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Abstract

Do the partial order and lattice operations of a quantum logic correspond to the

logical implication and connectives of classical logic? Re-phrased, how far might a

classical understanding of quantum mechanics be, in principle, possible? A celebrated

result by Kochen and Specker answers the above question in the negative. However,

this answer is just one among di�erent possible ones, not all negative. It is our aim

to discuss the above question in terms of mappings of quantum worlds into classical

ones, more speci�cally, in terms of embeddings of quantum logics into classical logics;

depending upon the type of restrictions imposed on embeddings the question may get

negative or positive answers.

1 Introduction

Quantum mechanics is a fantastically successful theory which appears to predict novel

\mindboggling" phenomena (see Wheeler [39] Greenberger, Horne and Zeilinger [11]) even

almost a century after its development, cf. Schr�odinger [32], Jammer [14, 15]. Yet, it can

be safely stated that quantum theory is not understood (Feynman [9]). Indeed, it appears

that progress is fostered by abandoning long{held beliefs and concepts rather than by

attempts to derive it from some classical basis, cf. Greenberg and YaSin [12].

But just how far might a classical understanding of quantum mechanics be, in principle,

possible? We shall attempt an answer to this question in terms of mappings of quantum

worlds into classical ones, more speci�cally, in terms of embeddings of quantum logics into

classical logics.

One physical motivation for this approach is a result proven for the �rst time by

Kochen and Specker [19] (cf. also Specker [33], Zierler and Schlessinger [41] and John Bell

[2]; see reviews by Mermin [23], Svozil and Tkadlec [38], and a forthcoming monograph
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by Svozil [36]) stating the impossibility to \complete" quantum physics by introducing

noncontextual hidden parameter models. Such a possible \completion" had been sug-

gested, though in not very concrete terms, by Einstein, Podolsky and Rosen (EPR) [8].

These authors speculated that \elements of physical reality" exist irrespective of whether

they are actually observed. Moreover, EPR conjectured, the quantum formalism can be

\completed" or \embedded" into a larger theoretical framework which would reproduce

the quantum theoretical results but would otherwise be classical and deterministic from

an algebraic and logical point of view.

A proper formalization of the term \element of physical reality" suggested by EPR can

be given in terms of two-valued states or valuations, which can take on only one of the two

values 0 and 1, and which are interpretable as the classical logical truth assignments false

and true, respectively. Kochen and Specker's results [19] state that for quantum systems

representable by Hilbert spaces of dimension higher than two, there does not exist any

such valuation s : L ! f0; 1g designed on the set of closed linear subspaces of the space

L (these subspaces are interpretable as quantum mechanical propositions) preserving the

lattice operations and the orthocomplement, even if one restricts the attention to lattice

operations carried out among commuting (orthogonal) elements. As a consequence, the

set of truth assignments on quantum logics is not separating and not unital. That is, there

exist di�erent quantum propositions which cannot be distinguished by any classical truth

assignment.

The Kochen and Specker result, it is commonly argued, e.g. by Peres [25] and Mermin

[23], is directed against the noncontextual hidden parameter program envisaged by EPR.

Indeed, if one takes into account the entire Hilbert logic (of dimension larger than two) and

if one considers all states thereon, any truth value assignment to quantum propositions

prior to the actual measurement yields a contradiction. This can be proven by �nitistic

means, that is, with a �nite number of one-dimensional closed linear subspaces (generating

an in�nite set whose intersection with the unit sphere is dense; cf. Havlicek and Svozil

[13]).

But, the Kochen Specker argument continues, it is always possible to prove the ex-

istence of separable valuations or truth assignments for classical propositional systems

identi�able with Boolean algebras. Hence, there does not exist any injective morphism

from a quantum logic into some Boolean algebra.

Since the previous reviews of the Kochen{Specker theorem by Peres [24, 25], Redhead

[28], Clifton [5], Mermin [23], Svozil and Tkadlec [38], concentrated on the nonexistence

of classical noncontextual elements of physical reality, we are going to discuss the options

and aspects of embeddings in more detail.

Quantum logic, according to Birkho� [4], Mackey [20], Jauch [16], Kalmbach [17],

Pulmannova [27], identi�es logical entities with Hilbert space entities. In particular, el-

ementary propositions p; q; : : : are associated with closed linear subspaces of a Hilbert

space through the origin (zero vector); the implication relation ! is associated with the

set theoretical subset relation �, and the logical or _, and ^, and not 0 operations are as-
sociated with the set theoretic intersection \, with the linear span � of subspaces and the

orthogonal subspace ?, respectively. The trivial logical statement 1 which is always true is

identi�ed with the entire Hilbert space H, and its complement ; with the zero-dimensional

subspace (zero vector). Two propositions p; q are co{measurable (commuting) if p ! q0.
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Note that this is equivalent to q ! p0. The negation of p! q is denoted by p 6! q.

2 Varieties of embeddings

One of the questions already raised in Specker's almost forgotten �rst article [33, in Ger-

man] concerned an embedding of a quantum logical structure L of propositions into a

classical universe represented by a Boolean algebra B. Thereby, it is taken as a matter of

principle that such an embedding should preserve as much logico{algebraic structure as

possible. An embedding of this kind can be formalized as a mapping ' : L! B with the

following properties.1 Let p; q 2 L.

(i) Injectivity: two di�erent quantum logical propositions are mapped into two di�erent

propositions of the Boolean algebra; i.e., if p 6= q; then '(p) 6= '(q).

(ii) Preservation of the order relation: if p! q, then '(p)! '(q).

(iii) Preservation of lattice operations, i.e. preservation of the

(ortho-)complement : '(p0) = '(p)0,

or operation : '(p _ q) = '(p) _ '(q),

and operation : '(p ^ q) = '(p) ^ '(q).

As it turns out, we cannot have an embedding from the quantum to the classical uni-

verse satisfying all three requirements (i){(iii). In particular, a head-on approach requiring

(iii) is doomed to failure, since the nonpreservation of lattice operations among noncom-

muting (nonorthogonal) propositions is quite evident, given the nondistributive structure

of quantum logics.

2.1 Injective lattice morphisms

Here we shall review the rather evident fact that there does not exist an injective lattice

morphism from any nondistributive lattice into a Boolean algebra. Let us, for exam-

ple, study a propositional structure encountered in the quantum mechanics of spin state

measurements of a spin one-half particle along two di�erent directions (mod �). It is

the modular, orthocomplemented lattice MO2 drawn in Figure 1 (where p� = (p+)
0 and

q� = (q+)
0).

Clearly, MO2 is a nondistributive lattice, since for instance,

p� ^ (q� _ q+) = p� ^ 1 = p�;

whereas

(p� ^ q�) _ (p� ^ q+) = 0 _ 0 = 0:

Hence,

p� ^ (q� _ q+) 6= (p� ^ q�) _ (p� ^ q+):

In fact, it is the smallest orthocomplemented nondistributive lattice.

1Specker had a modi�ed notion of embedding in mind; see below.
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Figure 1: Hasse diagram of the \Chinese lantern" form of MO2.

The requirement (iii) that the embedding ' preserves all lattice operations (even for

non co{measurable propositions) would mean that '(p�) ^ ('(q�) _ '(q+)) 6= ('(p�) ^
'(q�)) _ ('(p�) ^ '(q+)). That is, the argument implies that the distributive law is not

satis�ed for the range of '. But since the range of ' is a subset of a Boolean algebra and

for any Boolean algebra the distributive law is satis�ed, this yields a contradiction.

Thus we arrive at the conclusion that a lattice embedding in the form of an injective

lattice morphism from Hilbert lattices into Boolean algebras is not possible even for two-

dimensional Hilbert spaces. Could we still hope for a reasonable kind of embedding of

a quantum universe into a classical one by weakening our requirements, most notably

(iii)? In the next three sections we are going to give di�erent answers to this question.

In the �rst section we restrict the set of propositions among which we wish to preserve

the three operations complement 0, or _, and and ^. We will see that the Kochen Specker

result gives a very strong negative answer even when the restriction is considerable. In the

second section we analyze what happens if we try to preserve not all operations but just

the complement. Here we will obtain a positive answer. In the third section we discuss a

di�erent embedding which preserves the order relation but no lattice operation.

2.2 Injective order morphisms preserving lattice operations among co{

measurable propositions

Let us follow Zierler and Schlessinger [41] and Kochen and Specker [19] and weaken (iii)

by requiring that the lattice operations need only to be preserved among co{measurable,

(commuting) propositions. As shown by Kochen and Specker [19], this is equivalent to the

requirement of separability of the set of valuations or two-valued probability measures or

truth assignments on L. As a matter of fact, Kochen and Specker [19] proved nonsepara-

bility, but also much more|the nonexistence of valuations on Hilbert lattices associated

with Hilbert spaces of dimension at least three. For related arguments and conjectures

based upon a theorem by Gleason [10], see Zierler and Schlessinger [41] and John Bell [2].

Rather than rephrasing the Kochen and Specker argument [19] concerning nonexistence

of valuations in three-dimensional Hilbert logics in its original form or in terms of less
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subspaces (cf. Peres [25], Mermin [23]), or of Greechie diagrams, which represent co{

measurability (commutativity) very nicely (cf. Svozil and Tkadlec [38], Svozil [36]), we

shall give two geometric arguments which are derived from proof methods for Gleason's

theorem (see Piron [26], Cooke, Keene, and Moran [6], and Kalmbach [18]).

Let L be the lattice of closed linear subspaces of the three-dimensional real Hilbert

space IR3. A two-valued probability measure or valuation on L is a map v : L ! f0; 1g

which maps the zero-dimensional subspace containing only the origin (0; 0; 0) to 0, the full

space IR3 to 1, and which is additive on orthogonal subspaces. This means that for two

orthogonal subspaces s1; s2 2 L the sum of the values v(s1) and v(s2) is equal to the value

of the linear span of s1 and s2. Hence, if s1; s2; s3 2 L are a tripod of pairwise orthogonal

one-dimensional subspaces, then

v(s1) + v(s2) + v(s3) = v(IR3) = 1:

The valuation v must map one of these subspaces to 1 and the other two to 0. We will

show that there is no such map. In fact, we show that there is no map v which is de�ned

on all one-dimensional subspaces of IR3 and maps exactly one subspace out of each tripod

of pairwise orthogonal one-dimensional subspaces to 1 and the other two to 0.

In the following two geometric proofs we often identify a one-dimensional subspace of

IR3 with one of its two intersection points with the unit sphere

S2 = fx 2 IR3 j jjxjj = 1g :

In the statements \a point (on the unit sphere) has value 0 (or value 1)" or that \two points

(on the unit sphere) are orthogonal" we always mean the corresponding one-dimensional

subspaces. Note also that the intersection of a two-dimensional subspace with the unit

sphere is a great circle.

To start the �rst proof, let us assume that a function v satisfying the above condition

exists. Let us consider an arbitrary tripod of orthogonal points and let us �x the point

with value 1. By a rotation we can assume that it is the north pole with the coordinates

(0; 0; 1). Then, by the condition above, all points on the equator f(x; y; z) 2 S2 j z = 0g

must have value 0 since they are orthogonal to the north pole.

Let q = (qx; qy; qz) be a point in the northern hemisphere, but not equal to the north

pole, that is 0 < qz < 1. Let C(q) be the unique great circle which contains q and the

points �(qy;�qx; 0)=
q
q2x + q2y in the equator, which are orthogonal to q. Obviously, q is

the northern-most point on C(q). To see this, rotate the sphere around the z-axis so that

q comes to lie in the fy = 0g-plane; see Figure 2. Then the two points in the equator

orthogonal to q are just the points �(0; 1; 0), and C(q) is the intersection of the plane

through q and (0; 1; 0) with the unit sphere, hence

C(q) = fp 2 IR3 j (9 �; � 2 IR) �2 + �2 = 1 and p = �q + �(0; 1; 0)g :

This shows that q has the largest z-coordinate among all points in C(q).

Assume that q has value 0. We claim that then all points on C(q) must have value 0.

Indeed, since q has value 0 and the orthogonal point (qy;�qx; 0)=
q
q2x + q2y on the equator
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C(q)
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between C(q) 
and the equator

Figure 2: The great circle C(q)

also has value 0, the one-dimensional subspace orthogonal to both of them must have

value 1. But this subspace is orthogonal to all points on C(q). Hence all points on C(q)

must have value 0.

Now we can apply the same argument to any point ~q on C(q) and derive that all

points on C(~q) have value 0. The great circle C(q) divides the northern hemisphere into

two regions, one containing the north pole, the other consisting of the points below C(q)

or \lying between C(q) and the equator", see Figure 2. The circles C(~q) with ~q 2 C(q)

certainly cover the region between C(q) and the equator.2 Hence any point in this region

must have value 0.

But the circles C(~q) cover also a part of the other region. In fact, we can iterate this

process. We say that a point p in the northern hemisphere can be reached from a point q in

the northern hemisphere, if there is a �nite sequence of points q = q0; q1; : : : ; qn�1; qn = p

in the northern hemisphere such that qi 2 C(qi�1) for i = 1; : : : ; n. Our consideration

above shows that if q has value 0 and p can be reached from q, then also p has value 0.

The following geometric lemma due to Piron [26] (see also Cooke, Keane, and Moran

[6] or Kalmbach [18]) is a consequence of the fact that the curve C(q) is tangent to the

horizontal plane through the point q.

If q and p are points in the northern hemisphere with pz < qz, then p can be

reached from q.

This lemma will be proved in an appendix. We conclude that, if a point q in the northern

hemisphere has value 0, then every point p in the northern hemisphere with pz < qz must

have value 0 as well.

Consider the tripod (1; 0; 0); (0; 1p
2
; 1p

2
); (0;� 1p

2
; 1p

2
). Since (1; 0; 0) (on the equator)

has value 0, one of the two other points has value 0 and one has value 1. By the geo-

metric lemma and our above considerations this implies that all points p in the northern

2This will be shown formally in the proof of the geometric lemma below.
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hemisphere with pz <
1p
2
must have value 0 and all points p with pz >

1p
2
must have

value 1. But now we can choose any point p0 with 1p
2
< p0z < 1 as our new north pole

and deduce that the valuation must have the same form with respect to this pole. This

is clearly impossible. Hence, we have proved our assertion that there is no mapping on

the set of all one-dimensional subspaces of IR3 which maps one space out of each tripod

of pairwise orthogonal one-dimensional subspaces to 1 and the other two to 0.

In the following we give a second topological and geometric proof for this fact. In this

proof we shall not use the geometric lemma above.

Fix an arbitrary point on the unit sphere with value 0. The great circle consisting of

points orthogonal to this point splits into two disjoint sets, the set of points with value 1,

and the set of points orthogonal to these points. They have value 0. If one of these two

sets were open, then the other had to be open as well. But this is impossible since the

circle is connected and cannot be the union of two disjoint open sets. Hence the circle

must contain a point p with value 1 and a sequence of points q(n), n = 1; 2; : : : with value

0 converging to p. By a rotation we can assume that p is the north pole and the circle lies

in the fy = 0g-plane. Furthermore we can assume that all points qn have the same sign

in the x-coordinate. Otherwise, choose an in�nite subsequence of the sequence q(n) with

this property. In fact, by a rotation we can assume that all points q(n) have positive x-

coordinate (i.e. all points q(n), n = 1; 2; : : : lie as the point q in Figure 2 and approach the

northpole as n tends to in�nity). All points on the equator have value 0. In the �rst proof

we have seen that v(q(n)) = 0 implies that all points in the northern hemisphere which

lie between C(q(n)) (the great circle through q(n) and �(0; 1; 0)) and the equator must

have value zero. Since q(n) approaches the northpole, the union of the regions between

C(q(n)) and the equator is equal to the open right half fq 2 S2 j qz > 0; qx > 0g of the

northern hemisphere. Hence all points in this set have value 0. Let q be a point in the left

half fq 2 S2 j qz > 0; qx < 0g of the northern hemisphere. It forms a tripod together with

the point (qy; q�x; 0) in the equator and the point (�qx;�qy;
q2x+q

2
y

qz
)=jj(�qx;�qy;

q2x+q
2
y

qz
)jj

in the right half. Since these two points have value 0, the point q must have value 1.

Hence all points in the left half of the northern hemisphere must have value 1. But this

leads to a contradiction because there are tripods with two points in the left half, for

example the tripod (�1

2
; 1p

2
; 1
2
), (�1

2
;� 1p

2
; 1
2
), ( 1p

2
; 0; 1p

2
). This ends the second proof

for the fact that there is no two-valued probability measure on the lattice of subspaces of

the three-dimensional Euclidean space which preserves the lattice operations at least for

orthogonal elements.

2.3 Injective morphisms preserving order and complementation

We have seen that we cannot hope to preserve the lattice operations, not even when we

restrict ourselves to operations among co-measurable propositions.

An even stronger weakening of condition (iii) would be to require preservation of

lattice operations merely among the center C, i.e., among those propositions which are

co{measurable (commuting) with all other propositions. It is not di�cult to prove that in

the case of complete Hilbert lattices (and not mere subalgebras thereof), the center consists

of just the least lower and the greatest upper bound C = f0; 1g and thus is isomorphic to

the two-element Boolean algebra 2 = f0; 1g. As it turns out, the requirement is trivially
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ful�lled and its implications are quite trivial as well.

Another weakening of (iii) is to restrict oneself to particular physical states and study

the embeddability of quantum logics under these constraints; see Bell, Clifton [1].

In this section we analyze a completely di�erent option: Is it possible to embed quan-

tum logic into a Boolean algebra when one does not demand preservation of all lattice

operations but merely of complementation?

This is indeed possible, as already Zierler and Schlessinger [41, Theorem 2.1] have

claimed. We present their construction with a complete proof, �lling a gap in the original

proof. The construction is similar to the proof of the Stone representation theorem for

Boolean algebras, cf. Stone [35]. The construction works for arbitrary sublattices (with 0

and 1) of the lattice of all closed linear subspaces of a Hilbert space. It is interesting to

note that for a �nite sublattice the constructed Boolean algebra will be �nite as well. In

fact the construction works even for an arbitrary orthocomplemented lattice (L;!; 0; 1;0 ).
An orthocomplemented lattice (L;!; 0; 1;0 ) is a set L which is endowed with a partial

ordering !, (i.e. a subset ! of L � L satisfying 1) p ! p, 2) if p ! q and q ! r, then

p ! r, 3) if p ! q and q ! p, then p = q, for all p; q; r 2 L). Furthermore, L contains

distinguished elements 0 and 1 satisfying 0 � p and p � 1, for all p 2 L. Finally, L is

endowed with a function 0 (orthocomplementation) from L to L satisfying the conditions

1) p00 = p, 2) if p ! q, then q0 ! p0, 3) the least upper bound of p and p0 exists and is

1, for all p; q 2 L. Note that these conditions imply 00 = 1, 10 = 0, and that the greatest

lower bound of p and p0 exists and is 0, for all p 2 L.

An arbitrary sublattice of the lattice of all closed linear subspaces of a Hilbert space

is an orthocomplemented lattice, if it contains the subspace f0g and the full Hilbert

space. Namely, the subspace f0g is the 0 in the lattice, the full Hilbert space is the 1,

the set theoretic inclusion realizes the ordering !, and the orthogonal complement is the

orthocomplementation 0.
In the rest of the section we always assume that L is an orthocomplemented lattice.

We call a subset I of L a maximal ideal if for all p; q 2 L

1. p 2 I i� p0 62 I,

2. if p! q and q 2 I, then p 2 I.

In other words, the maximal ideals are just the kernels of mappings from L to 2 which

preserve the order relation and the complement.

Let I be the set of all maximal ideals in L, and let B be the power set of I considered

as a Boolean algebra, i.e. B is the Boolean algebra which consists of all subsets of I.

The order relation in B is the set-theoretic inclusion, the lattice operations complement,

or, and and are given by the set-theoretic complement, union, and intersection, and the

elements 0 and 1 of the Boolean algebra are just the empty set and the full set I. Consider

the map

' : L! B

which maps each element p 2 L to the set

'(p) = fI 2 I j p 62 Ig

of all maximal ideals which do not contain p. We claim that the map '

8



1) is injective,

2) preserves the order relation,

3) preserves complementation.

This provides an embedding of quantum logic into classical logic which preserves the

implication relation and the negation.3

The rest of this section consists of the proof of the three claims. Let us start with

claim 2). Assume that p; q 2 L satisfy p! q. We have to show the inclusion

'(p) � '(q) :

Take a maximal ideal I 2 '(p). Then p 62 I. If q were contained in I, then by the

de�nition of a maximal ideal also p had to be contained in I. Hence q 62 I, thus proving

that I 2 '(q).

For claim 3) we have to show the relation:

'(p0) = I n '(p) ;

for all p 2 L. This can be restated as

I 2 '(p0) i� I 62 '(p)

for all I 2 I. But this means p0 62 I i� p 2 I, which is the �rst condition in the de�nition

of a maximal ideal.

We proceed to claim 1). Assume that two di�erent propositions p; q 2 L are given:

p 6= q. Then we have p 6! q or q 6! p. We can assume p 6! q. We have to show that '(p)

and '(q) are di�erent as well. We will show that there is a maximal ideal I 2 '(p) n'(q),

that is, a maximal ideal I satisfying p 62 I and q 2 I. In order to obtain this maximal

ideal we will apply Zorn's Lemma to a certain set of ideals. We call a subset K of L an

ideal if for all p; q 2 L:

1. if p 2 K; then p0 62 K,

2. if p! q and q 2 K, then p 2 K.

Obviously, a maximal ideal is an ideal. Consider the set

Ip;q = fK � L j K is an ideal; p 62 K; q 2 Kg :

We have to show that among the elements of Ip;q there is a maximal ideal. Therefore we

will use Zorn's Lemma. In order to apply it to Ip;q we have to show (a) that Ip;q is not

empty, (b) that every chain in Ip;q has an upper bound.

The �rst condition is proved to be true by the principal ideal of q:

hqi = fs 2 L j s! qg :

3Note that for a �nite lattice L the Boolean algebra B is �nite as well. Indeed, if L is �nite, then it

has only �nitely many subsets, especially only �nitely many maximal ideals. Hence I is �nite, and thus

also its power set B is �nite.
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Note that this set is an ideal. Indeed, r ! s and s ! q imply r ! q. Our assumption

p 6! q implies q 6= 1; hence, if r ! q, then r0 6! q. Furthermore p 6! q implies p 62 hqi.

Finally q 2 hqi is clear. Thus, the set hqi is an element of the set Ip;q. Hence Ip;q is not

empty. Now we are going to show the second condition, namely that each chain in Ip;q
has an upper bound in Ip;q. This means that, given a subset (chain) C of Ip;q with the

property

for all J;K 2 C one has J � K or K � J ;

we have to show that there is an element (upper bound) U 2 Ip;q with K � U for all

K 2 C. The union

UC =
[

K2C
K

of all ideals K 2 C is the required upper bound! It is clear that all K 2 C are subsets of

UC . We have to show that UC is an element of Ip;q. Since p 62 K for all K 2 C we also

have p 62 UC . Similarly, since q 2 K for some (even all) K 2 C, we have q 2 UC . We still

have to show that UC is an ideal. Given two propositions r; s with r ! s and s 2 UC we

conclude that s must be contained in one of the ideals K 2 C. Hence also r 2 K � UC .
Now assume r 2 UC . Is it possible that the complement r0 belongs to UC? The answer

is negative, since otherwise r 2 J and r0 2 K, for some ideals J;K 2 C. But since C is

a chain we have J � K or K � J , hence r; r0 2 K in the �rst case and r; r0 2 J in the

second case. Both cases contradict the fact that J and K are ideals. Hence, UC is an ideal

and thus an element of Ip;q. We have proved that Ip;q is not empty and that each chain

in Ip;q has an upper bound in Ip;q.

Consequently, we can apply Zorn's Lemma to Ip;q and obtain a maximal element I in

the ordered set Ip;q, i.e. an element I 2 Ip;q such that:

if K 2 Ip;q and I � K; then K = I :

We claim that I is a maximal ideal. Since I, as an element of Ip;q, is already an ideal, we

have to show only that r0 62 I implies r 2 I, for any r 2 L. In other words, we have to

show only that I contains at least one proposition out of each pair r, r0. Assume this is

not the case and there is a proposition r with r 62 I and r0 62 I. Since p 6= 0 (remember

our assumption p 6! q) we get p 6! r or p 6! r0. Without loss of generality we can assume

p 6! r. We will show that under this assumption the set

J = I [ fs 2 L j s! rg

is larger than I and an element of Ip;q, contradicting the assumption that I is a maximal

element of Ip;q.

First, we show that J is an ideal. If s; t are propositions in L with s ! t and t 2 J ,

then we must have t 2 I or t ! r. In the �rst case we conclude s 2 I � J and in the

second case s ! r, hence s 2 J as well. Can we have s 2 J and s0 2 J , for some s 2 L?

The answer is again negative, since otherwise one of the following four cases must be true:

(1) s; s0 2 I, (2) s ! r and s0 ! r, (3) s 2 I, s0 ! r, (4) s ! r, s0 2 I. The �rst case is

impossible since I is an ideal. The second case is ruled out by the fact that r 6= 1 (namely,

r = 1 would imply r0 = 0, which would contradict our assumption r0 62 I). The third case

is impossible since s0 ! r would imply r0 ! s, which, combined with s 2 I would imply

10



r0 2 I, contrary to our assumption. Finally, the fourth case is nothing but a reformulation

of the third case with s and s0 interchanged. Thus, we have proved that J is an ideal.

Since p 62 I and p 6! r we have p 62 J . On the other hand, q 2 I � J . This completes the

proof that J is an element of Ip;q.

But J , containing r, is a larger element of Ip;q than I! This contradicts the assumption

that I is a maximal element of Ip;q. Hence, our assumption that there is a proposition r

with r 62 I and r0 62 I must be false. We conclude that I is a maximal ideal. We have

reached our aim to construct a maximal ideal I with p 62 I and q 2 I. This ends the proof

of claim 3), the claim that the map ' is injective.

We have shown: any sublattice of the lattice of all closed linear subspaces of a Hilbert

space can be embedded into a Boolean algebra where the embedding preserves the order

relation and the complementation.

2.4 Injective order preserving morphisms

In this section we analyze a di�erent embedding suggested by Malhas [21, 22].

As in the last section we consider an orthocomplemented lattice (L;�; 0; 1;0 ), i.e. a
lattice (L;�; 0; 1) with 0 � x � 1 for all x 2 L, with orthocomplementation, that is with

a mapping 0 : L! L satisfying the following three properties: a) x00 = x, b) if x � y, then

y0 � x0, c) x � x0 = 0 and y _ y0 = 1. Here x � y = glb(x; y) and x _ y = lub(x; y).

Furthermore, we will assume that L is atomic4 and satis�es the following additional

property:

for all x; y 2 L; x � y i� for every atom a 2 L; a � x implies a � y: (1)

Every atomic Boolean algebra and the lattice of closed subspaces of a separable Hilbert

space satisfy the above conditions.

Consider next a set U5 and let W (U) be the smallest set of words over the alphabet

U [f0;!g which contains U and is closed under negation (if A 2W (U), then A0 2W (U))

and implication (if A;B 2 W (U), then A ! B 2 W (U)).6 The elements of U are called

simple propositions and the elements of W (U) are called (compound) propositions.

A valuation is a mapping

t : W (U)! 2

such that t(A) 6= t(A0) and t(A ! B) = 0 i� t(A) = 1 and t(B) = 0. Clearly, every

assignment s : U ! 2 can be extended to a unique valuation ts.

A tautology is a proposition A which is true under every possible valuation, i.e., t(A) =

1, for every valuation t. A set K �W (U) is consistent if there is a valuation making true

every proposition in K. Let A 2 W (U) and K � W (U). We say that A derives from K,

and write K j= A in case t(A) = 1 for each valuation t, which makes true every proposition

in K (that is, t(B) = 1, for all B 2 K). Let

Con(K) = fA 2W (U) j K j= Ag:

4For every x 2 L n f0g, there is an atom a 2 L such that a � x. An atom is an element a 2 L with the

property that if 0 � y � a, then y = 0 or y = a.
5Not containing the logical symbols [;0 ;!.
6De�ne in a natural way A [B = A0 ! B, A \ B = (A! B0)0, A$ B = (A! B) \ (B ! A).
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Finally, a set K is a theory if K is a �xed-point of the operator Con:

Con(K) = K:

It is easy to see that Con is in fact a �nitary closure operator, i.e., it satis�es the following

four properties:

� K � Con(K),

� if K � ~K, then Con(K) � Con( ~K),

� Con(Con(K)) = Con(K),

� Con(K) =
S
fX�K;X �niteg Con(X).

The main example of a theory can be obtained by taking a set X of valuations and

constructing the set of all propositions true under all valuations in X:

Th(X) = fA 2W (U) j t(A) = 1; for all t 2 Xg:

In fact, every theory is of the above form, that is, for every theory K there exists a set

of valuations X (depending upon K) such that K = Th(X): Indeed, take

XK = ft : W (U)! 2 j t valuation with t(A) = 1; for all A 2 Kg;

and notice that

Th(XK) = fB 2W (U) j t(B) = 1; for all t 2 XKg

= fB 2W (U) j t(B) = 1; for every valuation with t(A) = 1;

for all A 2 Kg

= Con(K) = K:

In other words, theories are those sets of propositions which are true under a certain

set of valuations (interpretations).

Let now T be a theory. Two elements p; q 2 U are T -equivalent, written p �T q, in

case p $ q 2 T . The relation �T is an equivalence relation. The equivalence class of

p is [p]T = fq 2 U j p �T qg and the factor set is denoted by U�T
; for brevity, we will

sometimes write [p] instead of [p]T . The factor set comes with a natural partial order:

[p] � [q] if p! q 2 T :

Note that in general, (U�T
;�) is not a Boolean algebra.7

In a similar way we can de�ne the �T -equivalence of two propositions:

A �T B if A$ B 2 T :

Denote by [[A]]T (shortly, [[A]]) the equivalence class of A and note that for every p 2 U ,

[p] = [[p]] \ U:

7For instance, in case T = Con(fpg), for some p 2 U .
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The resulting Boolean algebra W (U)�T
is the Lindenbaum algebra of T .

Fix now an atomic orthocomplemented lattice (L;�; 0; 1;0 ) satisfying (1). Let U be a

set of cardinality greater or equal to L and �x a surjective mapping f : U ! L. For every

atom a 2 L, let sa : U ! 2 be the assignment de�ned by sa(p) = 1 if a � f(p). Take

X = ftsa j a is an atom of Lg8 and T = Th(X):

Malhas [21, 22] has proven that the lattice (U�T
;�) is orthocomplemented, and, in

fact, isomorphic to L. Here is the argument. Note �rst that there exist two elements 0; 1

in U such that f(0) = 0; f(1) = 1. Clearly, 0 62 T , but 1 2 T . Indeed, for every atom a,

a � f(1) = 1, so sa(1) = 1, a.s.o.

Secondly, for every p; q 2 U ,

p! q 2 T i� f(p) � f(q):

If p ! q 62 T , then there exists an atom a 2 L such that tsa(p ! q) = 0; so

sa(p) = tsa(p) = 1; sa(q) = tsa(q) = 0, which | according to the de�nition of sa | mean

a � f(p), but a 6� f(q). If f(p) � f(q), then a � f(q), a contradiction. Conversely, if

f(p) 6� f(q), then by (1) there exists an atom a such that a � f(p) and a 6� f(q). So,

sa(p) = tsa(p) = 1; sa(q) = tsa(q) = 0, i.e., (p! q) 62 T .

As immediate consequences we deduce the validity of the following three relations: for

all p; q 2 U ,

� f(p) � f(q) i� [p] � [q],

� f(p) = f(q) i� [p] = [q],

� [0] � [p] � [1],

Two simple propositions p; q 2 U are conjugate in case f(p)0 = f(q).9 De�ne now the

operation � : UT ! UT as follows: [p]� = [q] in case q is a conjugate of p. It is not di�cult

to see that the operation � is well-de�ned and actually is an orthocomplementation. It

follows that (UT ;�T ;� ) is an orthocomplemented lattice.

To �nish the argument we will show that this lattice is isomorphic with L. The

isomorphism is given by the mapping ' : UT ! L de�ned by the formula '([p]) = f(p).

This is a well-de�ned function (because f(p) = f(q) i� [p] = [q]), which is bijective

('([p]) = '([q]) implies f(p) = f(q), and surjective because f is onto). If [p] � [q], then

f(p) � f(q), i.e. '([p]) � '([q]). Finally, if q is a conjugate of p, then

'([p]�) = '([q]) = f(q) = f(p)0 = '([p])0:

In particular, there exists a theory with orthocomplementation whose induced ortho

partial order is isomorphic to the lattice of all closed subspaces of a separable Hilbert

space. How does this relate to the Kochen-Specker theorem? The natural embedding

� : U�T
!W (U)�T

; �([p]) = [[p]]

8Recall that ts is the unique valuation extending s.
9Of course, this relation is symmetrical.
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A B C D E F G H

sp� 0 1 1 0 0 0 1 1

sp+ 0 0 0 1 0 0 1 1

sq� 0 0 0 0 1 0 1 1

sq+ 0 0 0 0 0 1 1 1

Table 1: Truth assignments on U corresponding to atoms p�; p+; q�; q+ 2MO2.

is order preserving and one-to-one, but in general it does not preserve orthocomplemen-

tation, i.e. in general �([p]�) 6= �([p])0. We always have �([p]�) � �([p])0, but sometimes

�([p])0 6� �([p]�). The reason is that for every pair of conjugate simple propositions p; q

one has (p! q0) 2 T , but the converse is not true.
The above construction of Malhas gives us another method how to embed any quantum

logic into a Boolean logic in case we require that only the order is preserved.10

Next we shall give a simple example of a Malhas type embedding ' : MO2 ! 2
4.

Consider again the �nite quantum logic MO2 represented in Figure 1. Let us choose

U = fA;B;C;D;E; F;G;Hg:

Since U contains more elements than MO2, we can map U surjectively onto MO2; e.g.,

f(A) = 0;

f(B) = p�;

f(C) = p�;

f(D) = p+;

f(E) = q�;

f(F ) = q+;

f(G) = 1;

f(H) = 1:

For every atom a 2 MO2, let us introduce the truth assignment sa : U ! 2 = f0; 1g

as de�ned above (i.e. sa(r) = 1 i� a � f(r)) and thus a valuation on W (U) separating it

from the rest of the atoms of MO2. That is, for instance, associate with p� 2 MO2 the

function sp� as follows:

sp�(A) = sp�(D) = sp�(E) = sp�(F ) = 0;

sp�(B) = sp�(C) = sp�(G) = sp�(H) = 1:

The truth assignments associated with all the atoms are listed in Table 1.

The theory T we are thus dealing with is determined by the union of all the truth

assignments; i.e.,

X = ftsp
�

; tsp+ ; tsq� ; tsq+g and T = Th(X):

10In the last section we saw that it is possible to embed quantum logic into a Boolean logic preserving

the order and the complement.
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0 � [[A]]

1 � [[G]] = [[B _D _E _ F ]]

[[B]] [[D]] [[E]] [[F ]]

[[B _D]] [[B _E]] [[B _ F ]] [[D _E]] [[D _ F ]] [[E _ F ]]

[[D _E _ F ]][[B _E _ F ]][[B _D _ F ]][[B _D _E]]

n

n

n n n n

Figure 3: Hasse diagram of an embedding of the quantum logic MO2 represented by

Figure 1. Concentric circles indicate the embedding.

The way it was constructed, U splits into six equivalence classes with respect to the theory

T ; i.e.,

U�T
= f[A]; [B]; [D]; [E]; [F ]; [G]g:

Since [p]! [q] if and only if (p! q) 2 T , we obtain a partial order on U�T
induced by T

which isomorphically reects the original quantum logic MO2; in particular, we obtain

'(0) = [A];

'(p�) = [B];

'(p+) = [D];

'(q�) = [E];

'(q+) = [F ];

'(1) = [G]:

The Boolean Lindenbaum algebraW (U)�T
= 2

4 is obtained by forming all the compound

propositions of U and imposing a partial order with respect to T . It is represented in

Figure 3. The embedding is order{preserving but does not preserve operations such as

the complement. Although, in this particular example, f(B) = (f(D))0 implies (B !

D0) 2 T , the converse is not true in general. For example, there is no s 2 X for which

s(B) = s(E) = 1. Thus, (B ! E0) 2 T , but f(B) 6= (f(E))0.
One needs not be afraid of order-preserving embeddings which are no lattice mor-

phisms, after all. Even automaton logics [37, Chapter 11] and [29, 30, 31, 7] can be

embedded in this way. Take again the lattice MO2 depicted in Figure 1. A partition

(automaton) logic realization is, for instance,

fff1g; f2; 3gg; ff2g; f1; 3ggg;
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Figure 4: Hasse diagram of an embedding ofMO2 drawn in a) into 2
3 drawn in b). Again,

concentric circles indicate points of 23 included in MO2.

with

f1g � p�;

f2; 3g � p+;

f2g � q�;

f1; 3g � q+;

respectively. If we take f1g,f2g and f3g as atoms, then the Boolean algebra 23 generated

by all subsets of f1; 2; 3g with the set theoretic inclusion as order relation suggests itself

as a candidate for an embedding. The embedding is quite trivially given by

'(p) = p 2 2
3:

The particular example considered above is represented in Figure 4. It is not di�cult to

check that the embedding satis�es the requirements (i) and (ii); that is, it is injective and

order preserving.

It is important to realize at that point that, although di�erent automaton partition

logical structures may be isomorphic from a logical point of view (one-to-one translatable

elements, order relations and operations), they may be very di�erent with respect to

their embeddability. Indeed, any two distinct partition logics correspond to two distinct

embeddings.

It should also be pointed out that in the case of an automaton partition logic and for

all �nite subalgebras of the Hilbert lattice of two-dimensional Hilbert space, it is always

possible to �nd an embedding corresponding to a logically equivalent partition logic which

is a lattice morphism for co{measurable elements (modi�ed requirement (iii)). This is due

to the fact that partition logics andMOn have a separating set of valuations. In theMO2

case, this is, for instance

fff1; 2g; f3; 4gg; ff1; 3g; f2; 4ggg;

with

f1; 2g � p�;
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p� p+ q� q+
s1 1 0 1 0

s2 1 0 0 1

s3 0 1 1 0

s4 0 1 0 1

Table 2: The four valuations s1; s2; s3; s4 on MO2 take on the values listed in the rows.

t

t t t t

t

t

t

t

t

t

t

t

t

t t

Q
Q

Q
Q

Q
Q

QQ
@

@
@

@
@
�
�
�
�
�
�
�
�
�
�
�
��QQ

Q
Q
Q
Q
QQ
@
@
@
@
@
�

�
�

�
�

�
�

�
�

�
�

��A
A
A
A
A

HH
HH

HH
HH

HH
��

��
��

��
��HHHHHHHHHH�����������

�
�
�
�
�
�
�
�
�

HH
HH

HH
HH

HH

�
�
�
�
�A
A
A
A
A
�

�
�

�
�

�
�

�
�
�

HHHHHHHHHH

�
�
�
�
�
HH

HH
HH

HH
HH
��

��
��

��
��HHHHHHHHHH����������

0

1

f1g f2g f3g f4g

f1; 2g f1; 3g f1; 4g f2; 3g f2; 4g f3; 4g

f2; 3; 4gf1; 3; 4gf1; 2; 4gf1; 2; 3g

n

n
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Figure 5: Hasse diagram of an embedding of the parti-

tion logic fff1; 2g; f3; 4gg; ff1; 3g; f2; 4ggg into 2
4 preserving lattice operations among

co{measurable propositions. Concentric circles indicate the embedding.

f3; 4g � p+;

f1; 3g � q�;

f2; 4g � q+;

respectively. This embedding is based upon the set of all valuations listed in Table 2.

These are exactly the mappings from MO2 to 2 preserving the order relation and the

complementation. They correspond to the maximal ideals considered in Section 2.3. In

this special case the embedding is just the embedding one would obtain by applying the

construction of Section 2.3, which had been suggested by Zierler and Schlessinger [41,

Theorem 2.1]. The embedding is drawn in Figure 5.
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3 Surjective extensions?

The original proposal put forward by EPR [8] in the last paragraph of their paper was

some form of completion of quantum mechanics. Clearly, the �rst type of candidate for

such a completion is the sort of embedding reviewed above. The physical intuition behind

an embedding is that the \actual physics" is a classical one, but because of some yet

unknown reason, some of this \hidden arena" becomes observable while others remain

hidden.

Nevertheless, there exists at least another alternative to complete quantum mechanics.

This is best described by a surjective map � : B ! L of a classical Boolean algebra onto

a quantum logic, such that jBj � jLj.

Platos cage metaphor applies to both approaches, in that observations are mere shad-

ows of some more fundamental entities.

Appendix: Proof of the geometric lemma

In this appendix we are going to prove the geometric lemma due to Piron [26] which was

formulated in Section 2.2. First let us restate it. Consider a point q in the northern

hemisphere of the unit sphere S2 = fp 2 IR3 j jjpjj = 1g. By C(q) we denote the unique

great circle which contains q and the points �(qy;�qx; 0)=
q
q2x + q2y in the equator, which

are orthogonal to q, compare Figure 2. We say that a point p in the northern hemisphere

can be reached from a point q in the northern hemisphere, if there is a �nite sequence of

points q = q0; q1; : : : ; qn�1; qn = p in the northern hemisphere such that qi 2 C(qi�1) for
i = 1; : : : ; n. The lemma states:

If q and p are points in the northern hemisphere with pz < qz, then p can be

reached from q.

For the proof we follow Cooke, Keane, and Moran [6] and Kalmbach [18]). We consider

the tangent plane H = fp 2 IR3 j pz = 1g of the unit sphere in the north pole and the

projection h from the northern hemisphere onto this plane which maps each point q in the

northern hemisphere to the intersection h(q) of the line through the origin and p with the

plane H. This map h is a bijection. The north pole (0; 0; 1) is mapped to itself. For each

q in the northern hemisphere (not equal to the north pole) the image h(C(q)) of the great

circle C(q) is the line in H which goes through h(q) and is orthogonal to the line through

the north pole and through h(q). Note that C(q) is the intersection of a plane with S2,

and h(C(q)) is the intersection of the same plane with H; see Figure 6. The line h(C(q))

divides H into two half planes. The half plane not containing the north pole is the image

of the region in the northern hemisphere between C(q) and the equator. Furthermore note

that qz > pz for two points in the northern hemisphere if and only if h(p) is further away

from the north pole than h(q).

First, we show that, if p and q are points in the northern hemisphere and p lies in the

region between C(q) and the equator, then p can be reached from q. In fact, we show that

there is a point ~q on C(q) such that p lies on C(~q). Therefore we consider the images of

q and p in the plane H; see Figure 7. The point h(p) lies in the half plane bounded by

h(C(q)) not containing the north pole. Among all points h(q0) on the line h(C(q)) we set
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Figure 6: The plane H viewed from above
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Figure 7: The point p can be reached from q

19



~q to be one of the two points such that the line trough the north pole and h(q0) and the

line through h(q0) and h(p) are orthogonal. Then this last line is the image of C(~q), and

C(~q) contains the point p. Hence p can be reached from q. Our �rst claim is proved.

Fix a point q in the northern hemisphere. Starting from q we can wander around the

northern hemisphere along great circles of the form C(p) for points p in the following way:

for n � 5 we de�ne a sequence q0; q1; : : : ; qn by setting q0 = q and by choosing qi+1 to be

that point on the great circle C(qi) such that the angle between h(qi+1) and h(qi) is 2�=n.

The image in H of this con�guration is a shell where h(qn) is the point furthest away from

the north pole; see Figure 8. First, we claim that any point p on the unit sphere with

r
h(q) = h(q0)

h(q16)
d0

h(q2)

h(q1)

h(q14)

h(q15)
d14

d15

d16

Figure 8: The shell in the plane H for n = 16

pz < qnz can be reached from q. Indeed, such a point corresponds to a point h(p) which is

further away from the north pole than h(qn). There is an index i such that h(p) lies in the

half plane bounded by h(C(qi)) and not containing the north pole, hence such that p lies in

the region between C(qi) and the equator. Then, as we have already seen, p can be reached

from qi and hence also from q. Secondly, we claim that qn approaches q as n tends to

in�nity. This is equivalent to showing that the distance of h(qn) from (0; 0; 1) approaches

the distance of h(q) from (0; 0; 1). Let di denote the distance of h(qi) from (0; 0; 1) for

i = 0; : : : ; n. Then di=di+1 = cos(2�=n), see Figure 8. Hence dn = d0 � cos(2�=n)
�n. That

dn approaches d0 as n tends to in�nity follows immediately from the fact that cos(2�=n)n
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approaches 1 as n tends to in�nity. For completeness sake11 we prove it by proving the

equivalent statement that log(cos(2�=n)n) tends to 0 as n tends to in�nity. Namely, for

small x we know the formulae cos(x) = 1 � x2=2 + O(x4) and log(1 + x) = x + O(x2).

Hence, for large n,

log(cos(2�=n)n) = n � log(1� 2
�2

n2
+O(n�4))

= n � (�2
�2

n2
+O(n�4))

= �
2�2

n
+O(n�3) :

This ends the proof of the geometric lemma.

[]
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