with the strong universal splitting property

(Downey [4]).

In our case we will need to explicitly kill many potential wtt-reductions, and

hence as we see must actually explicitly use the full force of our potential to move

the uses. This fact comes now when we consider the interactions with the other

requirements below.

Interactions.

The simplest scenario is that of �b1 � �. In this case � has the power to

initialize �. The action of � is �nite down the true path so this initialization will

only occur �nitely often.

The more di�cult scenario is the situation that we have

�b1 � �:

The problem is that we must now update �'s reductions at each stage we perform

step 3, which is before we get recovery in step 4 for � and, more importantly,

before we get � correctness or even know ''s new value.

To illustrate this problem scenario, suppose that we blindly pursued the basic

module. Thus at a � stage s, we perform step 3, and put �(x)[s] into A. Thus

we rede�ne �(x)[s0] for s0 = s+1. When we hit � may well need some additional

1If a degree is contiguous and contains a set with the universal splitting property, note that

all the reductions will be wtt reductions.

8

coding. We could even move �(x)[s] again, but it does not really aid us. �(x)[s0]

already exceeds �(x). The trouble is that we don't yet have the �nal value of

'(z)[s00] for the next �b1 stage s00 for various z with perhaps !(z)[s00] still quite

small. (Perhaps !(z)[s] is unchanged since the only thing that happened was

that '(z)[s] has been changing but B � z has remained �xed throughout.)

Naturally the opponent will make sure that for such small z, it will be that

'(z) > �(x)[s00].

Therefore at the next � stage u where we get to enact step 4, �(x)[u] =

�(x)[s00]'s entry into A will allow a change in B � z. But then at the next �b1

stage u0, we may well see z enter B, and hence we will be forced by � to put

!(z)[u] which is still very small into A. But then it might well be that in fact

!(z)[u] < �(x)[u]. Therefore our opponent will no doubt be able to cause an A

change correcting �A(x) = Q(x)[u00] at some stage u00 � u.

To overcome this problem, we will use the idea of a backup strategy as we

see below. In the situation of a single � as above, with �b1� �, we proceed as

follows.

Step 1. First we will work as in the basic module. At an appropriate � stage s1
we will appoint a follower x = x(�).

Step 2. As with the basic module we wait for a � stage s2 where x becomes

realized. (�A(x) = Q(x)[s2])

Step 2.1 Now begin the backup strategy at �. De�ne a new set of followers

fb1; ::::; bs2g which are targeted for Q and are very large. Note that there are s2
of them and hence there are more of them than there are !(z)'s on the board at

present.

Step 2.2As with the primary strategy, we wait for a � stage s2:2 where fb1; ::::; bs2g

all become realized. (�A(bi) = Q(bi)[s2:2], for all i 2 f1; :::; s2g.) Again we will

suppose that stage s2:2 has �-correct computations.

Step 3. As with the basic module, we put �(x)[s2] into A[s2 + 1]; and rede�ne

�(x)[s3] and �(bi)[s3] for each i, to be very large where s3 = s2 + 1.

Step 3.5. When we hit � and the stage is �-expansionary, see if � desires us to

put !(z)[s3] into A. Perform such � coding if necessary making sure that we do

not extend the de�nitions of � and
 until we reach a �b1-correct stage. At a

9

�b1-stage s3:5, we get to rede�ne any !�(z) which have moved but we rede�ne

them to be large. (And in particular, larger than �(bi) for all i.)

Step 4 As with the primary strategy, we wait for a � stage s4 where fb1; ::::; bs2g

all become realized again. (�A(bi) = Q(bi)[s4])

Step 5. As with the basic module, put �(x)[s4] into A[s4+1] and x into Q[s4+1]

potentially meeting P� by attempting to preserve and the fact that

�A(x)[s4] = 0 = Q(x)[s4] 6= 1 = Q(x)[s4 + 1]:

Let � preserve A � s4 as best it can.

Comment. Notice that the disagreement will be preservable unless the entry of

�(x)[s4] into A[s4 + 1] (but below '�(z)[s3:5] for various z) causes the entry of

some such z into B �B[s3:5] with !(z) < �(x)[s3:5]. It is important here that the

reader realize that the only z which can cause the potential win to go away were

those z already present at stage s3:5: Any !(z0)[t] appointed at stages after s3:5
will be larger than �(x)[s3:5] = �(x)[s4].

Step 6. At the next � stage s6, attend to any coding that is needed. However,

we will do the following. For any !(y)[s6] which enters A[s6] (because at some

later stage we commit to putting some c � !(y)[s6] into W), we make sure that

that we declare !(y0)[s6 + 1] " for all y0 � y, until the next �b1 stage which is

�-corrrect and hence there are no pending codings round.

Step 7. Finally we reach a �b1 correct stage s7. Now we must rede�ne any

!(y)[s7] which were de�ned but have become unde�ned during the process above.

Notice that the only way that this unde�ning has happend is because we have

put a unique c � !(y)[sf] some f < 7 into W \ A[s7]. Thus it is legal for us to

rede�ne the !(y)[s7] to exceed �(bj)[s7] for all j = 1; :::; s2; and '(w)[s7] for all

w � `�(s7):

Now we get to the key point of this whole process. There are two cases.

Case 7.1 No �-coding has occurred below �(x)[s3:5], because B did not change

on any z with !(z)[s3:5] < �(x)[s3:5].

Action. We need do nothing except freeze the present situation by letting �

assert control of A � s7. There are no pending codings around and nothing

has entered A � �(�(x))[s3:5]: Therefore we really did create an � preservable

disagreement in step 5. (This is the import of the subsequent comment.)

10

Case 7.2 The disagreement created at step 5 has been killed because of the

coding of some !(z)[s3:5] below �(x)[s3:5] into A[s7]�A[s3:5]. The main point is

this. Since such a coding has occurred, we know that for all z0 > z, !(z0)[t] became

unde�ned and has only been rede�ned in step 7. For all such z0; we have !(z0)[s7]

to exceed �(bj)[s8] for all j = 1; :::; s2; and '(w)[s7] for all w � `�(s7): Now as

usual act to freeze this situation and begin the backup modules for 1; :::; s2. Note

well that there are fewer than s2 numbers y with !(z0)[s7] < �(bj)[s7] for any j 2

f1; :::; s2g and there are none in the interval [�(x); �(bs2)].

Backup Strategy. We perform the following cycles i = 1; :::; s4. We only begin

cycle i+ 1 if cycle i fails in step i.5.

Cycle i

Step i.1Wait till bi becomes realized. (cf. Step 2) That is we see an � stage si:1
where �A(bi) = Q(bj)[si:1]. Note that we already know that �(bi)[si:1] is larger

than �(bj)[si:1] for all j 2 f1; :::; s2g by step 3. Put �(bi)[si:1] into A and bi into

Q. This again makes a potentially preservable disagreement

�A(b1) 6= Q(bi)[si:1 + 1]:

Again it can only be injured by numbers z with !(z)[si:1] below �(bi)[si:1] We

know that such z are below s2.

Step i.2.5 Now repeat step 3.5 of the primary strategy. That is at the next �

stage si:2:5, attend to any coding that is needed. For any !(y)[si:2] which enters

A[si:2:5] (because at some later stage we commit to putting some c � !(y)[si:2]

into W), we make sure that that we declare !(y0)[si:2 + 1] " for all y0 � y, until

the next �b1 stage which is �-corrrect and hence there are no pending codings

round.

Step i.3 Now we reach the analogue of step 7 for bi. That is, we reach a �b1-

correct stage si:3. Now we must rede�ne any !(y)[si:3] which were de�ned but

have become unde�ned during the process above. Again, notice that the only way

that this unde�ning has happened is because we have put a unique c � !(y)[sf]

some f < i:3 into W \ A[si:3]. Thus it is legal for us to rede�ne the !(y)[si:3] to

exceed �(bj)[si:3] for all j = 1; :::; s2; and '(w)[si:3] for all w � `�(si:3):

Again, there are two cases.

Case i.3.1 No �-coding has occurred below �(x)[si:1], because B did not change

on any z with !(z)[si:1] < �(bi)[si:1].

11

Action. We need do nothing except �-freeze the present situation. There are no

pending codings around and nothing has enteredA � �(bi)[si:3:1] = M � �(bi)[si:1]:

Therefore we really did create a preservable disagreement in step i.1. We don't

begin cycle i+ 1 since we won in cycle i.

Case i.3.2 The disagreement created at step i.1 has been killed because of the

coding of some !(z)[si:1] below �(bi) into A[si:3] � A[si:1]. Again, since such a

coding has occurred, we know that for all z0 > z, !(z0)[t] became unde�ned and

has only been rede�ned in step i.3. For all such z0; we have !(z0)[si:3] to exceed

�(bj) for all j = 1; :::; s2; and '(w)[si:3] for all w � `�(si:3): Begin cycle i+ 1.

The Punch Line. By the hypothesis predicating the necessity of the backup

strategy, cycle i, the z which entered B to cause this problem must have been

below s2, and in fact below the y which killed the bi�1 disagreement of cycle i� 1.

Therefore although we have lost cycle i another z below s2 has been used up. All

the other !(z0)[si:3]'s are to large to cause coding injury in cycle i+1. Since there

are only s2 � 1 numbers below s2, it follows that some bi will succeed.

More than one �.

The above �nishes the process for � living below a single �b1. The argument

for more than one � is similar but even uglier. For simplicity, suppose that we

have

�1b1 � �2b1 � �:

Now each of the �i can independently and out of phase decide to injure the

attempt at diagonalization. It becomes a counting argument.

One can think of the strategy above as building a sequence b1; :::; bs2 for the

sake of �. Similarly, we would begin the �rst layer of backup strategies at an �

stage building a sequence b1; :::; bs2 as above at step 2.1 and wait for then to be

realized at step 2.2. Suppose again that we get to this � stage at stage s2:2.

To take care of the second �i, we will interpolate new steps 2.2.1 and 2.2.2

Step 2.2.1 Pick a new set of followers b01; :::; b
0

2s2:2
.

Step 2.2.2 Wait for a � stage t where all of x, b1; :::; bs2 and b01; :::; b
0

2s2:2
are

realized.

Now we perform step 3 as before and put �(x)[t] into A kicking all of the

12

�(bj)[t+ 1] and �(b0j)[t+ 1] to be large. After we have �nished all the �1 and �2
codings, say at stage t0, either we will have an � preservable win as in Case 7.1,

or some number !�i
(z)[t] < �(x) has entered A. Now it does not matter if this

is i = 1 or i = 2 but we certainly know that there are only s2 � 1 numbers of

the form !(z)[t0] below any �(bj) or �(b0k). Thus we would begin the backup

strategy on fb1; :::; bs2g. The point is that either that will win or it must be that

�i0 for i
0 6= i, did not code between stages t and t0 but decides to code while we

are attempting the backup strategy. In that case, some number !�
i0
(z0)[t] below

�(bq) must be coded into A by �i0. But now we will using the backup to the

backup strategy, using the numbers b01; :::; b
0

2s2:2
. All of both �1 and �2's !�i

(z)'s

have ben cleared from the interval [s2:2�1; t], and now we have more entropy than

both of the opponents combined. (Each �i has only � s2:2 � 1 numbers to work

with and we have 2s2:2.)

Naturally with more than 2 �i one has as many layers of backup strategies as

necessary. The argument now follows with no new insights but much detail. 2.

13

References

[1] K. Ambos-Spies and P. A. Fejer, Degree theoretical splitting properties of

recursively enumerable sets, J. Symbolic Logic 53 (1988), 1110-1137.

[2] P. Cholak, Automorphisms of the Lattice of Recursively Enumerable Sets,

Memoirs American Math. Soc., No. 541, 1995.

[3] R. G. Downey, The degrees of r.e. sets without the universal splitting prop-

erty, Trans Amer. Math. Soc. 291 (1985) 337- 351

[4] R. G. Downey, Subsets of hypersimple sets, Paci�c J. Math. 127 (1987)

299-319.

[5] R. G. Downey and C. G. Jockusch, Jr., T- degrees, jump classes and strong

reducibilities, Trans. Amer. Math. Soc. 301 (1987) 103-136.

[6] R. G. Downey and S. Lempp, Contiguity and distributivity in the enumerable

degrees, submitted.

[7] R. G. Downey and M. Stob, Splitting theorems in recursion theory, Ann.

Pure Appl. Logic 65 (1993), 1-106.

[8] Leo Harrington and Robert Soare, \Post's program and incomplete recur-

sively enumerable sets," Proceedings of the National Academy of Science,

U. S. A., Vol. 88, 1991, 10242-10246.

[9] C. G. Jockusch Jr., Relationships between reducibilities, Trans. American

Math. Soc., vol. 142 (1969), 229-237.

[10] R. E. Ladner and L. P. Sasso, Jr., The weak truth table degrees of recursively

enumerable sets, Ann. Math. Logic 8 (1975), 429-448.

[11] M. Lerman and J. B. Remmel, The universal splitting property I, in D. van

Dalen, D. Lascar, and T. Smiley, eds, Logic Colloquium '80, (North Holland,

Amsterdam, 1982), 181-208.

[12] M. Lerman and J. B. Remmel, The universal splitting property, II, J. Sym-

bolic Logic 49 (1984), 137-150.

[13] P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, 1990.

[14] G. E. Sacks, On the degrees less than 00, Ann. Math. (2) 77 (1963), 211-231.

14

[15] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New

York, 1987.

[16] M. Stob, Index sets and degrees of unsolvability, J. Symbolic Logic, 47

(1982), 445-471.

15

