
CDMTCS

Research

Report

Series

Representing

Variable-Length Codes in

Fixed-Length T-Depletion

Format in Encoders and

Decoders

Ulrich G�unther,

Peter Hertling,

Radu Nicolescu and

Mark Titchener

Department of Computer Science

University of Auckland

Auckland, New Zealand

CDMTCS-044

August 1997

Centre for Discrete Mathematics and

Theoretical Computer Science

Representing Variable-Length Codes in Fixed-Length

T-Depletion Format in Encoders and Decoders�

Ulrich G�unther Peter Hertling Radu Nicolescu Mark Titchener

June 24, 1997

Abstract

T-Codes are a class of variable-length codes. Their self-synchronisation properties are
useful in compression and communication applications where error recovery rather than er-

ror correction is at issue, for example, in digital telephony. T-Codes may be used without

error correction or additional synchronisation mechanisms. Typically, the representation of
variable-length codes is a problem in computers based on a �xed-length word architecture.

This presents a problem in encoder and decoder applications. The present paper intro-

duces a �xed-length format for storing and handling variable-length T-Code codewords, the
T-depletion codewords, which are derived from the recursive construction of the T-Code code-

words. The paper further proposes an algorithm for the conversion of T-Code codewords into

T-depletion codewords that may be used as a decoder for generalized T-Codes. As well as
representing all codewords of a T-Code set (the leaf nodes in the set's decoding tree), the

T-depletion code format also permits the representation of \pseudo-T codewords" | strings

that are not in the T-Code set. These strings are shown to correspond uniquely to all proper
pre�xes of T-Code codewords, thus permitting the representation of both intermediate and

�nal decoder states in a single format. We show that this property may be used to store

arbitrary �nite and pre�x-free variable-length codes in a compact �xed-length format.

1 Introduction

Variable-length codes are often used in data compression applications (to save storage space) or

data communication applications (to reduce bandwidth requirements). One of the best known

�The authors' research is supported by the Department of Computer Science, the Division of Science and

Technology (Tamaki Campus), and the Graduate Research Fund, all of The University of Auckland, the Centre

for Discrete Mathematics and Theoretical Computer Science (CDMTCS) of the University of Auckland and the

University of Waikato, and by the Deutsche Forschungsgemeinschaft (DFG).

1

variable-length code constructions was introduced by Hu�man [12] in 1952. Other variable-length

coding schemes, including alphabetic encodings, are surveyed elsewhere [6, 4]. The T-Codes

discussed in this paper represent a subset of Hu�man codes distinguished by their recursive

construction.

When selecting a particular variable-length coding scheme for an application, the choice often

represents a compromise between the following criteria:

� coding e�ciency : encoding a message from a source with known statistics, using as few

channel alphabet symbols as possible.

� complexity: implementation \cost" of the encoder and decoder.

� robustness: decodability of at least some of the encoded data in the face of errors.

This paper investigates a case where some emphasis is placed on the last two criteria | en-

coder/decoder cost and code robustness.

By their nature, variable-length codes are generally cumbersome to handle in computers with

a �xed-length word architecture. For this reason, we require �xed-length representations for

variable-length codes and conversions between variable-length code and �xed-length code formats.

For the purposes of this paper, we regard an encoder as an algorithm or device that will con-

vert source data from a �xed-length input format into a unique variable-length output format.

Similarly, we regard a decoder as an algorithm or device that performs the inverse operation,

i.e., convert variable-length input data uniquely into a �xed-length output. In particular, we

consider the case where a sequence of �xed-length inputs is encoded into a series of concatenated

variable-length outputs, yielding a continuous symbol stream that is decoded and reconverted into

a sequence of �xed-length outputs.

One way of storing variable-length codewords in a �xed-length format is to store both the code-

word string and its length, where the length of the �eld used to store the codeword string is

often determined by the length of the longest codeword in the set. An example will be given in

Section 2.4, where we show that this representation is not very space-e�cient compared to the

representation proposed in this paper.

In decoders, such as the universal decoder for variable-length codes proposed by Tanaka [16] or

Chung [1], an enumeration of the codewords can bypass the need to handle codewords in their

literal form. However, if the codeset used is not �xed, it may need to be communicated to

the decoder. In this case, a general variable-length code such as a Hu�man code still requires a

format similar to the one above to communicate the codewords and their \translations". Canonical

Hu�man codes such as treated by Hirschberg and Lelewer [11] simplify the decoder considerably

by establishing a convention that permits the derivation of the decoding tree from the code's

codelength distribution. However, (canonical) Hu�man codes as such are not neccessarily robust,

in particular with respect to synchronisation.

Synchronisation is required whenever a decoder for variable-length codes decodes a wrong variable-

length codeword after an error in the received symbol stream, e.g., due to noise on a communication

channel. The synchronisation properties of variable-length codes have therefore been of some

interest [5, 3, 20, 13, 15].

The variable-length codes discussed in this paper are T-Codes [17], which speci�cally derive robust

2

self-synchronisation from a recursive construction algorithm [19, 18, 8, 7].

In this paper, we propose an encoding and decoding scheme for T-Codes based on a compact

�xed-length representation of the variable-length T-Code codewords, the T-depletion codewords.

The predecessor to the T-depletion codes introduced in this paper, the binary depletion codes,

were initially proposed by Titchener [17]. Zolghadr, Honary, and Darnell used binary T-depletion

codes to implement a real-time channel evaluation system [2]. With the generalization of the

initial T-Code construction [18], it is now necessary to extend the notion of these depletion codes.

The present paper thus develops a general formal de�nition for T-depletion codes that permits

the representation of generalized T-Codes based on binary and non-binary alphabets.

In the following, we provide a brief introduction to T-Codes and their construction algorithm.

Section 2 shows that T-Code codewords have a unique recursive structure. This structure permits

us to associate a unique �xed-length codeword, the so-called T-depletion codeword with each T-

Code codeword. We propose conversion algorithms between T-Code codewords and T-depletion

codewords that may be used as encoders and decoders for T-Codes. The question of storage

cost for T-depletion codes is shown to compare favourably with that of conventional storage

schemes. Section 3 shows that the T-depletion codeword format also permits the unambiguous

storage of all incomplete T-Code codewords (i.e., of pre�xes of codewords which may be regarded

as intermediate decoder states). The representations of complete and incomplete codewords are

shown to complement each other. Finally, in Section 4, we use this property to show that any

pre�x-free variable-length code can be represented in a �xed-length T-depletion code format.

1.1 Generalized T-augmentation and T-Code Sets

In 1985, Titchener introduced [17] and subsequently extended [18] a recursive construction for

variable-length codes that exhibit improved self-synchronisation properties. This construction is

referred to as T-augmentation, and the resulting code sets are referred to as the T-Codes. The

de�nition of the generalized T-Code sets is presented in [18]. A practical introduction is provided

in [7].

One might view T-augmentation as a construction which is similar to that of \escape sequences",

i.e., the use of a character (an escape character) to extend the range of character commands or

codes. The escape character is `pre�xed' to other characters. In this analogy, we shall allow that

the escape character may be pre�xed to itself to derive a further command, but is otherwise not

a command in its own right.

The basic notation used in the formalisation of this concept is the following: S denotes a �-

nite alphabet and #S its cardinality. Without loss of generality, we shall presume that S =

f0; 1; : : : ;#S � 1g, i.e., that the set may be ordered and enumerated and that the symbols in

S may be represented by their enumeration index k00, where 0 � k00 � k0 with k0 de�ned as

k0 = #S � 1. Further, let S? be the set of all �nite strings formed by concatenating the symbols

in S. The empty string is denoted by �, and we de�ne S+ = S?nf�g. For strings x; y 2 S?, xy

denotes their concatenation, and for some non-negative integer n, xn denotes the concatenation

of n copies of x, where x0 = �.

We are now ready to formally de�ne T-augmentation:

3

De�nition 1.1 (T-augmentation) Consider a set X � S+ , a string p 2 X, and a positive

integer k. The set Y is said to have been obtained by T-augmentation of X with p and k if

Y =

k[
i=0

fpisjs 2 Xnfpgg [fpk+1g (1)

The string p is called the T-pre�x, and the integer k is called the T-expansion parameter or

T-expansion factor.

Within the above constraints, the T-expansion parameter k and the T-pre�x p may be freely

chosen. In the above analogy, p corresponds to the \escape character" and k is the maximum

number of \multiple escapes" permitted.

In a more compact notation, Y may also be written as Y = [X]
(k)

(p)
.

De�nition 1.2 (T-Code Sets) Consider a series of n � 0 successive T-augmentations of S

using (for n > 0) the T-pre�xes p1; p2; : : : ; pn, and T-expansion parameters k1; k2; : : : ; kn respec-

tively. The resulting set, denoted S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, is referred to as a T-Code set at T-augmenta-

tion level n.

The T-Code sets S
(k1;k2;:::;kn0)

(p1;p2;:::;pn0)
where 0 � n0 � n are referred to as the intermediate (T-Code)

sets (of S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
). The vectors (p1; p2; : : : ; pn) and (k1; k2; : : : ; kn) are referred to as the T-

pre�x vector and T-expansion vector respectively. We also de�ne S to be a T-Code set at

T-augmentation level 0.

Example 1.3 (Construction of a T-Code set at T-augmentation level 3) Table 1 shows

the construction and the intermediate T-Code sets for the binary (S = f0; 1g) T-Code set S(1;1;3)
(0;1;01)

at the T-augmentation levels from 0 to 3.

The available choices for the T-pre�xes p1; p2; : : : ; pn and T-expansion parameters k1; k2; : : : ; kn
give rise to a wide range of possible sets with di�erent cardinalities and code length distributions.

Thus one may select a construction to achieve good coding e�ciency, expected synchronisation

delay [9, 10], or perhaps certain spectral properties for applications with a bandlimited commu-

nication channel.

For the purposes of this paper, the pre�x-freeness of T-Code sets plays an important role, and we

shall prove it here brie
y:

Theorem 1.4 (Pre�x-freeness of T-Code sets) T-Code sets are pre�x-free, i.e., for any two

codewords x1; x2 2 S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, x1y = x2 implies that y = �.

Proof: by induction over n. The alphabet S is by de�nition pre�x-free. By induction hypothesis,

S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
is pre�x-free. By De�nition 1.1, the pre�x-freeness of S

(k1;k2;:::;kn)

(p1;p2;:::;pn)
implies the pre�x-

freeness of S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
.2

4

T-augmentation level

n 0 1 2 3

kn k0 = 1 1 1 3

set S S
(1)

(0)
S
(1;1)

(0;1)
S
(1;1;3)

(0;1;01)

0 0= � �
1 1 1= �

00 00 00

01 01 01==

� �
11 11

100 100

101 101

�
�

0100

01==01==

�
0111

01100

01101

�
�

010100

01==01==01==

�
010111

0101100

0101101

�
�

01010100

01010101

�
01010111

010101100

010101101

Table 1: The columns in the table list the codewords in the intermediate T-Code sets S (T-aug-

mentation level 0), S
(1)

(0)
(T-augmentation level 1), S

(1;1)

(0;1)
(T-augmentation level 2) of the �nal set

S
(1;1;3)

(0;1;01)
at T-augmentation level 3 listed in the last column. The table illustrates the concept of

T-augmentation: a new column/T-Code set at level i + 1 may be derived from its predecessor

at level i to the left by copying the codeword list into a new column a total of ki+1 + 1 times.

The copies may be indexed by k0i+1 such that k0i+1 = 0; : : : ; ki+1. Each copy is then pre�xed with

p
k0
i+1

i+1 . Finally, all codewords of the form p
k0
i+1

i+1 are removed from the list.

5

We shall make use of this property repeatedly throughout this paper.

We will now show how the T-depletion code format may be derived from the general form of

T-Code codewords.

2 The Structure of T-Code Codewords and T-Depletion

Codes

2.1 The Structure of T-Code Codewords

We �rst prove two lemmata which we will then use in the proof of the central theorem of this

section, and in the proof of another theorem in Section 3.

Lemma 2.1 Consider a string of the form

x = p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 : (2)

where 0 � k0i � ki for i = 1; : : : ; n. Then x is a proper pre�x of a codeword in the set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
,

i.e., there exists a string y 2 S+ such that xy 2 S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
.

Proof: by induction over n. For n = 0, x = � (where � denotes the empty string), which is

clearly a proper pre�x of all elements of S. Now consider

x = p
k0
n+1

n+1 p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 : (3)

By induction hypothesis, the word p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 is a proper pre�x of a codeword z 2 S

(k1;k2;:::;kn)

(p1;p2;:::;pn)
.

We now distinguish two cases: if z 6= pn+1, then p
k0
n+1

n+1 z is a codeword in S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
and hence

x is a proper pre�x of it. If z = pn+1, then x is a proper pre�x of p
kn+1+1
n+1 2 S

(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
. 2

We can now use this result to prove the following lemma:

Lemma 2.2 For any string x 2 S? and a given T-Code set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, there exists at most

one set fk01; : : : ; k
0
ng with 0 � k0i � ki for i = 1; : : : ; n such that x may be written in the form of

Equation (2).

Proof: by induction over n. For n = 0, only the empty word � can be written in the form of

Equation (2), and this representation is unique.

For the induction step we assume that a word x 2 S? can be written in two forms satisfying

Equation (2):

x = p
k0
n+1

n+1 p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 : (4)

6

and

x = p
k00
n+1

n+1 p
k00
n

n p
k00
n�1

n�1 : : : p
k001
1 ; (5)

such that 0 � k0i � ki, 0 � k00i � ki for i = 1; : : : ; n+ 1. We need to show that necessarily k0i = k00i
for all i = 1; : : : ; n+ 1.

We distinguish three cases:

1. k0n+1 = k00n+1: in this case, p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 = p

k00
n

n p
k00
n�1

n�1 : : : p
k001
1 and the induction hypothesis

applies such that k0i = k00i for i = 0; : : : ; n.

2. k0n+1 > k00n+1: in this case, pn+1 is a pre�x of p
k00
n

n p
k00
n�1

n�1 : : : p
k001
1 . However, by Lemma 2.1,

this is a pre�x of a codeword in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
. Thus, pn+1 would have to be a pre�x of a

codeword in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, which violates the pre�x-freeness of that set.

3. k0n+1 < k00n+1: this case also violates the pre�x-freeness of S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, by the same argument

as before.

This proves Lemma 2.2. 2

We now prove the central theorem of this section: the existence of a unique form for T-Code

codewords in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
:

Theorem 2.3 (Decomposition of T-Code Codewords) For all codewords x 2 S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
,

a decomposition

x = p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 k00; (6)

exists such that 0 � k0i � ki for i = 0; 1; : : : ; n and k0 = #S�1. The decomposition of x is unique,

i.e., there exists exactly one set of k0i for which Equation (6) is satis�ed.

Proof: Existence: by induction over n. For n = 0, the T-Code set is the alphabet S itself. As we

may represent each alphabet symbol by an integer 0 � k00 � k0, codewords x0 at T-augmentation

level 0 are of the general form x = k00, which satis�es the theorem.

By the induction hypothesis, the codewords of S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
satisfy the general form

x = p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 k00; (7)

for some k0i, i = 0; 1; : : :; n, such that 0 � k0i � ki. The T-augmentation of S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
with

pn+1 and kn+1 pre�xes these codewords with k0n+1 � kn+1 copies of pn+1. The codewords in

S
(k1;k2;:::;kn;kn+1)

(p1;p2;:::;pn;pn+1)
thus satisfy the general form

x = p
k0
n+1

n+1 p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 k00: (8)

Thus, we have shown the existence of the decomposition.

Uniqueness: write a codeword x 2 S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
in the form of Equation 6:

x = p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 k00: (9)

7

The uniqueness of k00 is clear as it is simply the last symbol in x. The uniqueness of k01; : : : ; k
0
n

follows from Lemma 2.2 by applying it to the string p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 . This concludes the proof of

Theorem 2.3. 2

In fact, the representation in form of Equation (6) is unique not only for codewords in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
,

but also for all codewords in its intermediate T-Code sets:

Theorem 2.4 (Decomposition for Intermediate T-Code Sets) For any m � n, the de-

composition of x 2 S
(k1;k2;:::;km)

(p1;p2;:::;pm)
as

x = p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 k00 (10)

with 0 � k0i � k0i exists and is unique. It satis�es k0i = 0 for i > m.

Proof: The existence of a decomposition with k0i = 0 for i > m follows from Theorem 2.3 for

k0i = 0 for i > m. Again, the uniqueness of k00 is clear. The uniqueness of k
0
1; : : : ; k

0
n follows from

Lemma 2.2. 2

De�nition 2.5 (T-expansion indices and literal symbol) Let x = p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 k00 with

x 2 S
(k1;k2;:::;km)

(p1;p2;:::;pm)
for m � n and k0i � ki for i = 0; : : : ; n. For i � 1, we call k0i the i'th

T-expansion index of x. k00 is called the literal symbol.

Example 2.6 (Decomposition of T-Code codewords) Table 2 shows the decomposition of

the codewords from the binary (S = f0; 1g) T-Code set S
(1;1;3)

(0;1;01)
.

Nicolescu [14] showed that the decomposition of one of the longest codewords in a T-Code set

may be used to represent the set itself. The longest codewords contain all T-pre�xes, and their T-

expansion indices equal the T-expansion factors of the corresponding set. Hence, it is possible to

communicate the whole T-Code set to a decoder by simply sending one of the longest codewords1.

2.2 T-Depletion Codes

Presume that for a given T-Code set the T-pre�xes and T-expansion parameters are known. Thus,

we may specify any codeword in such a set set simply by stating the corresponding T-expansion

indices k01; k
0
2; : : : ; k

0
n and literal symbol k00. For example, if the T-Code set S

(1;1;3)

(0;1;01)
from the

previous examples was given, and we speci�ed that k00 = 1, k01 = 0, k02 = 1, and k03 = 2, it

would be unambiguous that this combination would refer to (01)211001 = 010111. T-depletion

codewords, which may be de�ned in terms of multibase numbers, implement this format:

1The T-pre�xes and T-expansion parameters cannot necessarily be uniquely determined this way. Consider,

e.g., S
(3)

(0)
= S

(1;1)

(0;00)
for S = f0;1g.

8

T-Code structure

00 (01)010010

11 (01)011001

100 (01)011010

101 (01)011011

0100 (01)110010

0111 (01)111001

01100 (01)111010

01101 (01)111011

010100 (01)210010

010111 (01)211001

0101100 (01)211010

0101101 (01)211011

01010100 (01)310010

01010101 (01)310011

01010111 (01)311001

010101100 (01)311010

010101101 (01)311011

Table 2: Codeword decomposition for the T-Code set S
(1;1;3)

(0;1;01)
.

De�nition 2.7 (Multibase Numbers) A vector (k0n; k
0
n�1; : : : ; k

0
1; k

0
0) is called a multibase

number with base (kn + 1; kn�1+ 1; : : : ; k1 + 1; k0 + 1) if for all i, 0 � i � n

0 � k0i � ki: (11)

De�nition 2.8 (T-Depletion Codewords) For a given T-Code set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, a multibase

number (k0n; k
0
n�1; : : : ; k

0
1; k

0
0) is called the T-depletion codeword dn(x) corresponding to x 2

S
(k1;k2;:::;km)

(p1;p2;:::;pm)
if m � n, 0 � k0i � ki for i = 0; : : : ; n, and

x = p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 k00: (12)

The notion of multibase numbers will probably be familiar to the reader: for example, a 24-hour

clock may be represented by a multibase number with base (24; 60; 60), i.e., one index running

from 0 to 23 for the hours, and two indices running from 0 to 59 each for the minutes and seconds.

Note that, by Theorem 2.4, a unique T-depletion codeword exists for each codeword from the

intermediate T-Code sets S
(k1;k2;:::;km)

(p1;p2;:::;pm)
.

T-depletion codewords are illustrated in the following example:

Example 2.9 The codewords from the binary (S = f0; 1g) T-Code set S
(1;1;3)

(0;1;01)
and their associ-

ated T-depletion codewords are listed in Table 3.

Since the decomposition of T-Code codewords re
ects the recursive construction of the T-Codes,

the T-depletion codewords re
ect it, too: consider, for example, a T-depletion codeword dn(x) =

9

T-Code T-depletion codeword

(k03; k
0
2; k

0
1; k

0
0)

00 (0; 0; 1; 0)

11 (0; 1; 0; 1)

100 (0; 1; 1; 0)

101 (0; 1; 1; 1)

0100 (1; 0; 1; 0)

0111 (1; 1; 0; 1)

01100 (1; 1; 1; 0)

01101 (1; 1; 1; 1)

010100 (2; 0; 1; 0)

010111 (2; 1; 0; 1)

0101100 (2; 1; 1; 0)

0101101 (2; 1; 1; 1)

01010100 (3; 0; 1; 0)

01010101 (3; 0; 1; 1)

01010111 (3; 1; 0; 1)

010101100 (3; 1; 1; 0)

010101101 (3; 1; 1; 1)

Table 3: Codewords and T-depletion code elements for the T-Code set S
(1;1;3)

(0;1;01)
.

(k0n; k
0
n�1; : : : ; k

0
1; k

0
0) of a T-Code codeword x 2 S

(k1;k2;:::;kn)

(p1;p2;:::;pn)
, i.e., x = p

k0
n

n p
k0
n�1

n�1 : : : p
k01
1 k00. We

may thus split x recursively into k0n copies of the n'th level T-pre�x pn, and the codeword

p
k0
n�1

n�1 : : : p
k01
1 k00, all of which are codewords in S

(k1;k2;:::;kn�1)

(p1;p2;:::;pn�1)
, etc. Similarly, the T-depletion

codeword dn(x) may be interpreted as accounting for k0n copies of dn�1(pn), and one copy of

dn�1(p
k0
n�1

n�1 : : : p
k01
1 k00).

This may be utilized in the construction of encoders and decoders, which may be regarded as

converters between T-Code and T-depletion codewords, i.e., between the variable-length format

and the �xed-length format.

2.3 Conversion between Variable-Length T-Code Codewords and T-

Depletion Codewords

In Table 3, we listed the T-Code codewords from S
(1;1;3)

(0;1;01)
and their corresponding T-depletion

codewords, but we did not explain how we obtained one format from the other. We will now

discuss these conversion issues for both directions:

10

2.3.1 Encoders: Converting T-Depletion into T-Code Codewords

Theorem 2.3 provides us with an easy way of converting T-depletion codewords into their variable-

length T-Code codewords counterparts in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
. We only need to concatenate the appro-

priate number of T-pre�xes and the literal symbol. Since all T-pre�xes and the literal symbol may

be found in at least one of the intermediate sets S
(k1;k2;:::;km)

(p1;p2;:::;pm)
, m < n, each of these strings has

a T-depletion code associated with it. Hence the concatenation of the T-pre�xes and the literal

symbol may be done recursively.

If a T-Code set is to be communicated to, or to be stored by, a decoder in a �xed-length format,

this may thus be achieved by representing it by the T-depletion codewords for its T-pre�xes

and their respective T-expansion parameters. This information su�ces to permit the recursive

encoding or decoding of every codeword in the set.

2.3.2 Decoders: Converting T-Codes into T-Depletion Codewords

The conversion in the other direction, i.e., obtaining a T-depletion codeword from a variable-

length T-Code codeword, may be used in decoders. The pseudo-code in Figure 1 implements

such a recursive decoder. A T-Code codeword at T-augmentation level n is read left-to-right as a

concatenation of codewords from the intermediate set at level n�1. This concatenation sequence

consists of up to kn T-pre�xes and another codeword from the intermediate set. To obtain the

number of T-pre�xes k0n and the signi�cant T-depletion codeword elements for the other codeword

from the intermediate set at level n�1, the decoder route calls itself recursively as a decoder over

the intermediate set. Only at level 0, actual symbols from the decoder's input are read.

Example 2.10 The T-depletion codeword format for codewords from S
(1;1;3)

(0;1;01)
is (k03; k

0
2; k

0
1; k

0
0).

We follow the entries in this format as we decode the codeword 01010101 from S
(1;1;3)

(0;1;01)
. The fol-

lowing \snapshots" of the global T-depletion codeword register may be taken at the point indicated

in the pseudo-code listing in Figure 1:

� initial state: (�;�;�;�), not initialized. As the procedure calls itself recursively, the T-

expansion indices are initialized top-down, i.e., (0;�;�;�), then (0; 0;�;�), (0; 0; 0;�),
and (0; 0; 0; 0).

� decode x[1] = 0: \snapshot" (0; 0; 0; 0). Upon return to the calling procedure, it is determined

that the (0) is a copy of p1, i.e., (0) = d0(p1) = (0). Thus k01 is incremented to k01 = 1. The

next run through the loop resets k00 to 0.

� decode x[2] = 1: \snapshot" (0; 0; 1; 1). Upon return to the calling procedure, it is determined

that (1) 6= d0(p1) = (0). Thus, the procedure itself returns to its own calling level, where

(1; 1) is determined not to be a copy of p2, i.e., (1; 1) 6= d1(p2) = (0; 1), and program

execution returns to the next higher level. There, it is found that (0; 1; 1) = d2(p3), and k03
is incremented to k03 = 1. In the next run of the loop, k02; k

0
1, and k00 are successively reset

to 0: (1; 0; 0; 0)

11

program conversion;

var

global x: string;

global i: integer;

global (k0n; k
0

n�1; : : : ; k
0

1; k
0

0): TDepletionCodeWord;

procedure tconvert(m: integer);

begin

k
0

m := 0; fclear T-expansion indexg
if (m > 0) then begin fdecode at lower levelg

loop:

fcheck if next lower-level codeword is pmg
tconvert(m� 1); fdecode next lower-level codewordg
fnow check if it matches the T-depletion codeword for pm by comparingg
fthe new T-expansion indices with the T-depletion codeword for pm:g
if ((k0m; k

0

m�1; : : : ; k
0

1; k
0

0) 6= dm�1(pm)) then break; fit's not pmg
fif we don't break here, the T-expansion indices found match pm.g
fHowever, if it is the (km + 1)'th copy of pm, it doesn't count asg
fa T-pre�x and we have found the end of a codeword at level m:g
if (k

0

m < km) then fit is a genuine copy of the T-pre�x pmg
k
0

m := k
0

m + 1; fthus increment T-expansion index k
0

mg
else break; fit's the (km + 1)'th copy:g

fend of codeword at level m foundg
end loop;

end else begin fsymbol level reached - read next symbolg
fThe snapshots in Example 2.10 are taken at this pointg
i := i+ 1; fadvance string pointer to next symbolg
k
0

0 := x[i]; fread next symbolg
end;

end;

begin

i := 0; finitialize string pointerg
x :=ATCodeCodeWord; fthis is the codeword we want to convertg
tconvert(n); frun conversiong
output((k0n; k

0

n�1; : : : ; k
0

1; k
0

0)); foutput resultg
end.

Figure 1: A T-Code decoder: the pseudo-code routine above converts the T-Code codeword x

from S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
into a T-depletion codeword dn(x) = (k0n; k

0
n�1; : : : ; k

0
1; k

0
0) by decoding it with

a recursive decoding routine. Note that the T-expansion indices k0i are determined in decreasing

order of i, which permits to use a single storage register (global variable) in this recursive routine.

12

� decode x[3] = 0: \snapshot" (1; 0; 0; 0), another copy of p1. Increment k01 to k01 = 1 and

reset k00: (1; 0; 1; 0)

� decode x[4] = 1: \snapshot" (1; 0; 1; 1), (1; 1) 6= d0(p1) and (1; 1) 6= d0(p2), but (0; 1; 1) =

d2(p3), i.e., we have found another copy of p3. Increment k03 to k03 = 2 and reset k00; k
0
1; k

0
2:

(2; 0; 0; 0).

� decode x[5] = 0: \snapshot" (2; 0; 0; 0), a copy of p1. Increment k01 and reset k00

� decode x[6] = 1: \snapshot" (2; 0; 1; 1). As before, increment k03 and reset k00; k
0
1; k

0
2. Now,

k03 = k3, i.e., no more copies of p3 can follow.

� decode x[7] = 0: \snapshot" (3; 0; 0; 0), a copy of p1. Increment k01 and reset k00 as before:

(3; 0; 1; 0).

� decode x[8] = 1: \snapshot" (3; 0; 1; 1), as k03 = k3, the 1 must be the literal, i.e., k00 = 1. The

program returns to its top level and outputs (3; 0; 1; 1). We combine p33p
0
2p

1
1k
0
0 = (01)310011 =

01010101 to verify our result.

In a decoder, we may use the �xed-length representation of the �nal T-depletion codeword output

as an address into a look-up table containing the (�xed-length) decoding of the corresponding

T-Code codeword.

2.4 Storage Resource Requirements for T-Depletion Codewords

Conventional encoders often require the storage of both the codeword string and length. In these

cases, the length of the �eld used to store the codeword string is often based on the length of

the longest codeword in the code set. This format permits the representation of both �nal and

intermediate encoder states: an incompletely encoded codeword may be represented by the full

codeword string accompanied by a length value that is shorter than the string. Let us consider

the storage cost associated with a codeword:

Example 2.11 Consider the codeword 01010111 from a variable-length binary code whose longest

codeword is, e.g., nine bits long. The codeword may be represented in a �xed-length binary register

by, e.g., a four bit length �eld and the codeword string itself, padded with 0's to the right (the dot

indicates the border between length �eld and the padded string):

1000:010101110

A partially encoded (or transmitted) codeword, e.g., its �rst �ve bits, can be represented as follows:

0101:010101110

As multibase numbers, T-depletion codewords for a given T-Code set may also be stored in a

�xed-length format. The storage resource requirement of this format is given by the total number

of m-ary register cells required to store all entries of the multibase number. The storage of a

13

single entry with base (ki + 1) requires dlogm(ki + 1)e m-ary register cells. To store an arbitrary

T-depletion codeword from S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
in an m-ary register, we hence require

L =

nX
i=0

dlogm(ki + 1)e (13)

m-ary register cells. In the equation above, dye denotes the smallest integer that is larger than or

equal to y, and (ki + 1) is the i'th base of our multibase number.

Example 2.12 (Storage Requirements for T-Depletion Codewords) Consider the binary

set S
(1;1;3)

(0;1;01)
from the previous examples, and presume that we wish to store a T-depletion codeword

from this set in a binary (m = 2) register. Then L = 5, i.e., we require a 5-bit register.

If we used the format from Example 2.11 to store one of the codewords in S
(1;1;3)

(0;1;01)
, we would

require nine bits to store the string, and another four to store the length information, i.e., a total

of thirteen bits.

Note that if logm(ki + 1) 62 IN for some i, there is some inherent ine�ciency in the m-ary repre-

sentation of the multibase number (k0n; k
0
n�1; : : : ; k

0
1; k

0
0). However, this ine�ciency is always less

than n+ 1 digits in the m-ary representation.

The binary T-depletion codewords used in [17, 9, 2] implicitly assume that S = f0; 1g,
k0n = k0n�1 = : : : = k01 = 1, and m = 2. In this case, the presence or absence of the T-pre�x pi in

a T-Code codeword is indicated by a single bit in the T-depletion codeword. A T-Code codeword

from such a simple T-Code set at T-augmentation level n may thus be represented by a binary

register with n+ 1 bits.

However, the multibase number format associated with the T-depletion codewords also permits

the representation of multibase numbers that do not correspond to T-Code codewords. As we

shall see in the next section, these numbers may be interpreted as incomplete codewords, i.e.,

intermediate decoder states. This is discussed in the following section.

3 Pseudo-T Codewords

The astute reader will have noticed that Theorem 2.3 demands that T-Code codewords are of

a certain form. However, it does not claim that all strings of this form are necessarily T-Code

codewords. Given a T-Code set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, consider a string x for which k0i exist such that

0 � k0i � ki and such that x may be written in the form given by Equation (6).

For example, the string x = 01010110 satis�es Equation (6) for S
(1;1;3)

(0;1;01)
if it is written as x =

(01)311000. Such strings may be represented by the T-depletion code format. However, as is

evident from Table 1, x 62 S
(1;1;3)

(0;1;01)
. Such strings are called \pseudo-T codewords":

14

De�nition 3.1 (Pseudo-T Codewords) Strings x 62 S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
that may be written in the

form of Equation (6) for some k0i with 0 � k0i � ki for i = 0; : : : ; n are called pseudo-T code-

words for S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
. We also de�ne the empty string � to be a pseudo-T codeword. The set

of all pseudo-T codewords for S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
is denoted �

�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

�
.

This de�nition provides for the existence of pseudo-T codewords, but it tells us little about their

properties. The following theorem provides us with an alternative to this de�nition and an insight

into the structure of pseudo-T codewords.

Theorem 3.2 (Decomposition of Pseudo-T Codewords) The set of all pseudo-T codewords

for S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
may be written as

�
�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

�
= fxjx = p

k0
n

n p
k0
n�1

n�1 : : : p
k01
1 �; 0 � k0i � ki; i = 1; : : : ; ng: (14)

Proof: by induction over n. We note that for n = 0, where � (S) = f�g, the assertion is true.

We will now prove that

�
�
S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)

�
� fxjx = p

k0
n+1

n+1 p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 �; 0 � k0i � ki; i = 1; : : : ; n+ 1g

and

�
�
S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)

�
� fxjx = p

k0
n+1

n+1 p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 �; 0 � k0i � ki; i = 1; : : : ; n+ 1g:

\�": let x 2 �
�
S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)

�
. We wish to show that there are k0i with 0 � k0i � ki such that

x = p
k0
n+1

n+1 p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 .

If x = �, then this is true if k0i = 0 for all i. If x 6= �, then by De�nition 3.1, x satis�es Equation (6)

such that

x = p
k00
n+1

n+1 p
k00
n

n p
k00
n�1

n�1 : : : p
k001
1 k000 : (15)

We now distinguish two cases:

1. p
k00
n

n p
k00
n�1

n�1 : : : p
k001
1 k000 2 S

(k1;k2;:::;kn)

(p1;p2;:::;pn)
: since x 62 S

(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
, Equation (1) implies that this

is only possible if k00n+1 < kn+1 and p
k00
n

n p
k00
n�1

n�1 : : : p
k001
1 k000 = pn+1. In this case, we may choose

k0n+1 = k00n+1 + 1 and k0i = 0 for i � n to satisfy the assertion.

2. p
k00
n

n p
k00
n�1

n�1 : : : p
k001
1 k000 2 �

�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

�
: by induction hypothesis, there are k0i such that

p
k00
n

n p
k00
n�1

n�1 : : : p
k001
1 k000 = p

k0
n

n p
k0
n�1

n�1 : : : p
k01
1 (16)

and hence

x = p
k00
n+1

n+1 p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 (17)

which also satis�es the assertion.

15

\�": we have to show that any word x = p
k0
n+1

n+1 p
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 with 0 � k0i � ki for i � n + 1

is not in S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
but nevertheless is either the empty string � or satis�es Equation (6) for

some 0 � k00i � ki for i � n + 1. Lemma 2.1 and the pre�x-freeness of S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
guarantee

that x 62 S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
.

If k0i = 0 for all i, then x = � and the assertion is trivially satis�ed. If k0i > 0 for some i, then

de�ne m such that k0m > 0 and k0i = 0 for all i < m. Since pm 2 S
(k1;k2;:::;km�1)

(p1;p2;:::;pm�1)
, we may use

Theorem 2.3 to write

pm = p
k00
m�1

m�1 : : : p
k001
1 k000 (18)

for some k00i with 0 � k00i � ki for i = 0; : : : ;m � 1. Now set k00m = k0m � 1 and k00i = k0i for i > m

to satisfy Equation (6).

This concludes the proof of Theorem 3.2. 2

Together, Theorems 2.3 and 3.2 yield an alternative expression for the T-Code set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

in a non-recursive form:

S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
=

[

k01�k1;:::

:::;k0
n
�kn;

k002S

fp
k0n
n p

k0
n�1

n�1 : : : p
k01
1 k00g n

[

k01�k1;:::

:::;k0
n
�kn

fp
k0
n

n p
k0
n�1

n�1 : : : p
k01
1 g: (19)

What is the signi�cance of the pseudo-T codes? Comparing Equation (14) with Equation (6), we

�nd that for all k00 2 S and x 2 �
�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

�
, strings of the form xk00 satisfy the general form

of T-Code codewords in Equation (6). This motivates the following theorem:

Theorem 3.3 (Pseudo-T Codewords are Proper Pre�xes of T-Code Codewords)

Every pseudo-T codeword for S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
is a proper pre�x of a T-Code codeword in S

(k1;k2;:::;kn)

(p1;p2;:::;pn)
.

Conversely, every proper pre�x of a T-Code codeword in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
is a pseudo-T codeword for

S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
. I.e.,

�
�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

�
=
n
x 2 S?j9y 2 S+ s.t. xy 2 S

(k1;k2;:::;kn)

(p1;p2;:::;pn)

o
(20)

Proof: the inclusion

�
�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

�
�
n
x 2 S?j9y 2 S+ s.t. xy 2 S

(k1;k2;:::;kn)

(p1;p2;:::;pn)

o

follows from Theorem 3.2 and Lemma 2.1. The inclusion

�
�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

�
�
n
x 2 S?j9y 2 S+ s.t. xy 2 S

(k1;k2;:::;kn)

(p1;p2;:::;pn)

o

may be proven by induction as follows:

16

Let x be T-Code codeword in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, and let x[1 : i] for i = 0; : : : ; jxj�1 be its proper pre�x

comprising the �rst i symbols in x, where x[1 : 0] = �.

By Theorem 2.3, x has the form of Equation (6) and thus x[1 : jxj � 1] is a pseudo-T codeword

by Theorem 3.2.

By the induction hypothesis, let x[1 : i] with jx[1 : i]j > 0 be a pseudo-T codeword. Then, by

De�nition 3.1, it may be written in the form of Equation (6). Thus, by Theorem 3.2, x[1 : i � 1]

is a pseudo-T codeword. 2

Every pseudo-T-Code codeword may be written in the form of Equation (2) and, with the ex-

ception of the empty word �, every pseudo-T-Code codeword may be written in the form of

Equation (6). It follows from Lemma 2.2 that both of these forms are unique.

A T-Code set, like e.g., a Hu�man code, may be represented by a rooted graph (decoding tree).

In such a decoding tree, the T-Code codewords thus occupy the leaf nodes (terminal nodes) of the

tree, whereas the pseudo-T codewords represent all the internal (branch) nodes of the decoding

tree. As a decoder traverses the tree, it will encounter these branching nodes. Pseudo-T codewords

may thus be interpreted as intermediate decoder states that occur in an incomplete decoding. In

fact, the reader may wish to verify from the \snapshots" in Example 2.10 that this is in fact the

case for the decoder algorithm presented above. Also, all T-pre�xes of S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
are among its

pseudo-T codewords. As we shall see in the next section, this enables us to represent any �nite

and pre�x-free variable-length code by a T-depletion codeword.

4 Pseudo-T Codewords and Variable-Length Codes

In the previous sections, we have shown that any pre�x of a T-Code codeword may be represented

in a T-depletion codeword format. From this, we may conclude that any pre�x-free variable-length

code C can be represented in such a way, provided there exists a T-Code set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
such

that all codewords in C are pre�xes of codewords in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
. But does such a T-Code set

always exist?

De�nition 4.1 (Covering T-Code Sets) Let C;C 0 � S+ be �nite and pre�x-free variable-

length codes. C0 is said to be a covering set of C i�

8x 2 C9y 2 S?; z 2 C0 s.t. xy = z: (21)

In this case, we also say that C0 covers C.

The concept of covering code sets may be visualized if one considers the decoding trees of the two

sets involved.

Theorem 4.2 (Existence of Covering T-Code Sets) For any �nite and pre�x-free variable-

length code C � S+, there exists a T-Code set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
that covers C.

Proof: by showing how S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
may be found for a given C.

17

1. start with S at T-augmentation level m = 0, and de�ne some lexicographical order on the

elements of C.

2. if S
(k1;k2;:::;km)

(p1;p2;:::;pm)
covers C, �nish.

3. from the lexicographical order on C, select the �rst element x 2 C that is not a pre�x of

any codeword in S
(k1;k2;:::;km)

(p1;p2;:::;pm)
. Since S

(k1;k2;:::;km)

(p1;p2;:::;pm)
is complete and pre�x-free, there exists

a unique codeword x0 2 S
(k1;k2;:::;km)

(p1;p2;:::;pm)
such that x0 is a proper pre�x of x. Set pm+1 = x0,

km+1 = 1, and T-augment to S
(k1;k2;:::;km+1)

(p1;p2;:::;pm+1)
. Increment m and continue with step 2.

This algorithm is guaranteed to terminate, because

� in the third step, jxj (the length of x) is �nite. However, since T-Code sets are complete,

the length of x0 in step 3 increases with each T-augmentation (as long as x is not a pre�x

of x0). Thus, jx0j will eventually reach or exceed jxj, such that x becomes a pre�x of x0, i.e.,

the number of T-augmentations for a given x is �nite.

� there are also only �nitely many strings in C, such that the total number of T-augmentations

must be �nite.

This proves the existence of covering T-Code sets.2

It is obvious that there is no unique covering T-Code set for a given C. For example, any T-

augmentation of a covering T-Code set yields another covering T-Code set. Also, restricting

T-expansion parameters to a value of 1, or using a particular lexicographical order on C in

the above algorithm are in principle arbitrary constraints which, if changed, may lead to vastly

di�erent solutions.

Under \storage cost" considerations, the covering T-Code set of our choice would obviously be a

T-Code set for which the storage cost of the T-depletion code format is minimized. The algorithm

proposed in the proof above, however, does not work optimally in this sense. This is illustrated

by the following example:

Example 4.3 Let S = f0; 1g be the binary alphabet. Consider the code

C = f0000; 0001; 00100; 00101;0011; 01; 100;101; 11g:

C is actually a T-Code set, S
(1;1;1)

(0;1;00)
, and from Section 2.4 we know that its T-depletion codewords

require 4 bits of storage. However, using the above algorithm (presuming a lexicographical ordering

of the codewords in C as listed above), we obtain the covering T-Code set S
(1;1;1;1)

(0;00;001;1)
, which

requires 5 bits of storage.

An \optimal" algorithm in this sense remains an open problem.

18

5 Conclusion

In this paper, we have proposed encoder and decoder algorithms for T-Codes, based on T-depletion

codewords. The algorithms permit the use of the same e�cient �xed-length representation of T-

Code codewords in both encoder and decoder. The size of the T-depletion codeword for a given set

is a function of the T-augmentation level (the recursive depth of the T-Code set's construction),

and the T-expansion parameter values. The T-depletion codewords for the T-pre�xes of a T-Code

set together with the corresponding expansion parameters may also be used to communicate or

store a T-Code set e�ciently in a �xed-length environment2.

As shown in Section 3, the T-depletion codeword format caters not only for T-Code codewords

but also for pseudo-T codewords. These may be regarded as representations of all branching

nodes in a T-Code decoding tree, i.e, as incomplete codewords or intermediate decoder states.

The T-depletion code format thus represents the complete state space of a decoder. In Section 4

we have shown that this concept may be extended to cover pre�x-free variable-length codes in

general. This presents a novel way of storing such codes in a �xed-length format.

Acknowledgement

The authors would like to thank Cris Calude for his helpful comments during the preparation of

this paper.

References

[1] K.-L. Chung. E�cient hu�man decoding. Information Processing Letters, 61:97{99, 1997.

[2] B. Honary F. Zolghadr and M. Darnell. Statistical real-time channel evaluation (SRTCE)

technique using variable-length T-codes. IEE Proceedings, 136(4):259{266, August 1989.

[3] T. J. Ferguson and J. H. Rabinowitz. Self synchronizing Hu�man codes. IEEE Trans. Inform.

Theory, 30(4):687{693, July 1984.

[4] R. G. Gallager. Information Theory and Reliable Communications. John Wiley and Sons,

Inc, November 1968.

[5] E. N. Gilbert. Synchronization of Binary Messages. IRE Trans. Inform. Theory, 10:933{967,

1960.

[6] E. N. Gilbert and E. F. Moore. Variable Length Binary Encodings. Bell Syst. Tech. J.,

38:933{967, July 1959.

[7] U. G�unther. Data Compression and Serial Communication with Generalized T-Codes. Jour-

nal of Universal Computer Science, 2(11):769{795, November 1996.

[8] U. G�unther and M. R. Titchener. Calculating the Expexted Synchronization Delay for T-

Code Sets. June 1997.

19

[9] G. R. Higgie. Analysis of the families of variable-length self-synchronizing codes called T-

Codes. PhD thesis, The University of Auckland, 1991.

[10] G. R. Higgie. Database of best T-codes. IEE Proceedings, Computers and Digital Techniques,

143:213{218, July 1996.

[11] D. S. Hirschberg and D. A. Lelewer. E�cient decoding of pre�x codes. Communications of

the ACM, 33(4):449{459, April 1990.

[12] D. Hu�man. A Method for the Construction of Minimum Redundancy Codes. Proc. Inst.

Radio Eng.,, 40:1098{1101, September 1952.

[13] B. L. Montgomery and J. Abrahams. Synchronization of Binary Source Codes. IEEE Trans.

Inform. Theory, 32(6):849{854, November 1986.

[14] R. Nicolescu. Uniqueness Theorems for T-Codes. Technical Report 9, The University of

Auckland, September 1995.

[15] Y. Takishima, M. Wada, and H. Murakami. Error States and Synchronization Recovery For

Variable Length Codes. IEEE Transactions on Communications, 42(2-4):783{792, February

1994.

[16] H. Tanaka. Data Structure of Hu�man Codes and its Application to E�cient Encoding and

Decoding. IEEE Trans. Inform. Theory, 33(1):154{156, January 1987.

[17] M. R. Titchener. Construction and Properties of the Augmented and Binary-Depletion codes.

IEE Proceedings Pt.E, Computers and Digital Techniques, 132(3):163{169, May 1985.

[18] M. R. Titchener. Generalized T-Codes: an Extended Construction Algorithm for Self-

Synchronizing Variable-Length Codes. IEE Proceedings Pt.E, Computers and Digital Tech-

niques, 143(3):122{128, June 1996.

[19] M. R. Titchener and J. J. Hunter. Synchronization Process for the Variable-Length T-codes.

IEE Proceedings Pt.E, Computers and Digital Techniques, 133(1):54{64, 1985.

[20] V. K. W. Wei and R. A. Scholtz. On the Characterization of Statistically Synchronizable

Codes. IEEE Trans. Inform. Theory., 26(6):733{735, November 1980.

20

