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Abstract

We de�ne a new type of two player game occurring on a tree. The tree may

have no root and may have arbitrary degrees of nodes. These games extend the

class of games considered by Gurevich-Harrington in [5]. We prove that in the

game one of the players has a winning strategy which depends on �nite bounded

information about the past part of a play and on future of each play that

is isomorphism types of tree nodes. This result extends further the Gurevich-

Harrington (GH) determinacy theorem from [5].

Keywords: Games, Gurevich{Harrington Games, Forgetful Determinacy

Theorem, Strategies
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1 Introduction

Using game-theoretic methods Gurevich and Harrington gave an elegant

and new proof of the decidability of second order monadic theory of two

successors known as S2S [5]. Possible applications of their proof to the

theoretical computer science and logic have attracted the attention of many

mathematicians and computer scientists [Monk [6], McNaughton [7], Nerode

- Yakhnis [11] [10] [12], Thomas [17], Zeitman [22], Yakhnis - Yakhnis [19]].

The games and new ideas presented in their paper undoubtedly constitutes

an area for research and applications. For instance, Nerode, A. Yakhnis and

V. Yakhnis have developed theoretical foundations for concurrency based on

GH game-theoretic methods. They showed that concurrent programs can

be viewed as winning strategies in GH type games. They aslo showed that

GH games can be used as theoretical tools for program development and

veri�cation in compiler theory, operating systems design and veri�cation,

and hybrid systems theory.

This paper uses ideas of the original Gurevich-Harrington paper [5] in or-

der to develop an extension of Gurevich-Harrington game-theoretic methods.

We think that game-theoretic ideas developed by Gurevich-Harrington can

be applied in a wide range of areas: logic, theory of concurrent and paral-

lel computations, logic programming, real-time computing sytsems, arti�cial

intelligence, robotics, operating systems design and veri�cation, and hybrid

systems theory, etc. Therefore, a goal of our extension is to expand potential

applications of GH games.

Gurevich-Harrington games have several features. Each game generates

a structure, a tree or a graph [Gurevich - Harrington [5], McNaughton [7],

Zeitman [22],Yakhnis - Yakhnis[19] [20]], which has a �xed element, called

initial position. Each play of the game begins from this initial position.

For example, in games occuring on trees these elements are the roots of

trees. The structures generated by games are strongly locally �nite, that

is the number of neighbours of every element is bounded by an n 2 !. In

addition, each player of the game has a �nite alphabet from which the player

picks elements and makes moves. This is �niteness of the game alphabet

in [Gurevich - Harrington]. Each move of any player is identi�ed with the

choice of a letter from the alphabet. We omit all the above restrictions in

our games. Namely, our game structures need not have initial elements. The

game structures are not supposed to be locally �nite. We do not necessarliy
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identify a move of a player with a choice of a letter from the alphabet. Each

player of our games potentially has in�nitely many choices to make moves.

One of our other intensions is to model proccesses which can be character-

ized as proccesses with unknown past. An example of a such proccess is a

human{computer interaction: a user (computer) beginning to interact with a

computer (user) does not neccessarily know the past history of the computer

(user). We would like to point out that it is not a new idea to ivestigate

proccessses with unknown past. For example, automata-theoretic treatment

of procedures with unknown past has also been developed in [Nivat-Perrin

[13], Perrin-Shupp [14], Semenov [15]]. The approach taken in these papers is

motivated by problems from ergodic theory and symbolic dynamics [Nivat-

Perrin [13], Perrin-Shupp [14]]. Another example is that investigations in

modal and temporal logics with past tense temoral operators [21]. We hope

that our generalization of Gurevich{Harrington games is appropriate to de-

velop a game-theoretic approach for investigating proccesses with unknown

past.

Now we give a brief summary of the paper. Section 2 is quite technical

containing many de�nitions. In Section 2 we de�ne our games. The underly-

ing structure in which a game occurs is a tree T labelled with symbols from

alphabet �. Each � 2 � de�nes a unary predicate P� on T as follows: x 2 P�

i� x is labelled with �. Thus, in fact, the game occurs on the tree expanded

by unary predicate symbols P�. In this section we technically modify the

notions of games, winning conditions, moves of the players, and strategies.

For example, we introduce the notions of a winning condition, apparent and

oriented moves, plays, arena, and who wins a game. We also de�ne appar-

ent strategies, oriented strategies, tactics, and show the connections between

them. We prove a technical theorem about the duality between arenas and

opposing strategies. Games with unknown past are those which occur on

trees with no root. A de�nition of the winner of a game with unkown past

is unsymmetrical. This is caused by the assumption that the game does not

have a beginning. However, for Gurevich - Harrington games our de�nition

is equivalent to theirs. We also give examples to illustrate the notions of the

section.

In section 3 similar to [Gurevich-Harrington [5]] we de�ne the notion of

rank for the players. For a given set C in a tree, we de�ne a special game

G(C). Informally, this is a game in which one of the players targets the set

C while the other player tries to avoid C. We show that one of the players
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wins the game G(C). This is a generalization of Theorem 2 from [Gurevich

- Harrington]. We then give su�cient model-theoretic conditions on arena

and the set C for a winner to have apparent or oriented winning strategies.

In section 4 we investigate congruence relations of the games. A congru-

ence of a game G is an equivalence E in the arena such that if (x; y) 2 E,

then residual games after x and y are isomorphic, and for any automor-

phism � of the residual arena de�ned by x, (x; �(x)) 2 E. The set of all

congruences of a game forms a lattice with the maximal element. In this

section we extend Gurevich - Harrington's Sewing Lemma by proving that

if for every position x from a set X a player has a winning strategy to win

the game after x, then the player has a uniform strategy winning all games

which begin from all positions x in X.

In section 5 we prove the uniform determinacy theorem (UDT) for the

games with unknown past. We base the proof of the theorem on ideas from

[Gurevich - Harrington [5]]. The theorem states that if a winning condition

W is given as a boolean combination of sets [C1]; : : : ; [Cn], where [Ci] consists

of all paths in the game tree which intersect Ci in�nitely many times, then

one of the players has a winning oriented strategy which depends on �nite

bounded information about the past part of a play and on isomor-

phism types of tree nodes. A partial case of this theorem is the Gurevich

- Harrington determinacy theorem [Gurevich-Harrington [5]].

We use common notations. For instance, if f is a mapping, then dom(f)

is the domain and range(f) is the range of f . For a set S card(S) is the

number of elements in S. For a pair z = (x; y), let lz = x and rz = y.

For a = (a1; : : : ; am), we put �i(a) = ai. If T is a model, then T denotes

the domain of T . While wrting the paper (we began writing the paper

in 1992) it seemed that basic notions from model theory were convinient

and transparent for our generalization of GH games. Therefore we used

elementary notions from model theory such as for example, automorphisms,

isomorphisms, submodels, and elementary equivalence. Al these notions can

be found in any elementary book on model theory.

2 Games and Strategies

We de�ne games over algebraic structures called trees, which may not have

roots as opposed to ordinary trees. A tree is a partially ordered set T such

that
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1. For any x 2 T , the set Pred(x) = fyjy � xg is linearly ordered.

2. Any two elements have a common ancestor below each of them, that is

8xy9z(z � x
V
z � y)

3. The partial order is discrete, that is for all x; y if x � y, then there is

�nitely many elements z such that x < z < y.

Let T be a tree. From the de�nition it follows that for any x 2 T , Pred(x) =

; or card(Pred(x)) = 1. We also de�ne Suc(x) = fyjx < y
V
:9z(x < z <

y)g the set of all immediate successors of x. Since T is a tree there exist

disjoint sets T0 and T1 be subsets of T such that T0
S
T1 = T and for any

x 2 T , if x 2 T� then Suc(x) � T1��, where �� 1 = 0 if � = 1, and �� 1 = 1

if � = 0. We say that the set T� is the set of nodes for the player �.

Let � be an alphabet of any cardinality. A mapping v : T ! � is

called a valuation of T . If v is a valuation, then we call the pair (T ; v) a

valuated tree. The valuated tree (T ; v) can be considered as a model T v

of the enriched signature (�; T0; T1; Pa; a 2 �), which expands the language

of T , as follows. The domain of T v is T ; The relation � in T v is the same

as � in T ; For any a 2 �, T v j= Pa(x) if and only if v(x) = a.

Suppose that T 0 is any model of the language (�; T0; T1; Pa; a 2 �) and

is an expansion of T such that

(?) T 0 j= 8x(9a 2 �)(Pa(x)
^
(Pa(x)

^
Pb(x)! a = b))

Then T 0 de�nes a valuation v : T ! � such that T 0 = Tv. Below we consider

only structures T 0 which satisfy (?).

Our games occur on valuted trees T v. One needs to be careful in de�n-

ing games on the valutaed trees. In GH games each move of any player is

identi�ed with a choice of a letter from an alphabet while in our games we

can not do this directly. Therefore below we �rst give basic de�nitions and

simple results of technical nature.

Let P (T v) be the set of all paths on Tv, that is all maximal linearly

ordered subsets of T .

De�nition 2.1 A partial mapping f : Z ! T � � is labelled prepath

on T v if range(lf) is a path, f is an isomorphism from (dom(f);�) into

(range(lf);�), and for any x 2 dom(f), x + 1 2 dom(f),
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If f is a lebelled prepath, then the partial function g : Z ! � de�ned by

g(i) = rf(i) is called apparent prepath. We say that labelled (apparent)

prepaths f1 and f2 are equivalent if there exists an i 2 Z such that f1(n) =

f2(n + i) for all n 2 dom(f1). Each class of equivalent labelled prepaths

(apparent prepaths) we call path (apparent path). If � is a labelled path,

then let app(�) be an apparent path de�ned by �. We need these de�nition

simply because of the following reasons. First it is not true that any mapping

g : Z ! � can be identi�ed with a path. Second, even if g is an apparent

path, then g does not always determines a unique path in T .

Let LbP (T v) be the set of all labelled paths and let and App(Tv) be the

set of all apparent paths on T v, respectively.

De�nition 2.2 A set W of lebelled paths is called a winning condition or

a winning set for Player 0.

Let W � LbP (T v). De�ne an operator Cl over the subsets of LbP (T v):

Cl(W ) = f� j 9�(� 2 W&app(�) = app(�))g:

If Cl(W ) =W , then we say thatW is closed. From this de�nition we obtain

Proposition 2.1 The operator Cl has the following properties:

1. For any W � P (T v) we have W � Cl(W );

2. If W1 � W2 � P (T v); then Cl(W1) � Cl(W2);

3. Cl(Cl(W1)) = Cl(W1). 2

Another property of the closed winning sets (conditions) is given in the next

proposition:

Proposition 2.2 The collection of all closed winning sets forms a boolean

algebra. Moreover, this collection can be taken as a topology of clopen sets

over the set LbP (T v). 2

Let p be any node of T v. We de�ne the maximal oriented move and

the maximal non-oriented move as follows:

OM(p) = f(y; b)jy 2 Suc(p)
^
T v j= Pb(y)g
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and

NM(p) = fyj9b 2 �(y 2 Suc(p)
^
Tv j= Pb(y))g

It is clear thatNM(p) = Suc(p) andNM(p) = l(OM(p)): Now suppose that

p is a position for Player �. Player � can make one of the following actions at

node p: he can choose a subset from OM(p); he can choose a subset from

NM(p); �nally he can choose a subset from �. In the �rst case we say that

the move is oriented, in the second case nonoriented, and in the last case

apparent. We say that a nonoriented move S � NM(p) is closed if for all

x; y; b the conditions y 2 S; x 2 Suc(p), and T v j= Pb(x)&Pb(y) imply that

x 2 S. The notions of a move (oriented, non-oriented, apparent and closed)

allow us to consider three types of plays (oriented, non-oriented, and closed)

which begin at a node of T . Thus, let p 2 T . A submodel P of T v is an

oriented play from p if P satis�es the following conditions:

1. p is the minimal element of P .

2. P is closed with respect to predecessors of P n fpg:

3. For any x 2 P there exists a y 2 P such that y 2 Suc(x).

The reduction of any oriented play P to the language (�) is a non-oriented

play. A non-oriented play P is closed if for all x; y; z; b the conditions

x; z 2 P , y; z 2 Suc(x), and T v j= Pb(y)
V
Pb(z) imply that y 2 P .

Example. Let � be a labelled path. Then for any i 2 Z, the sequences

�(i); �(i+1); : : : and l�(i); l�(i+1); : : : are oriented and non-oriented plays,

respectively.

Let � be a labelled path. The sequence �(i); �(i+1); : : : is the right ray

from l�(i), and the sequence : : : ; �(i� 2); �(i� 1); �(i) is a left ray from

l�(i). It is obvious that any p 2 T de�nes the unique left ray Rl(p). Let

Rr(p) be the set of all right rays from p. If W is a winning condition, then

let Wp = f(�(i); �(i+ 1); : : :)j� 2 W; l�(i) = pg.

The games we de�ne occur on arenas: A submodelA of T v is an oriented

arena if A is closed under predecessors, and for any x 2 A there exists y 2 A

such that y 2 Suc(x). We call the reduction of any oriented arena to the

language f�g a nonoriented arena. A non-oriented arena A is closed if

for all x; y; z; b the conditions x; z 2 A, y; z 2 Suc(x), and T v j= Pb(y)
V
Pb(z)
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imply that y 2 A. We would like to remark that the notions of play and

arena are based on di�erent intuitions. Plays correspond to an idea of a

sequence of moves of players. Arenas re
ect space and time where the plays

take place. However, technically according to the given de�nitions, every

play at p in T v can be regarded as arena in the corresponding subtree of T v

with the root p: Now we can give our de�nition for games.

De�nition 2.3 Let A be an oriented arena and W be a winning condtions

for 0. Then the triple G = (A;W; 0) is a game.

Now our next goal is to de�ne who wins the game G. We need to de�ne

the notion of strategy. A nondeterministic apparent strategy for � is a

function f : T� ! P (�) such that for any x 2 T� there exists y 2 Suc(x)

and b 2 f(x) for which T v j= Pb(y). A function t : T� ! P (T1��) is a

nondeterministic tactic for � if for any x 2 T� we have t(x) � NM(x). An

oriented strategy for � is a function h : T� ! P (T� � �) such that for any

x 2 T� the set h(x) is a subset of OM(x):

Example. Let f be an apparent strategy and let t be a tactic for �. Then

the following function (t; f) is an oriented strategy for �

(t; f)(x) = f(y; b)jy 2 t(x)&b 2 f(x)&T v j= Pb(y)g:

Proposition 2.3 For any oriented strategy h there exist an apparent strategy

f and a tactic t such that h = (t; f):

Proof. De�ne f and t by f(x) = r(h(x)) = fb j 9(y; b) 2 h(x)g and

t(x) = l(h(x)) = fy j 9(y; b) 2 h(x)g: From the de�nition of (t; f) it follows

easily that h(x) � (t; f)(x): To see that (t; f)(x) � h(x) consider (y; b) from

(t; f)(x): We must have for some y0 2 Suc(x), (y0; b) 2 h(x); and for some

b0 2 � we have (y; b0) 2 h(x), Pb(y) by the de�nitions of f; t; (f; t) respectively.

Since Pb0(y), it follows b
0 = b. Thus (y; b) 2 h(x): Hence (t; f)(x) � h(x): We

conclude h(x) = (t; f)(x). 2

Let t be a tactic and f be an apparent strategy for a player � over T v.

For this player we de�ne an apparent strategy apt:

apt(x) = fa j 9y(y 2 t(x) ^ Pa(y))g
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and a tactic tf :

taf (x) = fy j 9a(a 2 f(x) ^ Pa(y))g:

Proposition 2.4 Let t be a tactic and f be an apparent strategy for �: Then

t � ta(ap
t) and f = ap(ta

f ). Moreover, t = ta(ap
t) if each non-oriented move

of � according to t is closed.

Proof. The move ta(ap
t)(x) is a collection of all successors of x covered

by labels which already cover the members of t(x): The move ap(ta
f )(x) is a

collection of labels which cover the members of the move (taf )(x). But the

latter members are all the successors of x covered by labels from f(x). 2

Now we investigate duality between arenas and pairs of opposing strate-

gies. Let A be an arena in a valuated tree T v. We de�ne an oriented

strategy f 0

A
for player 0 and an oriented strategy g1

A
for player 1 over T v.

Put A0 = A \ T0 and A1 = A \ T1. De�ne

f 0

A(x) = ; if x 2 T0 nA; and f
0

A(x) = f(y; b) j y 2 Suc(x)^Pb(y)g if x 2 A0:

g1A(x) = ; if x 2 T1 nA; and g
1

A(x) = f(y; b) j y 2 Suc(x)^Pb(y)g if x 2 A1:

Let f; g be oriented strategies for players 0; 1, respectively, in a valuated

tree T v. Let p 2 T� for any �xed player � 2 f0; 1g: We construct a maximal

subset A(p; f; g) of T which includes p and no points to the left of p and

which is generated by the strategies. Informally A(p; f; g) contains all plays

if the players follows the strategies f and g.

Stage 0. Put A0 = fpg

Stage 2k + 1. Suppose A2k has been de�ned. Let A2k+1 to beS
x2A2k\T�

lf(x) if � = 0; Put A2k+1 =
S
x2A2k\T�

lg(x) if � = 1.

Stage 2k + 2. Suppose A2k has been de�ned. De�ne A2k+2 similar as in

the previous stage replacing � with 1� � and g with f .

Finally, de�ne A(p; f; g) =
S
i2!Ai:

Given two opposing strategies as in the above, for any left ray � we

consider the set of all nodes p on it for which the set A(p; f; g) is a non-

oriented play. Let us call this set S�: De�ne

A(�; f; g) =

(
; if S� = ;,

l�
S
p2S� A(p; f; g) otherwise
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The proof of the lemma below follows from the de�nitions above.

Lemma 2.1 The submodel A(�; f; g) of the model T v is an oriented arena.

Moreover, for any x 2 A(�; f; g) the following properties hold: If x 2 l�,

then f 0

A(�;f;g)
(x) = f(x)[(Suc(x)\�) and g1

A(�;f;g)
(x) = g(x)[(Suc(x)\�).

If x 62 l�, then f 0

A(�;f;g)
(x) = f(x) and g1

A(�;f;g)
(x) = g(x). 2

De�nition 2.4 Let f; g be strategies for Players 0; 1 on T v and let �p be the

left ray determined by a p on T v: Then The left ray �p is consistent with

the pair of strategies if for every node x < p on �,

x 2 T0 ! Suc(x) \ � � f(x)

and

x 2 T1 ! Suc(x) \ � � g(x):

A right ray � 2 Rr(p) is consistent with the pair of strategies if � �

A(p; f; g): A labelled path � on T v is consistent with the pair of opposing

strategies if there is a node p 2 l� such that �p and the right ray determined

by the path and p are both consistent with the pair of strategies.

Theorem 2.1 (Duality of arenas and pairs of opposing strategies)

1. Let f0; f1 be opposing oriented strategies on T v for Players 0; 1 respec-

tively. Let � be a left ray on T v: Then for any � 2 f0; 1g and any

x 2 A(�; f; g) \ T�
f�(x) = f �A(�;f;g)

(x)

if and only if � = S� and � is consistent with f0; f1:

2. Let A be an arena in T v: For any left ray � in T v

A = A(�; f 0

A; f
1

A)

if and only if � � A:

Proof 1. Suppose � is consistent with f0; f1: The preceding lemma and

the de�nition of consistency of � imply that f�(x) = f �
A(�;f;g)

(x):

Conversely, suppose that the above equality holds for every point from

A(�; f; g) for appropriate �. Using the equality for the nodes on alpha, we

get that � is consistent with f0; f1:
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(ii) If A = A(�; f 0

A
; f 0

A
); then since � is a subset of A(�; f 0

A
; f 1

A
), by the

de�nition of this set, � is a subset of A:

Suppose now that � � A: It is clear that A(�; f 0

A
; f 1

A
) � A: Consider

any x 2 A: Pick some point p on �: By the de�nition of our trees T v there is

a point q 2 T such that q � x; q � p: It follows that q 2 �: It follows further

that x 2 A(q; f 0

A
; f 1

A
); but the latter set lies in A(�; f 0

A
; f 0

A
): So does x:

Hence the desired equality follows. 2

De�nition 2.5 Let G = (A;W; 0) be a game.

1. The player 0 wins the game G if there exits an oriented strategy f for

0 and a left ray � such that for every oriented strategy g for 1 and for any

node p 2 l�, in every play from p all right rays from p de�ned by f and g

belong to the Wp.

2. Player 0 strongly wins the game G if there exits an apparent strategy

f for 0 and a left ray � such that for every oriented strategy g for 1 and for

any element p 2 l�, in every play from p all right rays from p de�ned by f

and g belong to Wp.

Note that the de�nition of a winner is not symmetric with respect to the

players. Indeed, Player 1 wins the game G if there exits an oriented strategy

g for 1 such that for any left ray � and for every oriented strategy f for 0

there exists p 2 � such that every play de�ned by g and f from the node p

has no right ray from p which belongs to Wp.

Proposition 2.5 1. If the player � strongly wins a game G; then this

player wins G. Moreover, an apparant strategy f for player � wins a

game G if and anly if h = (f; taf ) is a winning oriented strategy .

2. There exists a game G such that Player 0 wins G but does not wins G

strongly.

3. Let T v be a model such that

T v j= 8xy1y2(y1; y2 2 Suc(x)&(Pb(y1)&Pb(y2)! y1 = y2)

Then 0 wins a game on T v G if and only if 0 strongly wins G.
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Proof. Part 1 follows from the de�nition. Let T = fa; bg? and let � = f�g.

Let f 2 W , if and only if,

f(i) =

8><
>:
; if i � 0;

(b; �) if i = 1,

(�; �) if i > 1, where � 2 fa; bg

Suppose that ; 2 T0. Consider game G = (T;W; 0). From the de�nition

of G it follows that the player 0 has an oriented winning strategy. But this

player does not possess an apparent winning strategy. To prove 3 note that

for every oriented strategy h in this case

h = (ap(h); taap(h)):

Thus by 1) an oriented strategy wins the game for a player i� so does an

apparent strategy for the player. 2

3 Gurevich-Harrington's Rank

Let � 2 f0; 1g. We �x a subset C of T . De�ne a sequence C0(�); C1(�); : : :

of subsets of T by induction. Let C0(�) = C. Suppose that Cn(�) has been

de�ned. Then x 2 Cn+1 if and only if the following conditions hold:

1. x 62 Cn(�).

2. If x 2 T��1, then for any y 2 Suc(x), we have y 2 Cn(�).

3. If x 2 T�, there exists a y 2 Suc(x) such that y 2 Cn(�).

Thus, Ci(�)
T
Cj(�) = ; for all i 6= j. De�ne C(�) =

S
iCi(�) and C1(�) =

C(�) n C. De�ne the function rank(�; C):

rank(�; C)(x) =

(
undefined if x 62 C(�)

i if x 2 Ci(�)

Let x 2 T , and let C � T . Consider a submodel of T v with domain

fy 2 T j y > xg. We call this submodel a residual model at x and denote

it by (T v)x or Res(x). Let T 0

v = (T v; C) be an expansion of T v by a unary

predicate symbol interpreted as C. Consider the submodel (Res(x); C). De-

�ne an equivalence relation E on T by

(x; y) 2 E $ (Res(x); C) �= (Res(y); C)

12



De�nition 3.1 1. An oriented strategy h respects an equivalence re-

lation � on T if for all (x; y) 2 � and a 2 � the cardinalities of the sets

ha(x) = fz j (z; a) 2 h(x)g and ha(y) = fz0 j (z0; a) 2 h(y)g are equal.

2. An apparent strategy f respects an equivalence relation � on T if for

all (x; y) 2 �, f(x) = f(y).

Theorem 3.1 Let C � T and let W = f�j9i(l�(i) 2 C)g. Consider a game

G(C) = (T v;W; 0). In this game one of the players has a winning oriented

strategy which respects the equivalence relation E.

Proof. Consider the set C(0). We have two cases.

Case 1. There exists a left ray � such that l� � C(0). In this case de�ne

the follwing oriented strategy called decrease rank:

If x 62 C(0) or x 2 C, then decr0C(x) = f(y; b)jy 2 Suc(x)
V
Pb(y)g.

Suppose that x 2 Ci for some i > 0. Then

decr0C(x) = f(y; b)jy 2 Suc(x)
^
Pb(y)

^
y 2 Ci�1(0)g

By the de�nitions of the equivalence relation E and the strategy decr0C , we

obtain that f respects E. Since l� � C(0), the strategy f is winning for the

player 0.

Case 2. Suppose that the previous case does not hold. De�ne the follow-

ing oriented strategy for the player 1 called avoid1C .

If x 2 C(0), then avoid1C(x) = f(y; b)jy 2 Suc(x)
V
Pb(y)g.

Suppose that x 62 C(0). Then

avoid1C(x) = f(y; b)jy 2 Suc(x)
^
Pb(y)

^
y 62 C(0)g

By the de�nitions of avoid1C and E, we obtain that g respects E. Since for

any left ray � there exists i 2 Z such that l�(i) 62 C(0), we get that avoidC
is a winning oriented strategy for the player 1. 2

This theorem suggests the following two questions:

1. Is it possible to weaken the de�nition of E to obtain similar theorem?

2. When one of the players strongly wins the game G(C)?

13



Our next results answers these questions. On the set T de�ne an equiv-

alence E 0: (x; y) 2 E 0 if and only if the models (Res(x); C; C(0); C(1)) and

(Res(y); C; C(0); C(1)) are elementary equivalent in the language expanded

by C(0); C(1), and C in the respective resudual models.

Corollary 3.1 Let T be a tree, C � T , and let W = f�j9i(l�(i) 2 C)g.

Consider a game G(C) = (T v;W; 0). In this game one of the players has a

winning oriented strategy which respects the equivalence relation E 0.

Proof. Note that the sets Ci(0), i 2 !, are de�nable in the language (�

; T0; T1; C; Pa; a 2 �). Indeed, x 2 C0(0) , C(x): Suppose that Cn(0) has

been de�ned, then Cn+1 is de�ned by

x 2 Cn+1(0), :Cn(x) ^ (T0(x)) 9y(Suc(x; y) ^ Cn(y))) ^ (T1(x))

8y(Suc(x; y)) Cn(y)))

Case 1. There exists a left ray � such that l� � C(0). In this case

consider the oriented strategy decr0C de�ned in the previous theorem. We

need to show only that decr0C respects E 0. Suppose xE 0y. It follows that

models (Res(x); C; C(0); C(1)) and (Res(y); C; C(0); C(1)) are elementary

equivalent. We have to show that for every a 2 �, Card(decr0C;a(x)) =

Card(decr0C;a(y)), where decr
0
C;a(x) = f(z; a)j(z; a) 2 decr0C(x)g.

Assume �rst that decr0C;a(x) is �nite. Assume that x 2 C1(0). This

implies that for some i > 0, x 2 Ci(0). Because Ci�1(0) is de�nable in the

language of the model, it easily follows that y 2 Ci(0). It is easy to see

that Card(decr0C;a(x)) = Card(Suc(x) \ Ci�1(0)) \ Pa. Since the latter set

is �nite, let n be a number of elements in it. Using the fact that this set has

exactly n elements is expressible as a �rst order sentence in the language of

the model (Res(x); C; C(0); C(1)), we obtain that the same sentence holds

in the model (Res(y); C; C(0); C(1)).

Assume now that decr0C;a(x) is in�nite. Then for every n > 0 there is

a sentence in the language of (Res(x); C; C(0); C(1)) saying that decr0C;a(x)

has more than n elements. Such a sentence holds in this model. Because of

elementary equivalence it holds in (Res(y); C; C(0); C(1)), where it says that

decr0C;a(y) has more than n elements. It follows that Card(decr0C;a(x)) =

Card(decr0C;a(y)).

Similar proof can be given for the case x 62 C(0).

Case 2. For each left ray �, the set l� is not a subset of C(0). In this

case the strategy avoid1C wins the game as shown in the preceding theorem.

14



The strategy avoid1C respects the equivalence E 0 by a similar reasoning to

the previous case. The corollary is proved.

De�nition 3.2 Let C � T . The set C is invariant if for any x 2 T the

model (Res(x); C) has the following property:

Let x1; x2 2 T , x1; x2 2 Suc(x) and let b 2 � be such that T v j=
V
i Pb(xi).

Then there exists an automorphism � of (Res(x); C) such that �(x1) = x2

Theorem 3.2 Let C � T be an invariant set. Let W = f�j9i(l�(i) 2 C)g.

Consider the game G(C) = (T v;W; 0). In this game one of the players has

a winning apparent strategy which respects the equivalence relation E.

Proof. We have two cases.

Case 1. There exists a left ray � such that l� � C(0). In this case de�ne

the following apparent strategy f :

If x 62 C(0) or x 2 C, then f(x) = fbj9y(y 2 Suc(x)
V
Pb(y))g.

Suppose that x 2 Ci for some i > 0. Then

f(x) = fbj9y(y 2 Suc(x)
^
Pb(y)

^
y 2 Ci�1(0))g

Since C is invariant it can be easily concluded that every move according

to f is closed. It follows decr0C = (f; taf ). Hence f wins the game for

this case. The strategy decr0C respects E by one of the preceding theorems.

This implies that so does f . Indeed, suppose xEy. Then for every a 2 �,

card(decr0C;a(x)) = card(decr0C;a(y)): It follows that a 2 f(x) if and only if

a 2 f(y) for every a 2 �. Thus f(x) = f(y).

Case 2. Suppose that the previous case does not hold. De�ne the following

apparent strategy g for the player 1.

If x 2 C(0), then g(x) = fbj9y(y 2 Suc(x)
V
Pb(y))g.

Suppose that x 62 C(0). Then

g(x) = fbj9y(y 2 Suc(x)
^
Pb(y)

^
y 62 C(0))g

Again, we get that g is a winning apparent strategy for the player 1

which respects E. The proof is similar to the case 1 and is by reduction to

the oriented winning strategy avoidC for the player 1. In particular, every

move according to g is closed. These considerations prove the theorem.
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4 Congruence Relations Over Game Trees

Let G = (A;W; 0) be a game, and let x 2 A. We de�ne a model Gx as

follows: the domain Ax of Gx is fyjx < y 2 Ag; predicates Pa; �, T0; T1
are the restrictions of corresponding predicates in T v; Let � 2 W . Then we

de�ne a unary predicate which we also denote by � as Ax

T
l�.

De�nition 4.1 An equivalence relation � is a congruence if the following

two properties hold:

1. If (x; y) 2 �, then models Gx and Gy are isomorphic.

2. If (x; y) 2 �, x � z, then for any isomorphism � : Gx ! Gy the pair

(z; �(z)) belongs to �.

For example, it is not hard to see that the equivalence E de�ned in the

previous section for the game G(C) is a congruence.

Lemma 4.1 Let � be a congruence of the game G = (A;W; 0). Then for

any x 2 A the set

f(y; p)j there exists an automorphism � of Gx such that �(z) = pg

is a subset of �.

Proof. Indeed, sinse � is an equivalence (x; x) 2 �. Let � be an isomorphism

from Gx to Gx. By the de�inition if x � y, then we obtain that (y; �(y)) 2 �.

2

Proposition 4.1 Let G = (A;W; 0) be a game. Then the set of all congru-

ences Cong(G) of the game G is a lattice with 1.

Proof. Indeed, it is easy to see that Cong(G) is closed under intersection of

congruences. Note that 1 = f(x; y)jGx
�= Gyg. Hence if �1; �2 2 Cong(G),

then there exists supf�1; �2g. 2

Let H be an oriented starategy for player �. For any x we de�ne a set Hx

as the set of all z which are consistent with H after x.
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De�nition 4.2 The starategy H strictly respects the congruence � if for all

(x; y) 2 �, every isomorphism between the models Gx and Gy is an isomor-

phism between the models (Gx; Hx) and (Gy; Hy).

It foolows from the de�nition that if H strictly respects �, then by Lemma

4.1 above for any x the set Hx is invariant with respect to the automorphisms

group of Gx.

Theorem 4.1 Let G = (A;W; 0) be a game, and let � be a congruence.

1. If an oriented strategy H strictly respects �, then H respects �.

2. If an apparent strategy H strictly respects �, then H respects �.

3. Let C � A. Consider the game G(C) from the previous setion. Then

one of the players has a winning strategy in the game G(C) which

strictly respects the congruence E.

Proof. The proof of the theorem follows from the proof of the theorems

of the previous section and the de�nitions of apparent and oriented strategies

which respect equivelences. 2

Proposition 4.2 Let G be a game, and let � be a congruence. Consider a

game Gx(0) = (Ax;Wx; 0). Suppose that H and F be strategies for � and

1 � � in the game Gx(0), respectively, which strictly respect � on Ax. Let

(x; y) 2 � and let � : Gx ! Gy be an isomorphism. De�ne H� and F � by

H�(z) = �(H(��1(z)));

F �(z) = �(F (��1(z))):

Then:

1. The strategies H� and F � srictly respect � on Ay.

2. If H wins the game Gx(0) against F , then H� wins the game Gy(0)

against F �.

3. If H wins the game Gx(0); then H� wins the game Gy(0).
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Proof. 1. Let (z01; z
0

2) 2 � and z01; z
0

2 2 Ay. Then there exist z1; z2 2 Ax

such that �(z1) = z01 and �(z2) = z02. Since � is a congruence the models

Gz1 and Gz01
are isomorphic. The strategy H respects � on Ax. Hence the

models (Gz1 ; Hz1) and (Gz2 ; Hz2) are also isomorphic. By the de�ntion of

H�, it follows that the models (Gz01
; H

�

z0
1
) and (Gz02

; H
�

z0
2
) are also isiomorphic.

Using the previous part of the proposition and the de�ntions one can

easily obtain the proof of parts 2) and 3).2

Lemma 4.2 (Sewing Lemma) Let G = (A;W; 0) be a game, let � be a

congruence, and let H be a an oriented strategy for player 1� � which strictly

respects �. De�ne the set D:

D = fpj in the game Gp(0) player � has an oriented strategy F p which wins

Gp(0) against H and strictly respets � in Apg

Then there exists an oriented strategy F for player � in the game G such that

F strictly respects �, and for any p 2 D(�) the strategy F wins Gp(0) against

H.

Proof. We can suppose that the set D is well ordered. For each x 2 D we

de�ne F (x).

Case 1. x 62 D(�). In this case, F (x) = f(y; b)jy 2 Suc(x)&Pb(y)g.

Case 2. x 2 D(�) nD. Let x 2 Di(�). In this case,

F (x) = decrD(x) = f(y; b)jPb(y)&y 2 Suc(x)&y 2 Di�1(�)g

Case 3. x 2 D. De�ne the following two elements yx; zx as follows.

yx = �yfyjy 2 D and there exists z � y such that (z; x) 2 � and z is

consistent with F y and Hg

zx = �zfz 2 Djz � yx, (z; x) 2 �, and z is consistent with F yx and Hg

Let �x be an isomorphism from Gx to Gzx. Then

F (x) = ��1
x F yx(zx)

Note that if (x; p) 2 � and x 2 D, then yx = yp and zx = zp. Moreover, F (x)

does not depend on the choise of �x. Indeed, let � be another isomorphism,
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and let u 2 ��1
x F yx(zx). Then by lemma 3.1 (�x(u); �(u)) 2 �. Since F yx

strictly respects �, we obtain that �(u) 2 F yx(zx).

Now we prove that F strictly respects �.

Let (x; p) 2 �. Then the models Gx and Gp are isomrphic. Let � be any

isomorphism from Gx to Gp. By induction we prove that � is an isomorphism

between (Gx; Fx) and (Gp; Fp).

In the �rst inductive step we have nothing to prove, since x 2 Fx and

p 2 Fp and �(x) is not de�ned. Put Suc0(x) = fxg.

Suppose that

s 2 Sucn+1(x) =
[

r2Sucn(x)

Suc(r)

By inductive assumption we suppose that for each z 2 Sucn(x), �(z) 2 Fp if

and only if z 2 Fp.

Case 1. Suppose that s 2 T1��. Then t = �(s) 2 T1��. Hence, it is

obvious that �(Suc(s)) � Suc(t).

Case 2. Suppose that s 2 T� and s 62 D(�). Then we have �F (s) =

�Suc(s) = Suc(t).

Case 3. Suppose that s 2 T�
T
D. In this case

F (s) = ��1
s F ys(zs) and F (t) = ��1

t F ys(zs)

Let u 2 �F (s). Then by lemma 3.1 we obtain (�s�
�1u; �tu) 2 �. Since

�s�
�1u 2 F ys(zs), we obtain that �t(u) 2 F yx(zx). It follows that u 2 F (t).

Case 4. Let s 2 T� and t 2 D(�)nD. Then F (t) = Decr�D(t). Then by the

de�ntion of DecrD and the condition that � : Gt ! Gs is an isomorphism,

it follows that �Decr�D(t) = Decr�D(s).

Thus we have proved that F strictly respects �.

We need to show that for any p 2 D the strategy F wins Gp(0) against

H. Let (p; a)(p0; a0)(p1; a1) : : : be a path consistent with F and H. We have

the sequence yp; yp0; : : : corresponding to the path. We reindex this sequence

by y; y1; y2; : : :. Note that there exists i such that yi = yi+1 = yi+2 = : : :.

Since F yi strictly respects �, we obtain that the sequence

(pi; ai)(pi+1; ai+1) : : :

is consistent with ��1
pi
F yi�pi and H. It follows that the sequence

(pi; ai)(pi+1; ai+1) : : :
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belongs to Wpi. Hence (p; a)(p0; a0)(p1; a1) : : : 2 Wp. 2

Let A be an arena, and let C � A. We de�ne Cinf as the set of all lebelled

paths � such that card(l�
T
C) = !.

Theorem 4.2 Let C � A. Consider the game G = (A;Cinf ; 0). Let E be

the maximal congruence relation on G, namely

E = f(x; y)jGx
�= Gyg:

In this game one of the players has a winning oriented strategy which srictly

respects E.

Proof. De�ne the set D by

D = fp 2 Aj the player 1 has an oriented strategy winning the game Gp(0)

and srictly respecting Eg

We have two cases.

Case 1. Suppose that for any left ray � the set l�
T
D is not empty. Then

by the previous lemma there exists an oriented strategy H which respects

E and which wins the game Gp(0) for any p 2 D. Hence H is an oriented

strategy for player 1 which wins the game G and respects �.

Case 2. Suppose that there exists a left ray � such that D
T
l� = ;.

By the lemma above D = D(1). We seek a needed strategy for player 0

in the re�nemet of the strategy Avoid0D. First, note that A n D � C(0).

Indeed, otherwise applying the oriented strategy Avoid0C to an element p 2

(A nD) n C(0) we would obtain that p 2 D.

Let p 2 A nD. Then Derc0C(p)
T
C(0)

T
(A nD) 6= ;. Indeed, otherwise

we again could �nd an oriented starategy which would win the game Gp and

would strictly respect �.

De�ne the following strategy for player 0:

F (x) =

(
f(y; b)jy 2 Suc(x)&Pb(y)g if x 2 D;

Decr0C(x)
T
(A nD)

T
C(0) if x 2 A nD

The strategy F is a desired oriented strategy for player 0 which wins the

game and strictly respects �. 2
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5 Uniform Determinacy Theorem

Let A be an arena in T v, S be a �nite set of "colors", C = (Cs; s 2 S) be

a list of subsets of the arena colored by a corresponding color s. We permit

the members of C to have nonempty intersections. We de�ne the notions of

display and the latest appearance record as follows. We linearly order the

set of colors S. A display is a word over S which does not have the same

color repeated. Denote by Display(S) the set of all such words.

De�nition 5.1 For any two nodes x; y 2 A; x � y de�ne the latest appear-

ance record of colors (LAR) as follows. Let d 2 Display(S). We de�ne a

function LAR(x; d; y) by:

LAR(x; d; x) = Delete(d � l(x));

where � is a concatenation of words, and l(x) is a word whose letters are all of

the colors from fs 2 S j x 2 Csg written in their linear order in S, Delete is

an operation that deletes from two concatenated words the letters of the �rst

word that also appear in the second word. Suppose LAR(x; d; t) is de�ned,

then for every y 2 Suc(t)

LAR(x; d; y) = Delete(LAR(x; d; t) � l(y)):

We cover any arena by a disjoint collection of rooted trees called sectors

and de�ne a congruence over the arena by means of this cover as follows.

Fix a node p 2 A. Consider a left ray � � A which ends at p. For every

j 2 � de�ne the sectors Sectj as follows:

Sectj = fx 2 A j x � j ^ 8j 0 2 �(j < j 0 ! :(j 0 � x
_
x � j 0)g:

For every node p as above and any display d 2 Display(S), we de�ne a

congruence over the arena A as follows. First abbreviate ELAR as a binary

relation generated over the arena by the sectors and LAR:

ELAR1(x; y), 9j 2 �(x; y 2 Sectj&LAR(j; d; x) = LAR(j; d; y)):

We sometimes write ELAR1(x; y; d; p) to display the parameters d; p which

gave rise to ELAR1(x; y) at hand.
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The congruence is de�ned by

E
d;p
1 = f(x; y) j x; y 2 A&(A;C)x �= (A;C)y&ELAR1(x; y)g:

One can easily verify that the above binary relation is an equivalence. We

abbreviate by Bool(C) the collection of all sets of labelled paths from LbP (A)

which are boolean combinations of the sets ([Cs]; s 2 S).

Theorem 5.1 (Uniform Determinacy Theorem) Consider an arena A,

a �nite set of colors S, a list C of colored subsets of A, a set of paths W 2

Bool(C) and a game G = (A;W; 0): Fix a node p 2 A and a display d 2

Didsplay(S) and a congruence E
d;p
1 over the arena A. Then one of the

players � 2 f0; 1g wins the game G and has a winning strategy which strictly

respects E
d;p
1 :

Proof. We begin by considering the case of only one color: Card(S) = 1:

The list C denotes just one subset of the arena called C also. It follows that

either W = [C] or W = [C]c or W = ; or W = LbP (A). By the last theorem

from the previous section one of the players � 2 f0; 1g has a winning strategy

in the game G which respects the congruence

E = f(x; y) 2 A� A j (A;C)x �= (A;C)yg:

Since it is clear that E
d;p
1 � E; it follows that the winning strategy respects

E
d;p
1 : Hence the conclusion of the theorem follows for this case.

We show by induction on Card(S) that the theorem holds for every S

with Card(S) � 1: We may assume now that Card(S) � 2. Note that either\
s2S

[Cs] � W

or \
s2S

[Cs] � W c:

Assuming that the theorem holds for every S 0 with Card(S 0) < Card(S), we

prove the theorem for the case \
s2S

[Cs] � W:

The alternative case can be proved similarly. Recall that we abbreviate for

every q 2 A, Gq(0) = (Aq;Wq; 0): Consider the set of winning nodes for the

player 1 :
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D = fq 2 A j 9f 0 : T1 \ Aq ! T2 � �[(f 0 wins Gq(0)) ^ (f 0 strictly respects

E
d;p
1 over Aq)]g

Two cases arise with respect to the set D:

Case 1. For any left ray � such that l� � A, we have l� \ D 6= ;:

By sewing lemma consider a strategy H 0 : T1 ! T1 � � which wins all

games Gq(0) for the player 1, where q 2 D, and which strictly respects the

congruence E
d;p
1 : It follows that H 0 wins G for the player 1 in this case. Just

choose q 2 l� \D and note that H 0 wins Gq(0):

Case 2. Assume that there exists a left ray � such that l� \ D = ;:

We seek a winning ortiented strategy for the player 0 which is a re�nement

of the oriented strategy avoid0D. Therefore we suppose that D = ;. We

need to prove that for each k 2 l� the player 0 has a winning strategy in

the game Gk(0) = (Ak;Wk; 0) which respects the congruence E
d;p
1 . Then by

sewing lemma, the player 0 will have a winning strategy in the game G which

respects the congruence E
d;p
1 . Thereby the theorem will be proved.

For this purpose �x any k 2 l�. For every color s 2 S, putDs = AnCs(0).

We temporarily �x an s 2 S. Consider now an arbitrary q � k; q 2 Ds:

Consider a game Gq = (Ds
q;W

s; 0), with Ds
q = Ak \ Ds, and the set W s

de�ned as follows. Consider the set W presented as a union of intersection

of the sets [Ct]; t 2 S and their complements. Consider such an intersection.

If it refers to the set [Cs], omit the entire intersection from W . Furthermore,

if an intersection refers to [Cs]
c, omit this complement from the intersection,

but do not omit the intersection unless it refers to [Cs]. This is the set W
s

referred to in the game above. This winning set is based on the set of colors

S = S n fsg of strictly lesser cardinality than that of the set S.

It easy to check that W \ Path(Ds) = W s \ Path(Ds).

We wish to use the inductive assumtion in order to show that the player

0 wins the game Gq with a strategy respecting E
d;p
1 . To this end we de�ne

a congruence E
d0;p0

1 over Ds
q. Let p(k) = maxfj 2 l� j j � kg. We consider

two cases to de�ne the congruence. We will abbreviate the list of sets C with

color s omitted by (C; s).

Case A. Suppose k is not in �, which is equivalent to k 6= p(k). Then

E
d0;p0

1 = f(x; y) 2 Ds
q �Ds

q j q � x; y^
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x; y 2 Sectk(p) ^ (Ds
q; (C; s))x

�= (Ds
q; (C; s))y

^LAR(q; d0; x) = LAR(q; d0; y)g

with d0 = LAR(p(k); d; q) = LAR(k; LAR(p(k); d; k); q) and p0 = q.

Case B. Assume that k 2 � which is equivalent to k = p(k). We have

two sucases.

Subcase B1. Assume that k � q � p. In this case de�ne

E
d0;p0

1 = f(x; y) 2 Ds
q �Ds

q j q � x; y^

9jx; y 2 Sectj ^ (Ds
q; (C; s))x

�= (Ds
q; (C; s))y

^LAR(j; d0; x) = LAR(j; d0; y)g

with d0 = d and p0 = p.

Subcase B2. Assume that q is not in the linear segment [k; p] of �. In this

case E
d0;p0

1 is de�ned as in Case A.

We check that E
d0;p0

1 � E
d;p
1 \ Ds

q � Ds
q. Let (x; y) 2 E

d;p
1 ; x; y � q. It

follows that if x 2 Ds, then y 2 Ds. There is an isomorphism � : (A;C)x !

(A;C)y. Since � is an isomorphism and the sets Cs
i (0), i 2 !, are de�nable

in the language of (A;C), we get that

�(Ax \ Cs(0)) = Ay \ Cs(0):

Hence the restriction of � on the set Ax n Cs(0) is an isomorphism from

(Ds
q; (C; s))x into (D

s
q; (C; s))y. We now have to show that ELAR1(x; y; d

0; p0)

holds in the game Gq.

Cases A or B2. According to the cases listed above we assume that

k 6= p(k) or k 2 � and q is not in the segment [p(k); p] � �.

We note that ELAR1(x; y; d; p) holds in the game G. It follows that

LAR(p(k); d; x) = LAR(p(k); d; y);

and

LAR(p; d; x) = LAR(q; LAR(p(k); d; q); x) = LAR(p(k); d; y):

Therefore

LAR(q; d0; x) = LAR(q; d0; y):
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Case B1. For this case k � q � p holds. From the de�nition of E
d0;p0

1 , we

get that ELAR1(x; y; d
0; p0) holds.

By induction one of the players has a winning strategy f�;q which strictly

respects the congruence E
d0;p0

1 (Gq). We will show that � = 0. To see this,

suppose that � = 1 instead. We get a contradiction by constructing a winning

strategy for the player 1 in the game Gq(0) = (Aq;Wq; 0) which strictly

respects E
d;p
1 . Put

Fq(x) =

8><
>:

f�;q(x) if x 2 Ds
q,

; if x 2 T0;

Suc(x) if x � q and x 62 Ds
q

Since q 2 Ds
q, the set PFq;q of all elements consistent with Fq from q is

a subset of Ds
q. It follows that this set is also consistent with f�;q. Thus

PFq;q = Pf�;q and

Path(PFq;q) � W s
q � Wq:

Therefore Fq wins the game Gq(0). For a contradiction we have to show that

Fq strictly respects E
d;p
1 .

Let x; y � q and (x; y) 2 Ed;p. We have to consider only two cases.

Case 1. Suppose that x 2 Ds
q. In this case y 2 Ds

q too. As we have shown

(x; y) 2 E
d0;p0

1 (Gq). Thus for any isomorphism � : (A;C)x ! (A;C)y using

the fact that f�;q strictly respects the congruence E
d0;p0

1 (Gq), we get

�(PFq;x) = �(Pf�;q ;x) = Pf�;q ;y = PFq;y:

Case 2. Suppose x is not in Ds
q. Then y is not in Ds

q. Hence using

the Case 1 and that Fq(x) = Suc(x) we get similarly to the the Case 1 that

�(PFq;x) = PFq;y.

We have thus demonstrated that q 2 D, however D was assumed empty

or in other words we have picked q outside of D. This forces us to discard

the assumption � = 1 and conclude that f�;q is a strategy for player � = 0.

Furthermore, the strategy Fq de�ned above wins the game Gq(0) for the

player 0 and strictly respects E
d;p
1 . By the sewing lemma an oriented strategy

Hs exists which strictly respects E
d;p
1 and wins Gq(0) for all q 2 Ds.
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We now de�ne a strategy Fk that would win the game Gk(0) and would

respect E
d;p
1 as follows:

Fk(x) =

8><
>:

Suc(x) if x 2 D;

Hs�(x)(x) if x 2 Ds�(x);

decrCs�(x)(0)(x) \ avoid0D if x 2 Cs�(x)(0);

where

s � (x) = Head(LAR(p; d; x));

if the length of the list LAR(p; d; x) is equal to the number n of sets in the

list C with Head denoting the function of taking the leftmost item from a

list of items, and

s � (x) = minfs 2 S j s does not occur in LAR(p; d; x)g;

if the length of the list LAR(p; d; x) is strictly less than n.

Now we prove that Fk wins the game Gk(0) = (Ak;Wk; 0). Let � =

z0; z1; ::: be a path consistent with Fk with z0 = k:

If for each s 2 S the set � \ Cs is in�nite, then � 2 Wk since the latter

set contains \f[Cs]; s 2 Sg.

Suppose now the opposite, i.e. that for some s 2 S, � does not meet Cs

after some t 2 �: Let S� � S be the set of all such s. By the de�nition of

s � (x), it follows that for some z 2 �, we have

z � t8x 2 �(x � z ) s � (x) = s

for some �xed s 2 S�. It follows that for every x � z; x 2 � x is not in Cs,

otherwise Fk(x) = decrCs(0)(x) and the path � will meet Cs contradicting

the property s 2 S�.

Since k is not in D, it follows that � \ D = ; and �z � Ds. Thus � is

consistent with Hs after z. Therefore � 2 Wz: It follows immediately that

Fk wins Gk(0). We have shown that Fk wins the game Gk(0).

We now check that Fk strictly respects E
d;p
1 . Since Suc(x) strictly respects

any congruence, Hs strictly respects E
d;p
1 after k, avoid0D strictly respects E

d;p
1

over the arena A, and decrCs�(x)(0)(x) strictly respects E
d;p
1 over A, one can

get that Fk strictly respects E
d;p
1 . This completes the proof of the theorem.

2

The following corollary follows from the statement of the theorem above

and the the de�nition of invariant subsets.
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Corollary 5.1 Let A be an arena. Suppose that the sets C from the premise

of the preceding theorem are invariant. Then one of the players has a winning

apparent strategy which strictly respects Ed;p in the game (A,W,0), where W

is as in the theorem. 2

For every node p and any display d 2 Display(S), we de�ne a new con-

gruence E over the arena A as follows. First abbreviate ELAR a binary

relation generated over arena A by:

ELAR(x; y), ELAR1(x; y)
W
9jj 0(x 2 Sectj&y 2 Sectj0&j 6= j 0 !

LAR(j; d; x) = LAR(j 0d; y)):

We sometimes write ELAR(x; y; d; p) to display the parameters d; p which

gave rise to ELAR(x; y) at hand. De�ne a congruence by

Ed;p = f(x; y) j x; y 2 A ^ (A;C)x �= (A;C)y ^ ELAR(x; y)g:

One can repeat the proof of the uniform determinacy theorem and obtain

the next result:

Corollary 5.2 Consider an arena A, a �nite set of colors S, a list C of

colored subsets of A, a set of paths W 2 Bool(C) and a game G = (A;W; 0):

Fix a node p 2 A and a display d 2 Didsplay(S) and a congruence Ed;p over

the arena A. Then one of the players � 2 f0; 1g wins the game G and has a

winning strategy which strictly respects Ed;p. 2

The theorem and corolaries above give us more elegant discribtion of

winning strategies in terms of isomorphism types.

De�nition 5.2 Let G = (A;W; 0) be a game, where W 2 Bool(C). For

every x 2 A consider a model (Ax; C). The isomorphism type of the

node x is the class of all models isomorphic to (Ax; C). The set of all

isomorphism types of the nodes from A we denote by IT (A).

Now we can formulate the following theorem which is a reformulation of the

UDT and its corollaries.

Theorem 5.2 1. Let G = (A;W; 0) be a game, where W 2 Bool(C).

In this game one of the players has a winning strategy which can be

regarded as a function from IT (A)�Display(S) to IT (A)� �.
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2. Let G = (A;W; 0) be a game, where W 2 Bool(C), and let C be a

collection of invariant subsets of A. In this game one of the players has

a winning strategy which can be regarded as a function from IT (A) �

Display(S) to �. 2
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