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Abstract

It is shown that for 1 � j � n and 1 � k � 2n; the jth letter of the

kth word of the binary re
ected Gray code of length n is equal to the

parity of the binomial coe�cient 2n�2n�j�1C[2n�2n�j�1�k=2] modulo 2.

Also it is shown how this observation and the usual iterative de�nition

of the binary re
ected Gray codes are revealed in a modi�ed version

of Sierpinski's gasket (Pascal's triangle modulo 2).

1 Introduction

A Gray code of length n is a sequence of n-bit strings (which we shall call
words) of letters from some alphabet, with the property that each word di�ers
from the next in just one position. The most celebrated of these codes are the

binary re
ected Gray codes Gn , which may be de�ned inductively as follows:
G1 consists of the words 0 and 1 (in that order), and Gn+1 is obtainable by

�rst listing Gn with each word pre�xed by 0 and then listing Gn in reverse
order with each word pre�xed by 1. For example, G2 = (00; 01; 11; 10) and

then G3 = (000; 001; 011; 010; 110; 111; 101; 100).

The Gray code Gn provides a Hamilton cycle in the n-dimensional hy-

percube Qn = f0; 1gn. Also Gray codes may be applied in signal processing,

statistical analysis to the calculation of correlation coe�cients for a variable
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subset, and even have some connection with the \Towers of Hanoi" problem.

Further details can be found in several references, such as [3], [4] or [6] or

those given at the end of [2].

In this paper a direct de�nition of the binary re
ected Gray codes is given

in closed form, in terms of residues of certain binomial coe�cients modulo 2.

Speci�cally, we prove the following.

Theorem: For 1 � j � n and 1 � k � 2n; the jth letter of the kth word

of the binary Gray code of length n is the parity (modulo 2) of the binomial

coe�cient 2n�2n�j�1C[2n�2n�j�1�k=2].

This is somewhat surprising but perhaps not entirely unexpected, however

an extensive search has not uncovered such an explicit de�nition (in closed
form) elsewhere in the literature.

The theorem arose from an observation made by the author during a
seminar by Bob Doran at the University of Auckland on Frank Gray and

the Gray code, namely that the words of the binary re
ected Gray codes
of small length occur in certain sections of a modi�ed form of Sierpinski's

gasket, or Pascal's triangle modulo 2 (see [1], or x2.2 of [5]). This observation
is explained in the next Section, and following some other preliminaries on
binomial coe�cients the theorem is proved in Section 3.

2 Binomial coe�cients modulo 2

First let nCk be the standard binomial coe�cient, de�ned as the number of
k-element subsets of an n-element set, and equal to the coe�cient of xk in the
binomial expansion of (1+ x)n; for 0 � k � n. Recall that these coe�cients

satisfy the additive identity nCk�1 +
nCk =

n+1Ck for 1 � k � n, which is
a fundamental property of Pascal's triangle.

The triangle's symmetry comes from the identity nCk =
nCn�k; and from

this it follows for example that nCn=2 is always even when n is even. On the

other hand, when n + 1 is a power of 2, every coe�cient nCk is odd; to see

this, note that nCk may be written as a product of rationals of the form
(n+1�j)=j for 1 � j � k, and in each case the highest power of 2 dividing

the numerator is equal to the highest power of 2 dividing the denominator.
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De�nition 2.1 : For integers r and s satisfying 0 � r � 2s + 1, de�ne

drs =
sC[r=2] (where [r=2] is the greatest integer not exceeding r=2).

Clearly d0s = d1s = d2s;s = d2s+1;s = 1 for all s � 0, and whenever r is

even also drs = dr+1;s, dr�1;s+ dr;s � dr;s+1 mod 2; and drr � 0 mod 2: The

proof is straightforward. A picture of the corresponding triangle of parities

of these coe�cients modulo 2 is given in Fig.1 for s � 15, with x's for 1's

and blanks for 0's. We call this a modi�ed Sierpinski gasket.

Now if we group the rows of this gasket into subsets of sizes 1, 2, 4, 8 and

so on (as increasing powers of 2), extend the de�nition of the coe�cients drs
to the case r > 2s+ 1 in some cases, and in each group consider only those

rows with index s di�ering from the index of the row at the top of the next

group by a power of 2, then the words of a re
ected binary code are revealed
as columns in each group. This is illustrated in Fig.2, where we read the

words of the code from right to left.

We can make the connection as follows:

De�nition 2.2 : For each positive integer n, and for integers j and k

satisfying 1 � j � n and 1 � k � 2n, de�ne b
(n)

k;j
to be the residue of drs

modulo 2, where s = 2n � 2n�j � 1 and r = s + 1 + 2n � k. Equivalently,

de�ne b
(n)

k;j
� 2n�2n�j�1C[2n�2n�j�1�k=2] modulo 2.

To prove our theorem we show b
(n)

k;j
is the jth letter of the kth word of

the re
ected binary Gray code of length n. Our proof requires the following
additional observations:

Lemma 2.3 : If 0 � s;t < 2m then 2m+sCt �
sCt modulo 2.

Proof. Consider each of 2m+sCt and sCt as a product of rationals of the
form (2m+s+1�j)=j and (s+1�j)=j respectively for 1�j� t. In each case

the highest power of 2 dividing the numerator (2m+s+1�j) is equal to the

highest power of 2 dividing (s+1�j); since s < 2m. [Note: this argument
works even in cases where t > s.]

Corollary 2.4 : If 0 � s;t < 2m then 2m+sC2m+t �
sCt modulo 2.

Proof. If t > s then 2m+sC2m+t = 0 = sCt; while if s � t then it follows
from the above lemma that 2m+sC2m+t =

2m+sCs�t �
sCs�t �

sCt mod 2.
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Fig.1: Modi�ed Sierpinski Gasket
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1 x x 1 1 0 0
2 x x 0 1 1 0

{ { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { {
3 x x x x 1 1 1 1 0 0 0 0
4 x x
5 x x x x 0 0 1 1 1 1 0 0
6 x x x x 0 1 1 0 0 1 1 0

{ { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { {
7 x x x x x x x x 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
8 x x
9 x x x x
10 x x x x
11 x x x x x x x x 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
12 x x x x
13 x x x x x x x x 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
14 x x x x x x x x 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

{ { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { {

Fig.2: Occurrence of binary Gray codes in modi�ed Sierpinski gasket
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3 Proof of the Theorem

We now verify that b
(n)

k;j
(as de�ned in Section 2) is the jth letter of the

kth word of the re
ected binary Gray code Gn of length n described in the

Introduction. Recall that G1 consists of the words 0 and 1 (in that order),

and Gn+1 is obtainable by �rst listing Gn with each word pre�xed by 0 and

then listing Gn in reverse order with each word pre�xed by 1.

First it is easy to see from Fig.2 or De�nition 2.2 that the theorem is true

for n = 1: in fact b
(1)

1;1 �
0C1 � 0 and b

(1)

2;1 �
0C0 � 1 modulo 2.

A similarly easy calculation shows that b
(n)

k;1 �
�
0 when 1 � k � 2n�1

1 when 2n�1 < k � 2n

for 2n�2n�1�1C[2n�2n�2�k=2] =
2n�1�1C[2n�1+2n�2�k=2] is zero when 1 � k � 2n�1;

and odd when 2n�1< k � 2n (since 2a�1Cb is odd whenever 0 � b � 2a�1).

On the other hand, for j � 2 and for all k � 2n�1 we note that

b
(n)

2n�k+1;j �
2n�2n�j�1C[2n�2n�j�1�2n�1+k=2�1=2] by de�nition

� 2n�2n�j�1C[2n�1�2n�j�1+k=2�1=2]

� 2n�2n�j�1C2n�2n�j�1�[2n�1�2n�j�1+k=2�1=2] as sCt =
sCs�t

� 2n�2n�j�1C2n�1�2n�j�1�[k=2+1=2]

� 2n�1�2n�j�1C2n�1�2n�j�1�[k=2+1=2] by Lemma 2.3

� 2n�2n�j�1C2n�2n�j�1�[k=2+1=2] by Corollary 2.4

� 2n�2n�j�1C[2n�2n�j�1�k=2] as �[k=2 + 1=2] = [�k=2]

� b
(n)

k;j
modulo 2,

which is the required \re
ective" property of the code.

Finally also for j � 2 and all k � 2n�1 we have

b
(n�1)

k;j�1 �
2n�1�2(n�1)�(j�1)

�1C[2n�1�2(n�1)�(j�1)�1
�k=2] by de�nition

� 2n�1�2n�j�1C[2n�1�2n�j�1�k=2]

� 2n�2n�j�1C[2n�2n�j�1�k=2] by Corollary 2.4

� b
(n)

k;j
modulo 2,

which is now enough to complete the proof by induction on n.
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