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Abstract

Lately there has been much interest concerning H systems, a generative mecha-
nism based on the splicing operation, itself a language-theoretic equivalent of DNA
recombination. Paun et al. have shown that regular extended H systems are theo-
retically universal but one has not yet been explicitly constructed. In this paper we
explicitly construct a universal extended H system containing 182 axioms and 270
groups of rules.

1 Introduction

Molecular computing covers different models of computation involving operations on
strands of DNA. As DNA is incredibly complex this potentially gives us a previously
unobtainable degree of parallelization.

The study of H systems is a new branch of formal language theory and a significant the-
oretical component of molecular computing. H systems were first developed in 1987 by
Tom Head [2] as a model of computation based upon the splicing operation, a language-
theoretic model of DNA recombination. Extended H systems were then considered in
1996 by Paun et al. [5] and are the primary focus of this paper.

One important property within formal language theory is universality. Universality en-
ables the comparison between various models of computability. It does this by consid-
ering the class of computable problems and determining whether or not a given model
can generate a solution for any such problem. This is a fundamental characteristic for
any computational model and especially relevant as regards H systems as evidenced by
many of the recent results, in particular Paun [3] and Csuhaj-Varji et al. [1].

Gheorghe Paun [4] posed us the following question :

Can we explicitly construct universal extended H systems of various types?

Theoretical results support this and it is the aim of this paper to offer such a construction
where the resulting extended H system has a finite set of axioms and a regular set of
rules.



2 Notation, Definitions and Previous Results

We denote by V* the free monoid generated by the alphabet V', by A the empty string
and by VT the set V* — {\}

A rewriting system is a pair p = (V,F) where V is an alphabet and F a finite set of
ordered pairs of words over V.

A rewriting system 7 = (V, F) is called a Turing Machine iff the following conditions are
satisfied.

i) V is divided into two disjoint alphabets S and Vi, referred to as the state and tape
alphabets.

ii) Elements s; € S, # € Vp, and a subset S; C S are specified, namely the initial
state, the boundary marker, and the final state set. The set Vi3 = Vp — {#} is not
empty. An element 0 € V7 and a subset V; C V; are specified.

iii) The productions in F are of the forms

sia — s;b overprint)

siac — as;c move right)

csia — sjca move left)

(
(

sia# — asj0# (move right and extend workspace)
(

#si0 — #5500 (

move left and extend workspace)

where s;,s; € S and a,b,c € Vi. Furthermore, for each s;,s; € S and a € V7,
F' either contains no productions of the second and third types or else contains
both for every ¢ € V; (respectively for productions of the fourth and fifth types).
Also for no s; € S and a € V; is the word s;a a subword of the left side of two
productions of the first, third and fifth types.

We say that a word sP, where s € S and P € V, is final iff P does not begin with a
letter a such that sa is a subword of the left side of some production in F.

We define two Turing machines 71 and 7 to be equivalent iff L(m) = L(72).

The language accepted by a Turing Machine 7 is defined by

L(t) ={P € V] | #s1P# =" #Pys;Po# for some s; € S,
Py, P, € V¥, such that s;Po# is final}

A analytic grammar is a quadruple G = (Vy, Vp, Xy, Fg) where Vi and V7 are disjoint
alphabets, Xy € Vv, and Fg is a finite set of ordered pairs (u,v) such that u and v are
words over the alphabet Vy UV and v contains at least one letter of Vy. The elements of
Vn are called nonterminals and those of Vi terminals. Xg is called the initial letter and
the elements of Fg are called rewriting rules or productions and are written as u — v.
A grammar G with no restrictions, as given above, is called a type-0 grammar.

The language accepted by G is defined by

L(G)={P|PecVy;, P="Xy}



The following result is given in Salomaa [7]. The construction within the proof is used in
the translation from a universal Turing machine to an equivalent type-0 grammar. Thus
for completeness we include the proof of this result in our paper.

Theorem 2.1. If a language is acceptable by a Turing machine 7, then it is of type-0.

Proof. Assume that L = L(7) where in connection with 7 we use the notations of the
definition. We define a type-0 analytic grammar G which recognizes L. The terminal
alphabet of G is V;. The nonterminal alphabet consists of the letter in V' — V; and of
the additional letters Xy, X; and Xo. The initial letter is Xy. The production set of G
consists of the productions of 7 and of the productions

A—)#Sl, A—)#, sia—>X1, le—>X1,
Xa# — X, si#t — X, bXo — Xo, #Xo— X

where s; ranges over Sy, b ranges over Vi, and for each s;, a ranges over such elements
of V4 that s;a is final. It can now be verified that L(G) = L(7).
If P € L(7), there is a derivation according to G where if P = \

P = #81 = #81# = #X2 = Xp
or alternatively if P # A
P = #s1P = #s1P# =% #Pis;aPo# = # P X1 Po# =% # P X5 =% Xo

Consequently, P € L(G).

Assume, conversely, that P € L(G).

If P = )\, there is a derivation according to G from #s1# to Xy. Then \ € L(7).

If P # A, there is a derivation according to G from #P;s;aPa# to Xy, and a derivation
from P to #P;s;aPs# where s; € S1, a € V1, Pi, P> € V}* such that s;a is final.

Thus P € L(7). O

An extended H system is a quadruple v = (V,T, A, R) where V is an alphabet, T C V,
ACV* and R C V*#V*$V*#V™*, with #, $ special symbols not in V.

We call V' the alphabet of v, T' the terminal alphabet, A the set of azioms, and R the
set of splicing rules.

For z,y,z € V* and r : uy #u28us#uyg in R, we write

(z,y) Fp 2z iff = zuiusme, y = yrusugye and z = z1ujugays for some x1,x2,y1,y2 € V*
With respect to an H system + and a language L C V*, we define

o(L)y={z€V*| (z,y) Iy z for some z,y € L,r € R}
Then

o*(L) = U o'(L) where o%(L)=1L

oYL) = o' (L) Uo(ai(L)),i >0

The language generated by the H system -~ is then defined by L(y) = o*(A) N T*



The following result appears in Paun [3]. The construction within the proof is used
in the translation from a universal type-0 grammar to an equivalent universal extended
H system. Thus for completeness we include an outline of the proof of this result in our

paper.
Theorem 2.2.  The family of recursively enumerable languages coincides with the fam-

ily of languages generated by extended H systems v = (V, T, A, R), where the set of azioms
A is a finite language and the set of rules R is a reqular language.

Proof. Consider a type-0 grammar G = (V, Vr, Xy, F¢) and construct the extended H
system

v=(V,T,AR)
where
V:VNUVTU{X,XI,B,Y,Z}U{Ya | aEVNUVTU{B}}
T =V

A={XBXyY,ZY,XZ} U{ZvY |u —v € Fg} U{ZYy, X'aZ | a € Vy UVp U{B}}

and R contains the following groups of rules :

1) Xw#uY$Z#vY for u - v € Fg, w e (Vy UVp U{B})*

2) Xw#aY$Z#Y o for a € Vy UV U{B}, we (VN UV U{B})*
3) X'a#Z$X#wYa for a € VNUVTU{B}, w E (VNUVTU{B})*
4) X' wH#Y,$Z#Y fora e Vy UV U {B}, we (VyUVprU{B})*
5) X#Z$X'#wY for w e (Vy UVp U{B})*

6) #ZY$XB#wY for w e T*

7) HYSXZ#

The rules in group 1 above encode only the productions of G. Groups 2-5 produce circular
permutations of a string XwaY and nothing more, thus enabling the rules in group 1
to be applied at any place in a sentential form w of G. This allows any production of
G to be simulated in 4. We now consider groups 6 and 7 but these will only produce
terminating strings if they are applied sequentially, in order, in which case they will only
give terminal forms of strings X BwY where w is composed only of elements of 7', hence
L(G) C L(v), L(y) € L(G) and thus L(G) = L(v). 0

As the symbol # is used as a marker for the rules of the H systems we shall denote by T
the translation of the symbol # from either Turing machines or grammars to H systems.

3 Equivalent Turing Machines

As there are many ways of describing a given Turing machine we consider the equiva-
lences between two descriptions and prove that they are equivalent.

The Turing machine that we consider is used in Rogozhin [6]. Productions are of the
form g;xylq; where ¢;,q; € S, z,y € V1, I € {L, M, R} and can be read as: start in state
g; with symbol z, write symbol y, move in direction I and change into state g;.

Let 7. = (V;, F,) be a Turing machine of the type used in Rogozhin [6] and 7 = (V, F)
be a Turing machine as defined in section 2



Theorem 3.1. Given an arbitrary Turing machine 7, there exists an equivalent Turing
machine T.

Proof. Consider a machine 7 = (V, F'). We then construct a machine 7, :

Let V, = V.

Now construct F; from F' :

If P € F is of the form s;a — s;b then define a new production ¢;abMg; in F;

If P € F is of the form s;ac — asjc then define a new production g;aaRg; in F,

If P € F is of the form cs;a — sjca then define a new production g;aaLg; in F,

If P € F is of the form s;a# — as;0# or #s;a — #s;0a then no productions need
to be added to F, as there will be a P’ € F of the form s;ac — asjc or cs;a — s;ca
respectively.

Thus L(1) C L(7;)

Consider a machine 7 = (V;, F,.). We then construct a machine 7 :

Let V., =VprU{q | i € 1.m}

Let rq..r,;, be new states not in V.

Then V =VrU{s; |i € l.m}U{r;|i€l.m}

Now construct F' from F,. :

If P € F, is of the form g;xyRq; then define the following new productions in F :

$iT — Ty (overprint)
riyc — ysjc  (move right)
riy# — ys;0# (move right and extend workspace)

If P € F, is of the form g;xyMgq; then define a new production s;z — s;jy in F'
If P € F, is of the form ¢;xyLgq; then define the following new productions in F':

SiTt — Ty (overprint)
criy — sjcy  (move left)
#r;y — #s5;0y  (move left and extend workspace)

And so 7 fulfills the conditions of the definition.
Thus L(7.) C L(7) and so we have that L(7r) = L(7,). 0

The converse of the theorem also holds by the same argument.

4 An Explicit Universal H System

The universal Turing machine that we consider is UT'M (24, 2) described in Rogozhin [6].
Let 7. = (V,., F;) be the UT' M (24,2) where V, and F, are :

V, = {0,1,#) U{q | i € 1..24)

F. ={q100Rgs  ¢201Rq;  q300Lqs  q401Lg12 ¢s01Rq1  qs00Lqy
q111Rqy  q211Lgs  q310Lg2  q410Lqe9  q510Lgs  gellLgqr
q700Lgs  ¢300Lg7  q900Rq19  q1001Lgs  q1100Lgs  q1200Rq19
qr10Lgs  gsllRq2  qollLqs  q10l0Rq13 quil— q1211Lq14
q1300Rq10 q1400Lq15 q1500Rq16 q1600Rq15 q1700Rg16 q1800Rq19
q1311Rq24 quallLq11  qi511Rqi7  qiellRqio qi711Rg21  qis11Rgoo
q1901Lg3  q2001Rq1s q2100Rq22 q2201Lq19 q2301Rqo1  q2400Rq13
q1911Rq1s  q2010Rq1s  ¢2111Rq23 q2211Rg21  q2310Rg21  q2410Lg3 }



A — #81

s11l — X1

s1# — Xo

s5# — Xo

so# — Xo

s13# — Xo
st — Xo
so1# — Xo

5100 — 0s50
5111 — 1521
5904 — 1510#
0s30 — s400
1s31 — 5210
#840 — #81201
s500 — 1510
1s51 — s410
#560 — #5700
0s70 — sg00
1s71 — 5410
#5580 — #5700
$900 — 08190
1sgl — 5411
#8100 — #8401
05110 — 5400
51200 — 0s190
1s191 — s1411
51304 — 0s100#
05140 — 81500
1s141 — 51111
51504 — 0s160#
51600 — 0s150
s1611 — 1s1p1
51704 — 0s160%#
51800 — 0s190
s1811 — 1s9p1
#8190 — #8301
89000 — 15180
s90l1 — 0sq5l
52107 — 052204
05990 — 51901
89011 — 159711
52304 — 182104
859400 — 08130
1s941 — 5310

X10 — X1
0X2 —)XQ

so# — Xo

se# — Xo

s10# — Xo
s — Xo
s1s# — Xo
sooft — Xo

5101 — 0s51
s11# — 1s50#
0s21 — s301
1530 — 5410
#s31 — #5500
0s41 — s900
s501 — 1s11
Hs51 — #5600
0Osgl — s701
1570 — sg10
#s71 — #5600
sg10 — 1s90
s901 — 0s191
#s9l — #5401
51010 — 0s130
15110 — 5410
51201 — 0sq91
#5121 — #51401
51310 — 15940
15140 — 81510
#5141 — #51101
s1510 — 15170
1601 — 0s151
s161# — 1s100#
51710 — 15910
51801 — 0s191
s181# — 1s200#
51910 — 15180
52001 — 1s181
s201#F — 0s150#
89110 — 18230
15990 — 51011
S20l1# — 1s210#
59310 — 08210
59401 — 08131

#8241 — #8300 }

X11 — X1
1X5 — X5

s3# — Xo

s1# — Xo

su# — Xo
s15# — Xo
s19# — Xo
so3# — Xo
510# — 05507
$900 — 1510
1so1 — s311
#5350 — #5400
0540 — 51201
1s41 — 5910
5504 — 15104
0s60 — s700
1sgl — s711
#870 — #8800
0sg0 — s700
sgll — 1s91
s90# — 0s190#
05100 — s401
s1011 — Osy31
#8110 — #8400
5120 — 081907
51300 — 0s1¢0
s1311 — 1soyl
#5140 — #51500
51500 — 0s160
s1511 — 1sy71
5160# — 08150
51700 — 0s1¢0
s1711 — 1s9;1
51807 — 081907
0s190 — s301
S1911 — 15951
52004 — 1s150#
59100 — 05990
s9111 — 18231
#5220 — #51001
82300 — 18910
S9311 — 0s911
8240# — 08130#

Using Theorem’s 2.1 & 3.1 to transform 7, = (V;, F}.) into a type-0 grammar G gives :
Vi = {Xo,X1,Xs}, Vp=1{0,1,#}U{s; |i€c1.24} and
Fo={A—#

Xl# — X2
#X2 — Xo

s4# — Xo
ss# — Xo
st — Xo
s16# — Xo
sa0# — Xo
soa — Xo
5110 — 1590
s901 — 111
#8251 — #5301
Os31l — s200
1540 — s1211
#s41 — #5900
Os51 — sg00
1s¢0 — 5710
#sgl — #5701
Os71 — sg00
1sg0 — 5710
881# — 1820#
0Osgl — s401
151900 — s411
s10l# — 0s130#

0s121 — 51401
$1301 — 0sq1pl
s131# — Lsa40#
0s141 — 51101
s1501 — 0sy61
s151# — 1s1704
1610 — 15190
1701 — 0s161
s171# — 1s210#
51810 — 15990
15190 — s311
s19l# — 1s150#
$9010 — 0s180
52101 — 0s901
so11# — 1s2304
§9910 — 15910
§9301 — 159711
s231# — 082104
0s941 — 8300



We then use Theorem 2.2 to translate G = (Vr, Vi, Xo, F¢) to a universal H system.

Let Vir = {0,1} U {Ty4} U {Xo, X1, Xo} U{B} U {s; | i € 1..24}

Then the translation is :

V=VgU{X,X"Y,Z} U{Yy | @ € V}

T =1{0,1}

A={XBX,Y,2Y,XZ,

ZTusY, ZT4Y, ZXoY, ZX1Y, ZX,Y,

ZYu, X'aZ,

Z]_Sl[]Y, 21811Y, leloT#Y,

Z5500Y, Zs5310Y, ZTy5200Y, Z1550Y, Z1s21Y, Z15,0T4Y,
ZS?,OOY, ZSg ]_OY, ZT#SgOOY, ZSgO].Y, ZSgl].Y, ZT#SgO]_Y,
Z5400Y, Z5410Y, ZTy5400Y, Zs401Y, Zs411Y, ZTy5401Y,
Z0s50Y, Z0s51Y, Z0s50T4Y,

Z5600Y, Zs610Y, ZTy5600Y,

Z5700Y, Zs710Y, ZTy5700Y, Zs701Y, Zs711Y, ZTys701Y,
Z5300Y, Zs310Y, ZTy5500Y,

Z5900Y, Z5910Y, ZTy5900Y,

281001Y, 281011Y, ZT#SH)O]_Y,

ZOSlOOY, Zoslg 1Y, ZOSlOOT#Y, lel()OY, Z18101Y, lel()OT#Y,
ZSHO]_Y, ZSH ]_IY, ZT#SHO]_Y,

Z81201Y, Z81211Y, ZT#81201Y,

Z08130Y, 20813 1Y, Z08130T#Y,

Z51401Y, Zs1411Y, ZTy51401Y,

Z81500Y, Z815 10Y, ZT#81500Y,

Z08150Y, 20815 1Y, 208150T#Y,

ZOSlGOY, 20816 1Y, ZOslGOT#Y,

Z]_817OY, 21817 ]_Y, Z18170T#Y,

Z08180Y, Zoslg 1Y, ZOslgOT#Y, lelSOY, Z18181Y, lelSOT#Y,
Z08190Y, ZOSlg 1Y, Z08190T#Y,

ZlSQOOY, 21820 1Y, ZlSQOOT#Y,

Z08210Y, 20821 ]_Y, Z08210T#Y, 218210Y, Z1821 1Y, ZlSzloT#Y,
Z08220Y, 20822 1Y, ZOSQ20T#Y,

Z]_823OY, 21823 ]_Y, Z18230T#Y,

Z15240Y, Z15241Y, Z15240T4Y | a € Vg }

R = { Xw#s100Y$Z#0s50Y, Xw#s101Y$Z#0s51Y, Xw#s10T%Y $Z#0s50T4Y,
Xw#s110Y$Z#15,0Y,  Xw#s111Y$Z#1s21Y, Xw#s11T0Y $Z#1s,0T4Y,
XW#SQOOT$Z#1810Y, Xw#5201T$Z#131 ]_Y, Xw#SQOT#T$Z#]_810T#Y,
Xw#0sy1Y$Z#5301Y, XwHlsglY$Z#s311Y, Xw#TyusolY $Z#Tyus301Y,
Xw#0s30Y$Z#5400Y,  Xw#1s30Y$Z#5410Y, Xw#Tys30Y $Z#T45400Y,
Xw#0s31Y$Z#5500Y, Xw#lss1Y$Z#s910Y, Xw#Tys31Y $Z#Tys500Y,
Xw#0540Y$Z#51201Y, Xw#1s40Y$Z#51211Y, Xw#Tys40Y $Z#T451201Y,
Xw#0s,1TS$Z#5900Y,  Xw#1ss1T$Z#5910Y, Xw#Tys41TSZ#Tys900Y,
Xw#ss00Y$Z#1510Y, Xw#ss01Y$Z#1s11Y, Xw#ss0TyY$Z#15,0T,Y,
Xw#0s51Y$Z#5600Y, Xw#lss1Y$Z#s610Y, Xw#Tyuss1Y $Z#Tyus00Y,
Xw#0s60Y $Z#5700Y, Xw#1s¢0Y$Z#5710Y, Xw#Tyss0Y $Z#T45700Y,
XW#OSG 1Y$Z#S701Y, Xw#lsﬁ 1Y$Z#S711Y, XU)#T#S61Y$Z#T#S70]_Y,
Xw#0s70Y$Z#5300Y, Xw#1s7:0Y$Z#5310Y, Xw#Tys70Y $Z#T4s500Y,



Xw#0s71Y$Z#5600Y,  Xw#ls;1Y$Z#s610Y,  XwHTyus71Y$Z#Tys600Y,
Xw#0s30Y$Z#5700Y,  Xw#1sg0Y'$Z#5710Y,  Xw#T4ss0Y $Z# Ty s700Y,
Xw#8810Y$Z#1820Y, XU)#8811Y$Z#1821Y, Xw#581T#Y$Z#1820T#Y,
Xw#8900Y$Z#08190Y, Xw#3901Y$Z#03191Y, X’LU#SQOT#Y$Z#08190T#Y,
Xw#0s90Y $Z#5401Y,  Xw#1sg0Y $Z#5411Y,  Xw#T4s90Y $Z# Ty s401Y,
Xw#0s100Y $Z#5401Y,  Xw#1s100Y $Z#5411Y, Xw#Tus100Y $Z#Tys401Y,
Xw#81010Y$Z#08130Y, X’LU#81011Y$Z#08131Y, Xw#slolT#Y$Z#08130T#Y,
Xw#05110Y$Z#5400Y, Xw#1s51:0Y$Z#5410Y, Xw#Tus110Y$Z#T4s400Y,
Xw#51200Y$Z#03190Y, XU)#81201Y$Z#08191Y, Xw#suOT#Y$Z#05190T#Y,
Xw#03121Y$Z#51401Y, XU)#18121Y$Z#81411Y, Xw#T#8121Y$Z#T#51401Y,
Xw#31300Y$Z#03100Y, Xw#31301Y$Z#03101Y, Xw#slgoT#Y$Z#08100T#Y,
Xw#51310Y$Z#13240Y, XU)#81311Y$Z#18241Y, Xw#slng#Y$Z#15240T#Y,
Xw#03140Y$Z#31500Y, Xw#13140Y$Z#31510Y, Xw#T#8140Y$Z#T#81500Y,
Xw#03141T$Z#51001Y, XU)#18141T$Z#81011Y, Xw#T#8141T$Z#T#81001Y,
Xw#81500Y$Z#08160Y, Xw#81501Y$Z#08161Y, Xw#8150T#Y$Z#08160T#Y,
Xw#51510Y$Z#13170Y, XU)#81511Y$Z#18171Y, Xw#5151T#Y$Z#18170T#Y,
Xw#81600Y$Z#08150Y, Xw#81601Y$Z#08151Y, Xw#sl.gOT#Y$Z#0315OT#Y,
Xw#51610Y$Z#13100Y, XU)#81611Y$Z#18101Y, Xw#slﬁlT#Y$Z#15100T#Y,
Xw#81700Y$Z#08160Y, Xw#81701Y$Z#08161Y, Xw#8170T#Y$Z#08160T#Y,
Xw#51710Y$Z#13210Y, XU)#81711Y$Z#18211Y, Xw#5171T#Y$Z#18210T#Y,
Xw#51800Y$Z#03190Y, XU)#81801Y$Z#08191Y, Xw#slSOT#Y$Z#05190T#Y,
Xw#81810Y$Z#18200Y, Xw#81811Y$Z#18201Y, Xw#slng#Y$Z#ls200T#Y,
Xw#08190Y$Z#8301Y, Xw#18190Y$Z#8311Y, Xw#T#8190Y$Z#T#S301Y,
Xw#81910Y$Z#18180Y, Xw#81911Y$Z#18181Y, Xw#slng#Y$Z#18180T#Y,
Xw#52000Y$Z#13180Y, XU)#82001Y$Z#18181Y, Xw#SQOOT#Y$Z#18180T#Y,
Xw#82010Y$Z#08180Y, Xw#82011Y$Z#08181Y, Xw#8201T#Y$Z#08180T#Y,
Xw#52100Y$Z#03220Y, XU)#82101Y$Z#08221Y, Xw#5210T#Y$Z#08220T#Y,
Xw#s21 10Y$Z#18230Y, Xw#32111Y$Z#13231Y, Xw#s21 1T#Y$Z#18230T#Y,
Xw#08220Y$Z#81001Y, Xw#18220Y$Z#81011Y, Xw#T#8220Y$Z#T#81001Y,
Xw#32210Y$Z#13210Y, Xw#32211Y$Z#13211Y, Xw#8221T#Y$Z#18210T#Y,
Xw#52300Y$Z#13210Y, XU)#82301Y$Z#18211Y, Xw#8230T#Y$Z#18210T#Y,
Xw#82310Y$Z#08210Y, X’LU#82311Y$Z#08211Y, Xw#8231T#Y$Z#08210T#Y,
Xw#32400Y$Z#03130Y, Xw#32401Y$Z#03131Y, Xw#8240T#Y$Z#08130T#Y,
Xw#08241Y$Z#8300Y, Xw#18241Y$Z#8310Y, Xw#T#8241Y$Z#T#S300Y,
XwH#YSZ#Tys1Y,

Xw#YS$ZH#T,Y,

Xw#X10Y$Z#X1Y, Xw#0XoY$Z#X,Y,

Xw#X11Y$Z#X1Y, Xw#1X2Y$Z#X2Y,

Xw# X\ TpY$Z#X5Y, Xw#TyXoY$Z#X,Y,

Xw#8111Y$Z#X1Y,

Xw#s;TpYSZ#X,Y,

Xw#aY $Z#Y,,

X' a#2$ X #wY,,

X' wHY$Z+#Y,

X#Z8X'#0Y,

#ZY$X B#aY,

HYSX Z# lweVh, i€1.24, zeT* }



The resulting extended H system v = (V, T, A, R) is then universal as it is the result of
a transformation from a universal Turing machine. The proof of this is a direct result
of composing the proof of Theorem 3.1 with the proofs of Theorem’s 2.1 and 2.2. The
latter two proofs are described in more detail in Salomaa [7] and P&un [3] respectively.
When one compares the complexity of the resulting H system with that of the original
Turing machine, one obtains the following results :

V]=2(n+m+7)

T| =n

|A| < (n+1)(nm — |Final]) + 2(n + m +5) + 8

|R| < (n+ 1)(nm — |Final|) + 3(n + m +5) + 2(n + 1) + m + 5 + |Final|

where m is the number of states and n is the number of symbols of the Turing machine
7 = (Vi, Fy), Final = {Xw#saY$Z#X1Y € R|s € {s; | i€ 1.24}, a € T}, and |R|
is defined in respect to the number of groups of rules.

Note that while equality for |R| is achievable simply through the use of an optimal Turing
machine (where optimal implies that every state-symbol pair is used), equality for |A| is
not so simple. In fact if one assumes that every state is used then we may obtain a lower
bound for |A4] :

(n+1)(m—-1)+2(n+m+5)+8<|A| < (n+1)(nm— |Final|]) +2(n + m +5) + 8

If we now consider the numerical values for the complexity of our universal extended H
system we find that :

V| = 66
T| =2

|A| = 182
|R| = 270

and thus we see that this agrees with our analytic results above with |A| € [139,211] and
with equality for |R|. We also note that |A| will tend towards the lower bound when the
respective Turing machine has a significant number of intensive states where a state is
intensive iff it is the resultant state of more than two productions.
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