CDMTCS
Research
Report
Series

Linear Independence and
Choice

Douglas Bridges
Department of Mathematics
University of Waikato

Fred Richman
Department of Mathematics
Florida Atlantic University

Peter Schuster
University of Munchen

CDMTCS-037
May 1997

Centre for Discrete Mathematics and
Theoretical Computer Science

88868888




LINEAR INDEPENDENCE AND CHOICE

DouGrAs BRIDGES FrRED RICHMAN
UNIVERSITY OF WAIKATO FLORIDA ATLANTIC UNIVERSITY

PETER SCHUSTER
UNIVERSITY OF MUNCHEN

30 April 1997

ABSTRACT. The notions of linear and metric independence are investi-
gated in relation to the property: if U is a set of m + 1 independent vectors,
and X is a set of m independent vectors, then adjoining some vector in U to
X results in a set of m + 1 independent vectors. A weak countable choice ax-
iom is introduced, in the presence of which linear and metric independence are
equivalent. Proofs are carried out in the context of intuitionistic logic.

1. INTRODUCTION

A commutative ring with identity is local if whenever a 4 b is a unit, either a or b
is a unit. A Heyting field is a commutative local ring such that if ¢ is not a unit,
then @ = 0. Any local ring has a natural inequality, ¢ # b, defined to mean that
a — b is a unit. Because the ring is local, if @ + b # 0, then a # 0 or b # 0, that is,
the inequality is an apartness. In a Heyting field, this inequality is tight: if @ is not
different from b, then « = b. This does not mean that a Heyting field is discrete:
that is, either a # b or a = b.

A Heyting vector space is a module over a Heyting field, with an inequality
such that the algebraic operations are strongly extensional—so that, for example, if
r+y # 2’ +y, then x # 2’ or y # y'. In particular, if  +y = 0, then  # 0 or y # 0,
and if ax # 0, then ¢ # 0 and « # 0.

The complex numbers form a Heyting field. A normed vector space over the
complex numbers, with & # 0 defined to be ||z|| # 0, is a Heyting vector space. As
we will be dealing exclusively with Heyting fields and Heyting vector spaces, we will
henceforth suppress the qualifier “Heyting.”

Vectors x4, ..., x, are linearly independent if }_ a;z; # 0 whenever some a; # 0.
Heyting called such a family “free” to distinguish this property from its contrapositive,
weak linear independence: if 3 a;x; = 0, then a; = 0 for all 2. For normed vector

spaces there is an even stronger form of independence: x4,...,z, are metrically
independent if there exists 6 > 0 so that || a;x;|| > 6 whenever Y |a;| > 1—or
if, equivalently, the coordinate projections on the span of xy,...,x, are uniformly

continuous. It is easily seen that metric independence implies linear independence.
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Let Y be a subspace of a vector space, and = a vector. We say that x is in the
complement of Y, and write « € Y°, if © # y for each y in Y. Note that if z € Y°,
then ax +y # 0 whenever a # 0 or y # 0. It is readily seen [4, Lemma XII.4.1] that
T1,...,%, are linearly (metrically) independent if and only if «; is in the complement
of (bounded away from) the span of @q,..., 2,01 for i =1,... n.

An abstract vector space is finite-dimensional if it is spanned by a finite linearly
independent family of vectors. For a normed space to be finite-dimensional, we require
that it be spanned by a finite metrically independent family (see [1]). It is a question
of what category we are operating in: vector spaces and strongly extensional linear
transformations, or normed vector spaces and bounded linear transformations.

Heyting [3, Theorem 1, page 56] proved the following extension property for finite-
dimensional vector spaces.

EXT.  Let uy,...,uptq and x4,...,x,, be two families of linearly indepen-
dent vectors. Then there exists ¢ such that xq,...,x,,,u; is linearly
independent.

The motivating problem for this paper was to establish EXT in a not necessarily
finite-dimensional normed vector space. We prove the following results.

e EXT holds in normed vector spaces if “linearly independent” is replaced by
“metrically independent”, which is arguably the correct notion in a normed
space (Theorem 5).

e Linear independence is the same as metric independence for strictly convex
normed spaces (Corollary 8). These include Hilbert spaces and the L? spaces
for 1 < p < 0.

e Linear independence is the same as metric independence in an arbitrary normed
space in the context of a weak countable choice principle that is classically
true with no choice axiom. We show this by deriving from this principle a
lemma of Bishop’s that is used to prove that linear independence implies metric
independence (Theorem 10).

Bishop [1, Lemma 7, page 177] showed that if Y is a nonempty, complete, located
subset of a metric space, and * € Y°, then x is bounded away from Y. In fact, he
constructed, for any point x, a point yo in Y such that if « # yo, then d(z,Y) > 0.
In the proof, Bishop tacitly uses countable choice, possibly even dependent choice.

The construction in the proof of Bishop’s lemma suggests two properties that a
subset ¥ might have:
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1. Y is strongly reflective: for each x there exists yo in Y such that if @ # yo,
then x is bounded away from Y.

2. Y is reflective: for each x there exists yo in YV such that if « = yo, then x € Y°.

The first property makes sense in a metric space, the second in any set with an
inequality.

We show that if every finite-dimensional subspace is reflective, then EXT holds
(Corollary 4). This follows from a general theorem which is a positive form of the fact
that an n-dimensional subspace cannot contain n 4 1 independent vectors (Theorem
3).

Note that a subset Y is reflective if it is the image of a strongly extensional
retraction p. For in that case, yo = px has the property that if @ # yo, then « # y
for each y in Y. Indeed, either @ # y or yo # y; in the latter case, pr # y = py and

so & # .

2. BISHOP’S PRINCIPLE

Bishop’s principle [1, Lemma 7, page 177] states that a nonempty, complete, located
subset of a metric space is strongly reflective. Using the law of excluded middle,
one can easily show that any nonempty closed subset of a metric space is strongly
reflective: let yo = x if z is in Y, and let yo be any element of Y otherwise. Bishop’s
principle has many applications, for example in the proof that an independent set of
vectors in a normed vector space over a locally compact field is metrically independent
(see [4, Theorem XII.4.2]).

Here is a proof of Bishop’s principle using countable choice. The proof is not
essentially different from Bishop’s, but the appeal to countable choice is made explicit.

Theorem 1 [Bishop’s principle]. Any nonempty complete located subset of a metric
space is strongly reflective.

Proof. Let Y be a nonempty complete located subset, and = a point. We may
assume that d(z,Y) < 1. Consider the sequence of nonempty sets

A, ={(1Ly):d(z,y) < 1/n} U{(0,0):d(x,Y)>1/(n+1)}.

Countable choice produces a sequence a,, € A, such that if a,, = (0,0), then a,41 =
(0,0). From this construct a sequence in Y by replacing (1,y) by y and (0,0) by y,
where a, = (1,y,) and a,41 = (0,0). This sequence converges to the required point
Yo in Y. O

In this proof we constructed a Cauchy sequence converging to yo. To use sequential
completeness, one often needs to invoke the full axiom of countable choice. However,
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if completeness is defined without appeal to sequences, then Bishop’s principle can
be established on the basis of a very weak countable axiom of choice—see Section 5.
In any vector space one can consider the property

(*) each finite-dimensional subspace is reflective.

Using Bishop’s principle, one can show that (*) holds for vector spaces over the real
or complex numbers. As any summand Y is reflective (take yo to be the component
of  in V) finite-dimensional vector spaces satisfy (%) because EXT holds.

3. SYSTEMS OF LINEAR EQUATIONS

In order to establish EXT, we are led to analyze systems of equations. The idea
is that either the vectors xq,...,x,,,u; are independent, or there is a vector in the
span of xy,...,x, that approximates u;, in some sense. So either EXT holds, or
there are m + 1 vectors in an m-dimensional subspace that are close to independent
vectors. To rule out this latter possibility, it would be helpful to be able show that
the m + 1 vectors were linearly dependent, that is, that a homogeneous system of
linear equations, with more variables than equations, has a nontrivial solution.

This can’t quite be done, constructively. A nontrivial solution to the equation
ax+by = 0, over the real numbers, would establish that either a divides b, or b divides
a. But that property, for arbitrary real numbers ¢ and b, is equivalent to Bishop’s
omniscience principle LLPO, so does not admit a constructive proof [6, Proposition
1.3]. We can, however, get approximate solutions that are uniformly nontrivial.

Theorem 2. Let (a;;) be an m-by-m+1 matrix over a valuated field, and 6 a positive
number. There exist xy, ..., ¥, such that Z;”:"il |z;| > 1 and Y7, ‘Z;”:"il aijxj‘ < 6.

Proof. When m = 0, simply choose ;1 = 1. When m > 0, set 21 = 0 and find
a solution that works for the last m — 1 rows. Either this solution works also for the
first row, and we are done, or some a;; # 0. We may assume that ay; # 0 and clear
the first column with row operations to get a matrix (a;;) with a}; = 0 for 7 > 1, and

ay; = ayj for all j. By induction we can find x3,..., 2,41 such that Z;”:'El lz;| > 1
and

m |m+1

SO aixg| <O

=2 | 7=1

Choose x; so that Z;”:"il ay;2; = 0. Reversing the row operations yields

m

2.

=1

m+1

E CLZ']‘J}]‘

i=1

<,
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completing the proof. O
Here is a purely algebraic version of Theorem 2.
Theorem 3. Let X be the linear span of x1,...,x, in a Heyting vector space. If

Uy, ..., U,yq are linearly independent, and &1, ...,§,11 are elements of X, then there
exists ¢ such that u; # §;.

Proof. FEither ¢ # wq, in which case we are done, or else {; # 0. Suppose the
latter; we will show, by induction, that ¢, # u; for some . Write

L= ajx;
7=1
fore=1,...,n4+ 1. As { # 0, we may assume that ay; # 0. For ¢ > 1 let

le = fi—(ail/an)fl,

uh = w;— (an/a11)us.

Then & is in the span of xy,...,2,, and uj,...,u/ , are linearly independent. By
induction, & # u! for some ¢ > 1. It follows that either & # u; or & # uy. O

From Theorem 3 it follows that if finite-dimensional subspaces are reflective, then

EXT holds.

Corollary 4. Letuy,...,uyyq belinearly independent, and x4, . .., x,, vectors whose
span X is reflective. Then there exists ¢ such that u; € X°¢. In particular, if x1,...,x,,
are linearly independent, then x1,...,x,,,u; is lincarly independent.

Proof. By reflectivity, there exist & in X such that if u; # &, then u; € X°.
Theorem 3 says that u; # ¢ for some 7. O

We have the analogue of Corollary 4 for metric independence.

Theorem 5. Let wy,...,u,11 be metrically independent, and zq,...,x,, vectors
whose linear span X is located. Then there exists ¢ such that d(u;, X) > 0. In
particular, if v1, ..., x,, are metrically independent, then x4, ..., x,,,u; are metrically
independent.

Proof. We may assume that ||z;|| < 1. By metric independence, there is
e > 0 such that if 3 |A;| > 1, then 3 ||Aiu;|| > . Either the desired ¢ exists, or
d(u;, X) < e/2(n+1) for all «. We will show that the latter leads to a contradiction.
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If d(u;, X) < e/2(n + 1) for all ¢, then there exist a;; such that

_ €
2(n+1)

i3
U; — E Cl]‘il']‘
J=1

fori =1,...,n+ 1. By Theorem 2, there exist Ay,..., A,41 with 3 || =1 and

n |n+1
Z Zaﬁ)\i < 6/2.
7=11l:=1
So
n+1
Z Ay — Z)\Z’aﬁl’]‘ < 5/2
=1
and

<ef2.

HZ )\iajil'jH = Zn; (g Cl]‘i)\i) l’]‘
j= =

Hence Y || Aius|| < €, a contradiction. O

Theorem 5 raises a question: When is a finitely generated subspace located? A
subspace of a finite-dimensional normed space is located if and only if it is finite
dimensional. However, the span of a single vector in an infinite-dimensional Hilbert
space can be located without being finite-dimensional: consider the vector 3 %anen
where ¢, is an orthonormal basis, and «,, is a binary sequence that contains at most
one 1.

4. STRICTLY CONVEX NORMED SPACES

Let V' be a normed vector space over a subfield of the complex numbers. Following
Bishop [1, Corollary page 256] we say that V is (uniformly) strictly convex if for
each € > 0, there exists r < 1 so that if v and v are unit vectors, and ||u — v|| > ¢,

then jL%(u + v)H <.

Hilbert spaces are strictly convex because
e+ 0)l” + [l = o]l = 2 Jul” + 20|,

so if ||u|| = ||v]| = 1, then

1 2 4
:¢1——Hu—v”2§¢1—<f) §1—€_
4 2 32

and we can take r = 1 —¢?/32.

u—+v
2
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Any complete located subspace S of a strictly convex normed space X is strongly
reflective—in fact, S is proximinal: each x € X has a closest point in S. This
was proved for finite-dimensional subspaces in [2, 3.1 Theorem]. We shall prove the
general result, without using countable choice. First we put strict convexity in a more
usable form.

Lemma 6. Let V be a strictly convex normed space. Then for each ¢ > 0 there
exists 6 > 0 such that if | < ||u;|| <146 fori=1,2, and if H%(ul + uz)H > 1, then
Jur — ua|| < e

Proof.  Choose r < 1 so that if v and v are unit vectors, and ||u — v|| > ¢/2,
then H%(u + v)H < r. Choose

&
6 < mi (1—,—)
min T4

and let u! = u;/ ||u;]|. To show that ||uq — uz|| < e, assume that||u; — us]| > e. Then
[y — us|| = flur — wal| — [Juy — wi]| — [[uy —ual| > & — 26 > ¢/2

SO
!

!
uy + uy u1 + ug

r > —6>1—6>r,

a contradiction which shows that |[u; — us]| <e. O

Theorem 7. Let Y be a complete located subspace of a strictly convex normed
space, and let x be a point at a distance d from Y. Then there exists a unique yq in
Y such that ||@ — yo|| = d. SoY is strongly reflective.

Proof. To approximate yo within &, note that either d > 0 or d < &/4. If
d < g/4, choose y such that ||z —y| < &/2. If d > 0, we may assume that d = 1.
Choosing ¢ < ¢/4 as in the lemma, and y such that ||z — y|| < 1+ 6, consider the sets

Se={yeY:d<e/band ||z —y|| <e/2}U{yeY :d>0and ||z —y| <d+}.

These are nonempty, nested, and of diameter at most €. Hence determine an element
1o of Y that is within ¢ of each element of S..
The uniqueness follows easily from strict convexity. O

Corollary 8. In a strictly convex normed space over the real or complex numbers,
linear independence is the same as metric independence.
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Proof. Note that a finite metrically independent family over the real or complex
numbers spans a complete located subspace. We induct on the number of elements in
the family x4, ..., x,, so we may assume that x1,...,x,_1 are metrically independent
and span a complete located subspace Y. Let d be the distance from z, to Y, and

n—1
Yo = Z a;T;
=1

be as in the theorem. Then x, — yo # 0 by independence, so z, is bounded away
from Y'; whence x4,...,x, are metrically independent. O

5. A WEAK COUNTABLE CHOICE PRINCIPLE
The following choice principle suffices to derive Bishop’s principle and to prove the
fundamental theorem of algebra. It is implied by countable choice and by the law of

excluded middle.

WCC.  Given a sequence A, of nonempty sets, at most one of which is not a
singleton, then there is a choice sequence a,, € A,,.

What does it mean for at most one of the A, not to be a singleton? One possibility
is that if x,y € A, and 2/, y" € A, with n # n/, then either x = y or 2’ = y'. We will
use the (possibly) stronger condition—giving a weaker axiom—that if n # n’, then
either A, or A, is a singleton.

Lemma 9. Suppose WCC. If r is a real number, then there exists a binary sequence
An such that r # 0 if and only if A, = 1 for some n. In fact, if A, = 0, then |r| < 1/2n,
and if A\, =1, then |r| > 1/(2n + 1).

Proof. Consider the sequence of nonempty sets
A ={0:|r|<1/2n}U{l:|r| >1/(2n 4+ 1)}.
It is easily seen that if n # n/, then either A, or A,/ is a singleton. So, by WCC,

there exists a sequence A, € A,,. O

Clearly WCC is implied by countable choice. To derive it from the law of excluded
middle, note first that if all the sets A,, are singletons, there is no problem. Otherwise,
let m be the index of the nonsingleton, let a,, be an element of A,,, and for n # m
let @, be the unique element of A,. So WCC is classically true without any choice
principle.

Theorem 10. W(CC entails Bishop’s principle.
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Proof. Let Y be a nonempty, complete, located subset of a metric space, and
x a point. We may assume that d(z,Y) < 1. Using Lemma 9, construct a binary
sequence A, such that

d(z,Y) < 1/2n,

0
1 d(z,Y)>1/(2n 4+ 1).

=
=

An
An

Let
Se={y €Y d(x,y) <1/2n}.

Note that S, is nonempty if A\, = 0. Now define B, = {oo} unless A\, = 0 and
Ant1 = 1, in which case take B, = 5,. By WWC, there exists b, € B,,. Let

oo S, if A, =0,
" {bn} it A, =1, where A, =0 and A, = 1.

The diameter of ), is at most 1/n, so the sequence (C,,) defines a point yo in ¥ that is
within 1/n of any point in C,. If @ # yo, then there exists n such that d(x,yo) > 2/n,
so d(x,C,) > 1/n. Thus A\, =1, and therefore d(x,Y) > 1/(2n +1). O

We conclude by outlining how WCC suffices to construct individual roots for the
fundamental theorem of algebra. First consider the problem of constructing a root
of X? —a. Using Lemma 9, construct a binary sequence A, such that

An=0 = la| <1/2n,
Av=1 = |a| >1/(2n +1).

Let A, = {0} unless \,_; = 0 and A, = 1, in which case let A, = {x : 2* = a},
a two-element set. Another application of WCC gives, for each n, a point a, € A,.
Finally, if A,, = 1, redefine a,, to be a,, where A\,_; = 0 and A, = 1. This gives a
Cauchy sequence converging to a root of X? — a.

Now consider the fundamental theorem of algebra for any monic polynomial of

degree n > 0. A multiset of size n of complex numbers is a finite sequence z1, ..., z,.
The distance between two multisets zq,...,z, and wy,...,w, is the infimum, over
all permutations o of {1,...,n}, of sup, |z; — wy;|. This gives a metric space M,(C).

The elements of the completion M,,(C) need not be multisets, but they are approxi-
mated by multisets. To each element p of ]\ALL(C) there corresponds a unique monic
polynomial f of degree n, and the multisets approximating p give complete factor-
izations of approximations to f. The choiceless constructive fundamental theorem of
algebra says that, conversely, given a monic polynomial f of degree n, there exists
pE ]\Yn(C) (the spectrum of f) to which f corresponds, see [5].
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To prove the fundamental theorem of algebra in its traditional form, we must
construct a point in p. Let d be the diameter of u. Using Lemma 9, construct a
binary sequence A, such that

An=0 = d<1/2n,
Av=1 = d>1/(2n+1).

Let A, = {00} unless \,_;y = 0 and A, = 1, in which case let A, be the set of all
nontrivial ordered partitions of u into two separated elements py and py. Such a
partition gives a factorization of the polynomial f. By induction on degree, the set
of roots of these factors is nonempty, so we can proceed as in the quadratic case.
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