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Abstract

We study �nite deterministic incomplete automata without initial states. This means that

at any stage of a computation there is at most one transition to the next state. We will

�rst investigate how two incomplete automata can simulate each other. Further on we con-

struct an incomplete automaton which simulates a given automaton S and has the minimum

number of states compared to any other automaton simulating S. Finally, we study Moore's

uncertainty principles for incomplete automata. In contrast with the case of complete au-

tomata, it is possible to construct incomplete three-state automata displaying both types of

complementarity.

1 Introduction

The theory of relativity and quantum mechanics have altered the classical concept of physical

objectivity: the experimenter is situated in the universe and can be modeled as a \sturdy, classical

entity" composed of a macroscopic number of microscopic objects. The experimenter is bound by

complementarity: he experiences either a certain type of observation or a di�erent, complementary

one. This complementarity is tied up with measurement, making it a highly controversial matter

(see, for example, Wigner [15], Wheeler [13], and Bell [1]). As Greenberg [10] mentions, in certain

instances it is even possible to \reconstruct" the quantum wave function after its so-called \col-

lapse", where not a single quantum bit of information remains available from the \measurement".

Moore [12] was the �rst to study some experiments on �nite deterministic automata in an

attempt to understand what kind of conclusions about the internal conditions of a �nite machine

it is possible to draw from input-output experiments.1 A Moore experiment can be described as

follows: a copy of the machine will be experimentally observed, i.e. the experimenter will input a

�nite sequence of input symbols to the machine and will observe the sequence of output symbols.

The correspondence between input and output symbols depends on the particular chosen machine

and on its state at the beginning of the experiment. The experimenter will study sequences of

input and output symbols and will try to conclude that \the machine being experimented on was

in state q at the beginning of the experiment". Moore's experiments have been studied from a

mathematical point of view by various researchers, notably by Ginsburg [8], Gill [7], Chaitin [5],

Conway [6], Brauer [2], Calude, Calude, Svozil and Yu [4]. The main conclusion of these studies is

that it is impossible to determine the initial state of an automaton and, consequently, the classical
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theory of �nite deterministic automata { which considers automata with initial states { is not

adequate. The �rst step to remedy this situation was to study �nite deterministic automata

without initial states, see Calude, Calude and Khoussainov [3]. The second natural step is to take

into consideration the fact that some internal transitions of the automaton cannot be known or

measured, leading to the notion of incomplete automata without initial states.
We will �rst de�ne and study the complexity of various types of simulations between incomplete

automata. Minimal incomplete automata will be constructed and proven to be unique up to an

isomorphism; this situation parallels and extends the theory of complete automata without initial

states (see Calude, Calude, Khoussainov[3]), but heavily contrasts with the case of incomplete

Mealy automata without initial states where \... there frequently is more than one minimal{state

machine of an incomplete machine S" (see Ginsburg [8, p. 46]).2

As in the case of complete automata, we will build our results on an extension of Myhill{Nerode

technique; all constructions will only make use of \automata responses" to simple experiments,

i.e., no information about the internal machinery will be considered available.

In the second part of the paper we will study the notions of complementarity CI and CII ,

introduced in Calude, Calude, Svozil and Yu [4]. Both of these phenomena are closely related to

Heisenberg's Uncertainty Principle in Physics, as was noticed by F.E. Moore [12] already in the

late 50's. In Physics it is impossible to measure both the velocity and the position of an electron

without a�ecting the other one; in automata theory the information of knowing that any two given

states are distinguishable is of no use when we try to �nd for each state a single experiment which

distinguishes it from the other states.

In contrast to the case of complete automata, some experiments performed on incomplete

automata may not be relevant; this makes these devices even better models for physical reality.

Two major di�erences between complete and incomplete automata found in this paper are the

following:

A) Complementarity properties CI=CII cannot hold for a complete automaton with less than

four states; however, there exist three-state incomplete automata having CI=CII .

B) The case of having only one element in an output alphabet is trivial and not relevant for

complete automata; on the other hand, we are able to construct, for any given n � 3,

an incomplete automaton having n states with the same output and still have properties

CI=CII .

1.1 Notations

If S is a �nite set, then jSj denotes the cardinality of S. A partial function f : A
�
! B is a

function de�ned for some elements from A. In case f is not de�ned on a 2 A we write f(a) =1.

Let D(f) = fa 2 A j f(a) 6= 1g denote the domain of f . If D(f) = A, we say that f is total.

Two partial functions f and g are equal, when D(f) = D(g) and f(a) = g(a), for every a 2 D(f).

If � is a �nite set, called alphabet, then �� stands for the set of all �nite words over �; the empty

word, denoted by �. By w+ we mean all nonempty powers wi, i > 0, of the word w 2 �� whereas

w� includes also w0, the empty word. The length of a word w is denoted by jwj.

We �x two �nite, nonempty alphabets � and O: � contains input symbols, and O contains

output symbols. A deterministic (�nite) incomplete automaton over the alphabets � and O

is a system A = (SA;�A; FA), where the set of states SA is a �nite, nonempty set, the transition

table �A is a partial function from SA�� to the set of states SA, and the output function FA
is a total mapping from the set of states SA into output alphabet O.

Since �A is a partial function, D(�A) denotes the domain of �A. Thus D(�A) is a subset of

SA�� and needs not include every state{input pair. For a current state q 2 SA and a current input

2Ginsburg continues by saying: \While it is easy to �nd a solution to the minimalization problem when the
machine is complete, it is vastly more di�cult when the machine is incomplete. In fact, there is still no complete
satisfactory procedure for �nding a solution to the incomplete case".
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� 2 �, �A(q; �) is the next state of A if (q; �) 2 D(�A); otherwise, the next state is unde�ned.

Consequently, such automata are usually quali�ed as being incompletely speci�ed; hence the name

incomplete, see Ginsburg [11]. We will say that a �nite automatonA = (SA;�A; FA) is complete

when �A is a total function, so every complete automaton is a special case of an incomplete

automaton. To make the di�erence clear, an incomplete automaton which has at least one state

s 2 SA and one letter � 2 � such that �A(s; �) =1 is called a proper incomplete automaton.

In this paper we will deal only with deterministic, incomplete or complete, automata; for this

reason we will omit the word deterministic in the sequel.

Let A = (SA;�A; FA) be an incomplete automaton. We will extend the transition diagram

�A to a partial function, also denoted by �A, �A : SA ��� �
! SA, as follows: for every s 2 SA,

w 2 �� and � 2 �,

�A(s; �) = s; and

�A(s; �w) =

�
�A(�A(s; �); w); if �A(s; �) 6=1;

1; otherwise.

Furthermore, for all p 2 SA, the set WA(p) = fw 2 ��
j �A(p; w) 6= 1g consists of all words

leading to complete computations on state p. Following Ginsburg [9], we say that a word u is

applicable to the state p if u 2WA(p).

The following remarks are straight consequences of de�nitions.

Lemma 1.1 Let A = (SA;�A; FA) be an incomplete automaton. Then

1) For any word w = �1�2 : : : �n 2 ��, �i 2 �, 1 � i � n, and a state s 2 SA, �A(s; w) 6= 1

i� �A(s; �1) 6=1; �A(s; �1�2) 6=1; : : : ; �A(s; �1�2 : : : �n) 6=1.

2) For all p 2 SA and u; v 2 ��, vu 2WA(p) i� v 2WA(p) and u 2WA(�A(p; v)).

3) If vu 2WA(p), then v 2WA(p).

4) For all p 2 SA, � 2 WA(p).

5) A is complete i� for all s 2 SA, WA(s) = ��.

In drawing graph representations of incomplete automata, we denote states by circles and label

them with symbols from the output alphabet. For example, in the �gure below there is a transition

from p to q, labeled by a, that is �(p; a) = q. The state p emits output 1, FA(p) = 1, and q emits

output 0, FA(q) = 0.

p | 1 q
a

0|

We will next de�ne, following Calude, Calude, Khoussainov [3], the response of an incomplete

automaton A = (SA;�A; FA) to an input signal w 2 ��.

� The total response of A is the partial function RA : SA ��� �
! O�,

RA(s; �) = FA(s); and

RA(s; �1 : : : �n) = FA(s)FA(�A(s; �1))FA(�A(s; �1�2)) : : : FA(�A(s; �1 : : : �n));

for s 2 SA, �1 : : : �n 2WA(s), �i 2 �, n � 1 and 1 � i � n.

� The �nal response of A is the partial function fA : SA��?
�
! O, fA(s; w) = FA(�A(s; w)),

for all s 2 SA and w 2 WA(s).
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Thus, the total response is a sequence of outputs emitted by all the states that are visited in the

complete computation of the input, whereas the �nal response is the output emitted only by the

last state. Notice that D(RA) = D(fA).

Example 1.1 Let � = fa; bg, O = f0; 1g and consider the three-state incomplete automaton A

presented below.

0p

r

q
b

|

|

| a

ba

1

1A:

The output function is de�ned by FA(p) = 0 and FA(q) = FA(r) = 1. Clearly, RA(p; aba) =

0111, RA(q; aba) = 1101, and RA(r; aba) = 1. We also have fA(p; aba) = 1, fA(q; aba) = 1, and

fA(r; aba) =1.

2 Simulations

We say that an incomplete automaton B simulates another incomplete automaton A if B can

perform all computations performed by A in the same way. It turns out that there are various

possibilities to model this intuitive notion.

2.1 Strong and Weak Simulations

Let A = (SA;�A; FA) and B = (SB ;�B ; FB) be incomplete automata, and �x a mapping h :

SA ! SB : Consider the following conditions:

(i) For all s 2 SA, WA(s) �WB(h(s)).

(ii) For all s 2 SA, WA(s) =WB(h(s)).

(iii) For all s 2 SA and � 2 � \WA(s), h(�A(s; �)) = �B(h(s); �).

(iv) For all s 2 SA and w 2WA(s), RA(s; w) = RB(h(s); w).

(v) For all s 2 SA and w 2WA(s), fA(s; w) = fB(h(s); w).

We de�ne two types of simulations: weak and strong. In the weak case, for every state s 2 SA
there is a state h(s) 2 SB such that h(s) does everything that s does (and possibly more) whereas

in the strong simulation h(s) does exactly what s does (and nothing more). Formally, we say that

� A is weakly simulated by B, A � B, if the mapping h satis�es (i); (iii) and (iv);

� A is weakly f{simulated by B, A �f B, if the mapping h satis�es (i); (iii) and (v);

� A is strongly simulated by B, A� B, if the mapping h satis�es (ii); (iii) and (iv);

� A is strongly f{simulated by B, A�f B, if the mapping h satis�es (ii); (iii) and (v).

Clearly, strong simulation implies weak simulation, but the converse implication is false as the

following example shows.
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p | |0 0sB:

t

A: 1|q

b a

b

a

a1|r

b1|

Example 2.1 The incomplete automaton A is weakly (but not strongly) simulated by the incom-

plete automaton B above via the mapping h : SA ! SB , h(p) = s, h(q) = t; however, the converse

implication fails to be true: there is no mapping from SB to SA which preserves the computational

power of the state r.

We will next study the connection between the strong/weak simulation and f{strong/f{weak

simulation. It turns out that it makes no di�erence whether we de�ne simulation by total or �nal

response. This is the case also for complete automata, see Calude, Calude, Khoussainov [3], and

since the proofs are quite similar (we only have to restrict ourselves to applicable words of the

given states) we omit them here.

Lemma 2.1 If h : SA ! SB and B strongly/weakly (or f-strongly/f-weakly) simulates A via h,
then h(�A(s; w)) = �B(h(s); w), for all s 2 SA, w 2WA(s).

Note that for strong simulations the equality h(�A(s; w)) = �B(h(s); w) holds actually true for

all s 2 SA and w 2 ��, since �A(s; w) = �B(h(s); w) =1; for w =2 WA(s). For weak simulations

this is not the case; for instance, in Example 2.1, �A(p; b) =1 but �B(h(p); b) = �B(s; b) 6=1.

Theorem 2.1 For any incomplete automata A and B:

1) A is strongly simulated by B i� A is strongly f{simulated by B.

2) A is weakly simulated by B i� A is weakly f{simulated by B.

The following result shows that in some sense all strong simulations preserve the completeness

of automata.

Theorem 2.2 Let A and B be incomplete automata.

1) If A� B and B is complete, then A is also complete.

2) If A� B and A is properly incomplete, then B is also properly incomplete.

Proof. Let h : SA ! SB be the mapping verifying properties (ii); (iii) and (iv).

To prove 1) assume that B is a complete automaton. By Lemma 1.1, this is equivalent to the

fact that WB(q) = ��, for any q 2 SB . Hence also WB(h(p)) = ��, for any p 2 SA, and since

WA(p) =WB(h(p)) by property (ii), the automaton A is also complete.

To prove 2) assume that A is a proper incomplete automaton. This means that for some state

s 2 SA, WA(s) is a proper subset of �
�. Again by property (ii), WB(h(s)) is also a proper subset

of ��, which proves that B is properly incomplete. 2

Corollary 2.1 Let A and B be incomplete automata. If A � B and B � A, then A and B are
both either complete or proper incomplete automata.
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A: |q 0
cb

a, b, c

r | 0 s | 0 B: p | 0

a a, b a, b, c

Theorem 2.2 and Corollary 2.1 are equally valid for strongly f{simulation because of Theo-

rem 2.1. For weak simulations there is no corresponding result. In particular, Corollary 2.1 does

not hold for weak simulations. For example, A and B above are weakly simulating each other,

even though A is properly incomplete and B is complete.

2.2 Behavioral Simulations

In this section we discuss another notion of simulation, the behavioral simulation, which is weaker

than all previous simulations; it makes use only of the outputs produced by the automaton, but not

of the transition �A (which cannot be measured under the physical interpretation of automata).

b

c

| 0

| 1

1|
c

0| a, b

c

B: 4A:

b
0|

0|

| 0

1|a b, c

b, c

p1 p2

p3

p4

q1 q

q2

q3

To motivate the following formalization, consider the incomplete automata A and B above.

Neither A nor B is strongly (nor weakly) simulating the other one; nevertheless, if we consider the

mapping h1 : SA ! SB ,

h1(p1) = q1; h1(p2) = q2; h1(p3) = q4; h1(p4) = q4;

we notice that for any state x 2 SA and any word w 2 WA(x), there is a state h1(x) 2 SB such

that starting from this state, B responds to w in the same way as A starting from the state x.

There is also a mapping h2 : SB ! SA having a similar behavior.

We are now ready to give formal de�nitions for behavioral simulations (called in what follows

�-simulations). Let A = (SA;�A; FA) and B = (SB ;�B ; FB) be incomplete automata. We say

that

� A is strongly �-simulated by B, A �� B, if there is a mapping h : SA ! SB which

satis�es conditions (ii) and (iv) in Section 2.1.

� A is weakly �-simulated by B, A �� B, if there is a mapping h : SA ! SB which satis�es

conditions (i) and (iv) in Section 2.1.

We are not going to de�ne behavioral f -simulation since the result analogue of Theorem 2.1

shows that this de�nition brings nothing new.

We also notice that Theorem 2.2 (and hence also Corollary 2.1) is valid for strong �-simulation.

Finally, notice that strong simulation implies both weak simulation and strong �-simulation

and weak simulation implies weak �-simulation, but weak simulation and strong �-simulation are

incomparable; for instance, in Example 2.1 automaton A is weakly simulated but not strongly �-

simulated by B, whereas in the example above A and B are strongly �-simulating but not weakly

simulating each other.
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3 Universal Incomplete Automata

1|

a, ba

p | |3 1 1 p4

0

|

a, b

1

a

a, b

a, br s

2 A  :3A  :

A  :1

1p | 0

p2 |

Consider the following class of incomplete automata with initial states: C = f(A1; p1); (A1; p2);

(A2; p3); (A3; p4)g, where A1, A2 and A3 are given above.

a, b

a
q qU: ||1 20 1

The incomplete automaton U has the following properties:

1. Each incomplete automaton Ai is strongly �{simulated by U with an adequately chosen

initial state from SU :

� WA1
(p1) =WU (q1) and RA1

(p1; w) = RU (q1; w), for all w 2WA1
(p1),

� WA1
(p2) =WU (q1) and RA1

(p2; w) = RU (q1; w), for all w 2WA1
(p2),

� WA2
(p3) =WU (q2) and RA2

(p3; w) = RU (q2; w), for all w 2WA2
(p3),

� WA3
(p3) =WU (q2) and RA3

(p4; w) = RU (q2; w), for all w 2WA3
(p3).

2. The automaton U , starting from any of its states, is strongly �{simulated by some automaton

(Ai; pj) from C:

� RU (q1; w) = RA1
(p1; w), for all w 2WU (q1),

� RU (q2; w) = RA3
(p4; w), for all w 2WU (q2).

We say that U is a \universal incomplete automaton" for the class C. Our aim in the sequel

is to de�ne the notion of universal incomplete automaton and to prove that every �nite class C

can be embedded into a class having a universal incomplete automaton which is unique up to an

isomorphism; �nally, we show that universality is related to minimality.

Suppose that we have a �nite class C containing pairs (Ai; qi) of incomplete automata

Ai = (Si;�i; Fi) and initial states qi 2 Si, i = 1; : : : ; n. An incomplete automaton UC =

(SUC ;�UC ; FUC ) is universal for the class C if the following two conditions hold:

1. For any 1 � i � n, there is a state s 2 SUC such that WUC (s) = WAi(qi) and RUC (s; w) =

RAi(qi; w), for all w 2WUC (s).

2. For any s 2 SUC , there is an i, 1 � i � n, such that WUC (s) = WAi(qi) and RUC (s; w) =

RAi(qi; w), for all w 2WAi(qi).

It is not hard to see that every incomplete automaton V (with no initial state) naturally de�nes

a class C(V ) for which V itself is universal. Indeed, let q1; : : : ; qn 2 SV be all the states of V , and

for each i, de�ne Ai = V . Clearly V is universal for the class C(V ) = f(A1; q1); : : : ; (An; qn)g.

Not every �nite class of �nite incomplete automata with initial states has a universal incomplete

automaton; nevertheless, we can always enlarge it to one which has this property.
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Proposition 3.1 Every �nite class of pairs of incomplete automata and initial states can be em-
bedded into a �nite class which has at least one universal incomplete automaton.

Proof. Let � = f(Ai; qi) j 1 � i � ng, where Ai = (Si;�i; Fi). Assume that all the states of

these incomplete automata are pairwise disjoint. Consider the incomplete automaton U ,

U = ([ni Si; [
n
i �i; [

n
i Fi):

Let C(U) be the class as de�ned above and take B = �[ C(U). It is easy to see that � is contained

in B and U is universal for B . 2

Theorem 3.1 The incomplete automata A and B strongly �{simulate each other i� A and B are
universal for the same class.

Proof. Suppose that A and B strongly �{simulate each other via h1 : SA ! SB and h2 :

SB ! SA. Consider the class C(A), for which the incomplete automaton A is universal. We show

that B is universal for C(A). Suppose that (A1; q1) belongs to C(A). Then for all w 2 WA1
(q1), we

have RA1
(q1; w) = RB(h1(q1); w). For every q 2 SB there exists a state q0 = h2(q) 2 SA such that

for the pair (A; q0) we have RA(q
0; w) = RB(q; w), for all w 2 WA(q

0). Hence B is also universal

for C(A).

Now assume that A and B are both universal for the class C = f(A1; q1); (A2; q2); : : : ; (An; qn)g.

For every q 2 SA there exists i 2 f1; 2; : : : ; ng, such that RA(q; w) = RAi(qi; w), for all w 2 WA(q).

Since (Ai; qi) 2 C and B is universal for C there is a state pi 2 SB { say, the minimal one according

to a �xed linear order de�ned on the set of all states { such that RAi(qi; w) = RB(pi; w), for all

w 2 WAi(qi). Hence A is strongly �{simulated by B via mapping q 7! pi. Similarly, B can be

strongly �{simulated by A. 2

An incomplete automaton A which is universal for the class C is said to be minimal if it has

the least number of states compared with all other incomplete automata universal for the same

class.

From this de�nition and Theorem 3.1 above we obtain:

Corollary 3.1 The following statements are equivalent:

1) The incomplete automaton A is a minimal universal automaton for a class C.

2) For every incomplete automaton B universal for C, if A �� B and B �� A, then jSAj �
jSB j.

We will now show how to construct a minimal incomplete automaton for each class C(A) where

A is an incomplete automaton, using the generalized Myhill{Nerode equivalence relation. Let K be

one of the response functions on A, K 2 fRA; fAg. Two states p and q from SA are K{equivalent

if

WA(p) =WA(q) and K(p; w) = K(q; w); for all w 2WA(p):

If p and q are K{equivalent we denote this fact by p �K q. Intuitively, p and q are K{equivalent,

when all computations of A which begin from p cannot be K{distinguished by computations of

A which begin from q and vice versa. It follows immediately that �K is an equivalence relation

on SA. We also obtain the following results similar to complete automata, see Calude, Calude,

Khouissanov [3].

Lemma 3.1 Let p and q be any states of an incomplete automaton A = (SA;�A; FA). Then

1) p �RA q i� p �fA q.

2) p �fA q implies �A(p; w) �fA �A(q; w), for all w 2WA(p).

8



3) p �fA q implies FA(p) = FA(q).

Since �RA and �fA are equivalent by the lemma above, we will simply use � in the sequel. For

any state s 2 SA, let [s] denote the equivalence class of s under �, that is, [s] = fp 2 SA j s � pg.

De�ne a new automaton M(A) = (SM(A);�M(A); FM(A)) such that SM(A) = f[s] j s 2 SAg, and

for all [s] 2 SM(A),

FM(A)([s]) = FA(s); and

�M(A)([s]; �) =

�
[�A(s; �)] ; if � 2 � \WA(s);

1; otherwise.

Because of Lemma 3.1, we have indeed a well-de�ned automaton and it turns out to be unique up

to an \isomorphism". An incomplete automaton A = (SA;�A; FA) is said to be isomorphic to

B = (SB ;�B ; FB) if there is a one-to-one onto mapping h : SA ! SB such that for all s 2 SA,

FA(s) = FB(h(s)), WA(s) = WB(h(s)), and h(�A(s; �)) = �B(h(s); �), for any � 2 WA(s) \ �.

Clearly, if A is isomorphic to B, then A and B strongly simulate (hence strongly �{simulate) each

other. However, the converse implication is not obviously always true.

The construction of minimal automata follows Calude, Calude, Khoussainov [3], and we easily

obtain the following results using essentially the same argument.

Theorem 3.2 For every incomplete automaton A,

1) M(A) and M(M(A)) are isomorphic.

2) M(A) and A strongly �-simulate each other.

3) M(A) is minimal.

4) If B and A strongly �-simulate each other and B is minimal, then M(A) and B are isomor-
phic.

To summarize:

Corollary 3.2 For any two minimal incomplete automata A and B the following are equivalent:

1) A and B strongly simulate each other.

2) A and B strongly f-simulate each other.

3) A and B strongly �-simulate each other.

4) A and B are isomorphic.

Corollary 3.3 Let C be a �nite class of incomplete automata with initial states and M the unique
(up to an isomorphism) universal minimal incomplete automaton for C. Then M is a complete
automaton i� all automata in C are complete.

4 Complementarity

4.1 Indistinguishability

Following the study initiated in Moore [12], think of an incomplete automaton as a black box.

Assume that we want to \distinguish" between two states p and q of the automaton A by means

of a \measurable experiment", i.e. by the responses of the automaton to an input w 2 ��. There

are two basic possibilities:
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(i) The experiment is not relevant in case �A(p; w) = �A(q; w) =1 (so RA(p; w) = RA(q; w) =

1); hence, another experiment is required.

(ii) The experiment is relevant in case w is applicable to at least one state p or q; in this case we

have two further possibilities:

(a) w distinguishes between p and q in case w is applicable to both of them and RA(p; w) 6=

RA(q; w), or w is applicable to either p or q, but not to both.

(b) w does not distinguish between p and q in case w is applicable to both of them and

RA(p; w) = RA(q; w).

To summarise, w distinguishes between p and q if RA(p; w) 6= RA(q; w) (meaning that either w

is applicable to both p and q and the responses are di�erent or w is applicable to only one of the

states). In the remaining cases, w may not distinguish or may not be relevant for distinguishing

between p and q. The above facts motivate the introduction of the following notions.

Let A = (SA;�A; FA) be an incomplete automaton. The states p; q 2 SA are indistinguish-

able i�

WA(p) =WA(q) and RA(p; w) = RA(q; w); for all w 2 WA(p):

We notice that p and q are indistinguishable i� they are RA-equivalent as in Section 3. Hence,

because of Lemma 3.1, we can de�ne indistinguishability by �nal response fA instead of total

response RA.

If the states p and q are not indistinguishable, we say that they are distinguishable, and every

word from the set

fw 2WA(p) [WA(q) j RA(p; w) 6= RA(q; w)g (1)

is said to distinguish between p and q. In the same way, a word w cannot distinguish between

p and q if RA(p; w) = RA(q; w) or w 62WA(p) [WA(q).

4.2 Computational Complementarity

Let A = (SA;�A; FA) be an incomplete automaton. Following the terminology of Calude, Calude,

Svozil, Yu [4], we de�ne the properties A, B and C as follows.

A Every pair of the distinct states of A are distinguishable.

B For every state p of A there exists a word w 2 �� which distinguishes p from all the other

states.

C There exists a word w which distinguishes between any two distinct states of A.

The complementarity properties CI (property A but not B) and CII (property B but not C)

can be stated as follows.

CI Every state is distinguishable from the others but there is some state p for which there is no

single experiment that distinguishes p from the other states.

CII For every state there is a word which distinguishes it from the other states but there is no

single experiment which can distinguish between any two given states of the automaton.

Example 4.1 Automaton A below has property A since any two states are distinguishable. For

instance, the word w = b distinguishes between q1 and q2 since w 2 WA(q1) nWA(q2). But A

does not have property B. If we choose w = ax or w = cx, x 2 ��, then the states q1 and q2 are

indistinguishable and if we choose w = bx then q1 and q4 are indistinguishable. Hence there is no

experiment which distinguishes the state q1 from the other states.
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On the other hand, automaton B has property B since by choosing the words a, b, c, and a

for the states q1, q2, q3, and q4, respectively, each of them can be distinguished from the other

states. There is, however, no single experiment which can distinguish between any two states. For

w = ax, where x 2 ��, the states q2 and q4, for w = bx the states q1 and q4, and �nally for w = cx,

the states q1 and q2, respectively, are indistinguishable.

4.3 Deciding Properties A, B, C

For complete automata the properties A, B and C were shown to be decidable in Calude, Calude,

Svozil, Yu [4]. In this section we will construct an algorithm which is more general than the one

presented in Calude, Calude, Svozil, Yu [4], since it is applicable also for complete automata.

Let A = (SA;�A; FA) be an incomplete automaton. Having property A means that for each

pair of its distinct states p and q, there is a wordw 2 WA(p)[WA(q) for whichRA(p; w) 6= RA(q; w).

In other words the distinguishing sets

Rp;q = fw 2 WA(p) [WA(q) j RA(p; w) 6= RA(q; w)g

are nonempty for all p; q 2 SA, p 6= q.

Consider, for each state q 2 SA, the �nite deterministic automaton

Mq = (S0;�0
�O; q; �;�)

where S0 = SA [f#g[ f�g and �0 = �[f�g, q is the initial and � the �nal state. The transition

function � is de�ned, for p 2 SA, � 2 �, � 2 O,

�(p; (�; �)) =

8<
:

�A(p; �) if FA(p) = � , � 6= �, and �A(p; �) 6=1;

� if FA(p) = � , and � = �;

# otherwise,

and, for p 2 f#;�g, � 2 �0, � 2 O,

�(p; (�; �)) = #:

It follows immediately that for p 2 SA and (�1; �1) � � � (�n; �n) 2 (�0
�O)�,

�(p; (�1; �1) � � � (�n; �n)) = � i� �1; : : : ; �n�1 2 �; �n = �; and RA(p; �1 : : : �n�1) = �1 : : : �n;

and, hence,

L(Mq) = f(w�;RA(q; w)) j w 2 WA(q)g:

But this means that properties A, B and C are algoritmically decidable. Indeed, we have

1. A has A i� Rp;q 6= ;, for all p; q 2 SA, p 6= q,
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2. A has B i� for all q 2 SA,
T
p6=q Rp;q 6= ;,

3. A has C i�
T
q2SA

T
p6=q Rp;q 6= ;,

and, for any states p and q,

Rp;q 6= ; i� (L(Mp) [ L(Mq)) n (L(Mp) \ L(Mq)) 6= ;:

A: q | 0 0 b|s | 0a r a p | 0

c b

Example 4.2 Consider the automaton A above. We notice that A has property CI since all states

are distinguishable but for the states p and s there is no single experiment which distinguishes

them from all the other states. The applicable words for each state are the following

W (q) = f�; ac�b�g; W (r) = fc�b�g; W (s) = fb�g; W (p) = f�; ab�g;

and the distinguishing sets

Rq;r = fac�b�; c+b�; c�b+g, Rq;s = fac�b�; b+g, Rq;p = fac+b�g,

Rr;p = fab�; c+b�; c�b+g, Rr;s = fc+b�g, Rs;p = fb+; ab�g.

Hence A cannot have property B since

Rq;p \ Rr;p \Rs;p = ; = Rq;s \ Rr;s \Rs;p;

but it has A since every distinguishing set is nonempty.

We end this section by showing that the decidability of property A in incomplete case can be

drawn also from the known result of the complete case, see Conway [6].

Let A = (SA;�A; FA) be an incomplete automaton. We will turn it complete by adding an

extra state, denoted by X , which takes care of all unde�ned transitions of A. Formally, de�ne

A� = (SA� ;�A� ; FA�) such that SA� = SA [ fXg. The transition function �A� is the same as

�A, except that �A�(p; �) = X if �A(p; �) = 1, and �A�(X; �) = X for all � 2 �. In order

to distinguish X from the other states we have to make sure that it produces a di�erent output,

FA�(X) = x where x 62 O.

Lemma 4.1 An incomplete automaton A has property A i� its completion automaton A� has
property A.

Proof. Assume �rst that A has property A, i.e., every pair of its distinct states are distin-

guishable. Since the new state X produces a di�erent output, it can be distinguished from the

other states by the empty word. On the other hand, for any pair of distinct states of A there is a

word which is either applicable to both of these states or to one of them. In both of these cases w

can distinguish the states also in A�.

Assume now that A does not have A and let p and q be indistinguishable, i.e.,WA(p) =WA(q)

and RA(p; w) = RA(q; w) for all w 2 WA(p). Take any word w 2 ��. We can write it in such a

way that w = u�v where u 2 WA(p) (u may also be empty) and u� 62 WA(p). But this means

that �A�(p; u�) = X = �A�(q; u�) and, hence, RA�(p; w) = RA�(q; w). So p and q must be

indistinguishable also in A�. 2

The following example shows that the completion automaton A� does not preserve properties

B and C. This is due to the fact that the states p and q can be distinguished in A by the word w

which is not applicable to both of these states in A but will become applicable in A�.
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Example 4.3 Automaton A below has property CI (AnB) since there is no word which distin-

guishes p or s from the other states. But the new automaton A� has B since now the word w = ac

distinguishes p and w = c distinguishes s, respectively, from the other states.

| |r | 1 b s | 1

bc

A:

0|q p | 0

a a

r 1 1s

b

p 0|| xq | 0 X
b, c

b

a, c aa

a, b, c

c

b, c

a

A  :α

4.4 Complexity Issues

We start this section with an interesting observation about incomplete automata. The following

example shows that, contrary to the case of complete automata (see Conway [6]), complementary

properties CI and CII can be found already for three-state automata. We also notice that because

of the de�nition of indistinguishability these properties may exist even though the output alphabet

has only one letter.

0 0p q 0 p q 0

a

| |||

r | 0
a a

b
a b

b

c

c B: bA:

r 0|

a

Example 4.4 Consider automaton A above. It has clearly property A since, for instance, w = b

distinguishes between p and r (RA(p; w) = 00 6= 1 = RA(r; w)). But A does not have property

B since the state p does not have any single experiment which distinguishes it from the other

states. Indeed, for w = ax, the states p and q, and for w = bx, the states p and r, respectively, are

indistinguishable. Thus A has CI .

In the same way automaton B has CII , since now the words b, a, and c can distinguish the

states p, q, and r, respectively, from the other states, but there is no single experiment which can

distinguish between any two given states. For w = ax the states r and q, for w = bx the states p

and q, and �nally for w = cx the states p and r, respectively, are indistinguishable.

Another interesting problem is to consider the length of the shortest experiment needed to

decide properties A, B, C. So far only property A has been throughly studied, see for instance

Chaitin [5], Conway [6]. A short overview of this problem for properties B and C can be found in

Calude, Calude, Svozil, Yu [4].

Proposition 4.1 (Conway) Let K = (SK ;�K ; FK) be a complete automaton in a binary alpha-
bet, j�j = 2. To test property A for K it is su�cient to test the condition

RK(q; w) 6= RK(p; w) (2)

for all words of length jSK j � 2.
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Using Lemma 4.1 we can extend this result to incomplete automata though we loose the original

bound.

Theorem 4.1 The length of the shortest experiment needed to decide property A for an incomplete
automaton K = (SK ;�K ; FK) in a binary alphabet is jSK j � 1.

Proof. Consider the complete automaton K� = (SK� ;�K� ; FK�). By Proposition 4.1 it is

su�cient to test condition (2) for all words of length jSK� j � 2 in order to decide whether K�

has property A. On the other hand, by Lemma 4.1 this is equivalent for testing whether K has

property A. Since jSK� j = jSK j+ 1, this gives us the bound jSK j � 1 for an automaton K. 2

Notice that the bound jSAj � 1 cannot be improved. In Example 4.4 the shortest experiment

distinguishing between the states r and q in automaton A is w = ab.
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