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1 Introduction

In studying e�ective structures we investigate the e�ective content of typical notions and

constructions in many branches of mathematics including universal algebra and model theory.

In particular, we are interested in the possibilities of e�ectivizing model{theoretic or algebraic

constructions and the limits on these possibilities. For instance, we try to understand whether

certain results of model theory (or universal algebra) can be carried out e�ectively. If not,

we then try to discover sharp e�ective counterexamples.

The systematic study of e�ectiveness in algebraic structures goes back to pioneering

papers by Fr�olich and Shepherdson [11], Malcev [28][29], and Rabin [34] in the early 60s.

Later in the early 70s, Nerode and his collaborators initiated combining algebraic construc-

tions with priority arguments from computability theory thus beginning a new era in the

development of the subject.

Nowadays, there various approaches to e�ectiveness in structures. For example, Cenzer,

Nerode, Remmel have been developing theory of p-time structures [6]. Khoussainov and

Nerode have began the development of the theory of automatic structures [27]. In this paper

we are interested in those structures in which the basic computations can be performed by

Turing machines.

De�nition 1.1 A structure A for a language L is computable (decidable) if there is a

computable enumeration ai of the domain A of A such that the atomic (elementary) diagram

of (A; ai) is computable. A structure isomorphic to a computable (decidable) structure is

called (decidably) computably presentable. Any isomorphism from a structure A to a

computable (decidable) structure is called a computable (decidable) presentation of A.

�Partially supported by ARO through MSI, Cornell University, DAAL-03-C-0027.
xPartially supported by NSF Grant DMS-9503503 and ARO through MSI, Cornell University, DAAL-03-

C-0027.
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Here are some examples of computable or computably presentable structures. The natural

numbers with addition and multiplication is a computable structure. The ordered �eld

of rational numbers, �nitely presented algebras with decidable word problem, free groups,

vector spaces over the �eld of rationals, etc. all have computable presentations.

We also give another, more general, notion of e�ective structure.

De�nition 1.2 A structure A for a language L is computably enumerable (c.e.) if

there is a computable enumeration ai of A such that the positive atomic diagram of (A; ai)

is computably enumerable. A structure isomorphic to a computably enumerable structure

is called c.e. (computably enumerably) presentable. Any isomorphism from a struc-

ture A to a computably enumerable structure is called a computably enumerable (c.e.)

presentation of A.

Finitely presented algebras are natural examples of c.e. structures. Note that every

computable structure is also computably enumerable.

In model theory and universal algebra we identify isomorphic structures. When intro-

ducing e�ectiveness consideration into the area, we naturally want to understand the rela-

tionship between classical isomorphism types and e�ective isomorphism types. Thus, while

model theory and universal algebra identify isomorphic structures, e�ective model theory is

concerned with computable isomorphisms and �nding characterizations for structures which

have the same computable isomorphism type.

De�nition 1.3 Two computable (c.e.) structures A and B are of the same computable

(c.e.) isomorphism type if there is a computable isomorphism taking A to B. The (c.e.)

dimension of a structure A is the number of its computable (c.e.) isomorphism types.

Thus the dimension of a structure is the maximal number of noncomputably isomorphic

computable (c.e.) presentations of the structure. We would like to stress that the dimension

of a structure in the class of computable presentations can di�er from the dimension of the

structure in the class of c.e. presentations. For example, the dimension of (Q;�), where Q

is the set of all rationals, is 1 in the class of computable presentation. However, one can

show that the dimension of this linear ordering is ! in the class of all c.e. presentations.

In this paper we deal mainly with computable presentations. Therefore dimensions are

considered with respect to the class of computable presentations of structures unless we

specify otherwise. Similarly, all structures considered will be computable unless otherwise

mentioned.

How far computable isomorphism types can be from classical ones can be seen in the

following result of Goncharov:

Theorem 1.4 ([14]) For each n � ! there is a computable structure with computable di-

mension n.

There has been a signi�cant interest in trying to understand the nature of the structures

of dimension 1. The basic model-theoretic notion which motivated the consideration of
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structures of dimension 1 is the notion of countable categoricity. A theory T is countably

categorical if all (computable and noncomputable) countable models of T are isomorphic.

An arbitrary countable structure A is categorical if its theory is countably categorical. The

analogous concept for e�ective model theory deals only with computable structures and

isomorphisms:

De�nition 1.5 A structure A is computably categorical if every computable structure

isomorphic to A is computably isomorphic to A.

The following result of Nurtasin was one of the �rst results about the nature of com-

putably categorical structures:

Theorem 1.6 ([33]) For a structure A the following two conditions are equivalent:

1. Any two decidable presentations of A are computably isomorphic.

2. There exists a �nite number of constants �c 2 A such that (A; �c) is the prime model of

the theory Th(A; �c) and the set of atoms of this theory is computable.

In the late 70's, Goncharov{Dzgoev and Remmel independently gave an algebraic char-

acterization of computably categorical Boolean Algebras and Linear Orderings.

Theorem 1.7 ([35] [13] [17])

1. A Boolean Algebra is computably categorical if and only if it has �nitely many atoms.

2. A linear ordering is computably categorical if and only if the number of adjacent pairs

in the ordering is �nite.

In [15] Goncharov proved that if a structure A has two presentations, one of them com-

putable but not decidable and the other decidable, then the dimension of the structure is !.

In a conversation with Khoussainov, Goncharov asked if an analogous result can be obtained

to answer the following question:

Question 1.8 If a structure A has two presentations one of them computably enumerable

but not computable and the other computable, is the dimension of the structure ! in the class

of c.e. presentations?

We answer this question in Theorem 4.1, using the proof of our basic result, Theorem

2.1:

Theorem 4.1 There exists a structure B which has exactly two computably enumerable

presentations B1 and B2 such that the following properties hold:

1. B1 is a computably enumerable but not computable structure.
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2. B2 is a computable structure.

3. Any computably enumerable presentation C of B is computably isomorphic to either B1
or B2.

Interestingly, all the structures which have been shown to be computably categorical have

one common property. They all have Scott families.

De�nition 1.9 A Scott family for a structure A is a computable sequence

�0(�a; x1; : : : ; xn0); �1(�a; x1; : : : ; xn1); : : : ;

of 9-formulas satis�able in A, where �a is a �nite tuple of elements from A, such that every

n-tuple of elements from A satis�es one these formulas and any two tuples satisfying the

same formula from the above sequence can be interchanged by an automorphism of A.

The basic idea behind this de�nition is the following. If A has a Scott family and B is

a computable structure isomorphic to A, then the existence of the Scott family allows one

to e�ectively carry out a back and forth argument to construct a computable isomorphism

from A to B. Therefore:

Theorem 1.10 If a structure A has a Scott family, then A is computably categorical. More-

over, for any n-tuple (c1; : : : ; cn) from A, the expanded structure (A; c1; : : : ; cn) has also a

Scott family and hence is computably categorical.

Proof. Let �0(�a; x1; : : : ; xn0); �1(�a; x1; : : : ; xn1); : : : be a Scott family for A, where �a =

(a0; : : : ; am�1). Let A1 and A2 be computable presentations of A. We de�ne a mapping

f : A1 ! A2 by stages. We can assume that for each j 2 f0; : : : ; m � 1g, aij is the element

in Ai corresponding to the constant aj under a classical isomorphism between A1 and A2.

At even stages we de�ne images of elements from A1, at odd stages we de�ne preimages of

elements from A2.

Stage 0. Set f1 = f(a
1
0; a

2
0); : : : ; (a

1
m�1; a

2
m�1)g.

Stage 2k. We can suppose that the function f2k�1 has been de�ned. Assume that

f2k�1 = f(a10; a
2
0); : : : ; (a

1
m�1; a

2
m�1); (b1; d1); : : : ; (bs; ds)g and that f2k�1 can be extended to

an isomorphism from A1 to A2. Let b be the �rst number not in the domain of f2k�1.

Consider the tuple (b1; : : : ; bs; b). Find an i such that �i(�a; b1; : : : ; bs; b) holds in A1. Hence

9x�i(�a; d1; : : : ; ds; x) holds in A2. Find the �rst d 2 A2 for which �i(�a; d1; : : : ; ds; d) holds.

Extend f2k�1 by letting f2k = f2k�1
S
f(b; d)g:

Stage 2k+1. We de�ne f2k+1 similarly so as to put the least element of A2 not yet in

the range of f2k into that of f2k+1.

Finally, let f =
S

i2! fi. Thus, f is a computable isomorphism.

For the second part of the theorem, we slightly change the original Scott family. Namely,

set  i = �i(�a; x1; : : : ; xni)&9y1 : : :9yn(&j(cj = yj): Then, one can easily check that the

sequence  0;  1; : : : is a Scott family for the expanded structure (A; c1; : : : ; cn). 2
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At this point, we would like to make the following two observations about the e�ect

of expanding computably categorical structures by �nitely many constants. First, as we

mentioned, all the known examples of computably categorical structures have Scott fami-

lies. Therefore, it is natural to ask whether there exists a computably categorical structure

without a Scott family. By the above theorem, one possible way to build a such structure

is to provide an example of a computably categorical structure one of whose expansions by

�nitely many constants is not computably categorical. Second, one of the motivations of

computable categoricity comes from the model-theoretic notion of !{categoricity. It is an

easy consequence of the Ryll-Nardzewski Theorem that if a structure A is countably categor-

ical then so is the structure (A; �a) expanded by �nitely many constants. It is the analogous

situation in e�ective model theory that we wish to consider.

Millar proved that a small amount of decidability is enough to guarantee that categoricity

is preserved under such expansions:

Theorem 1.11 ([32]) If a structure A is computably categorical and its existential theory is

decidable, then any expansion of A by �nitely many constants is also computably categorical.

Informally this theorem states that if we can e�ectively solve systems of algebraic equation

and inequations over a computably categorical structure, then computable categoricity is

preserved under expansions by a �nite number of constants. However, without this partial

decidability assumption the problem, known as Ash{Goncharov problem, had been open for

some time.

Question 1.12 [9] Is the expansion of every computably categorical structure by �nitely

many constants computably categorical?

In [7] a negative solution to this problem is given. Our Theorem 4.2 (a corollary of an

extension of our main result) gives a new solution which has a much simpler proof when

k � 3:

Theorem 4.2 For any natural number k there exists a computably categorical structure A

such that, for each element a 2 A, the expanded structure (A; a) has dimension k.

An immediate consequence of Theorem 4.2 is the following:

Corollary 4.1 There exists a computably categorical structure without a Scott family.

Proof. Consider the structure A whose existence is claimed in Theorem 4.2. This structure

is computably categorical. The structure does not have a Scott family as otherwise we would

have a contradiction by Theorem 1.4. 2

Based on Theorem 1.4, one might suppose that the basic reason that the structure con-

structed in Theorem 4.2 does not have a Scott family is that its expansion by a �nite number

of constants is not computably categorical. Therefore one can ask the following question:

5



Question 1.13 Does there exist a computably categorical structure without a Scott family

whose expansion by any �nite number of constants is computably categorical?

It turns out that the construction in the proof of our basic Theorem 2.1 can be modi�ed

to provide a simpler one answering Question 1.13 positively:

Theorem 4.3 There exists a computably categorical structure without a Scott family whose

expansion by any �nite number of constants is computably categorical.

Now we turn to our basic result, Theorem 2.1. This theorem is about the degree spectra

of relations on structures.

De�nition 1.14 If U is a relation on a computable structure A, we de�ne the partial or-

dering

DgSp(U) = (fdegT (U
B)j B is a computable presentation of Ag;�T );

where �T is Turing reducibility on sets of natural numbers and UB is the image of U in B.

We call this partially ordered set the degree spectrum of U . (Recall that a computable

presentation B of A includes an isomorphism from A to B and so determines UB.)

There has been an extensive study of the degree spectra of relations on computably

structures and related results. We refer readers to papers by Ash and Nerode [1], Ash and

Knight [3] [4] [22] [23] [24], Harizanov [18] [19] [20], Ash, Cholak and Knight [5], etc.

Harizanov and Millar suggested investigating relations with �nite degree spectra. Their

motivations came from the fact that Ash-Nerode type decidability conditions on relations (see

[1]) usually imply that the degree spectrum is in�nite or a singleton. Another motivation is

Goncharov's examples of structures with �nitely many computable isomorphism types. Here

is an open question which we call the Degree Spectra Problem:

Question 1.15 Is every �nite partially ordered set isomorphic to DgSp(U) for some relation

U on a structure A?

Modifying Goncharov's construction from [14], Harizanov was the �rst to provide exam-

ples of relations with �nite degree spectra.

Theorem 1.16 ([19]) There exists a relation U on a structure A with exactly two com-

putable presentations A0 and A1 such that UA0 is computable and UA1 is a noncomputable

�0
2{set.

Our Theorem 2.1 improves this result:

Theorem 2.1 There exists a relation U in a structure A which has exactly two computable

presentations A0 and A1 such that UA0 is c.e. but not computable while UA1 is computable.

Moreover, the relation P = f(x; y)jx 2UA0 ^ y 2UA1 ^ there is an isomorphism from A0 to

A1 which extends the map x 7! yg is computable.
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Indeed, the methods and ideas of the proof of this theorem enable us to give a positive

solution to the Degree Spectra Problem (Question 1.15):

Theorem 3.1 For any computable partially ordered set D there exists a relation U in a

structure A such that DgSp(U) �= D. Indeed, we can guarantee that UB is c.e. for every

computable presentation B of A and that, if D has a least element, then the least element in

DgSp(U) is 0.

Several natural strengthenings of this result can ruled out by the observation that, for a

given relation U on a computable structure A, the set fUBj B is a computable presentation

of Ag is �1
1 in U . Thus, there are countable partial orderings that cannot be realized in

the c.e. degrees as the degree spectrum of any relation U on any computable structure A.

(Just consider one that is too complicated to be �1
1.) Similarly, such a partial ordering with

least element cannot be realized anywhere in the Turing degrees as the degree spectrum

of a computable relation U on a computable structure A. Nor can it be true that any

�nite set of degrees be realized as the degree spectrum of any relation U on a computable

structure A. Indeed, any degree spectrum containing both a hyperarithmetic degree and a

nonhyperarithmetic degree is uncountable as any �1
1 set with a nonhyperarithmetic member

is uncountable. (See, for example, Sacks [40] III.6.)

Finally, we note that all the structures considered in this paper are directed graphs and

we use elementary notions from graph theory, such as for example, edge relation, component,

path, connectedness, etc. We denote the edge relation in any graph G by E(G). De�nitions

of these notions can be found in any basic text on graph theory.

2 The Basic Result and Construction

Our goal in this section is to prove the following:

Theorem 2.1 There exists a relation U in a structure A with exactly two computable pre-

sentations A0 and A1 such that the image UA0 of U in A0 is c.e. but not computable while

its image UA1 in A1 is computable. Moreover, the relation P = f(x; y)jx 2UA0 ^ y 2UA1 ^

there is an isomorphism from A0 to A1 which extends the map x 7! yg is computable.

Proof. In order to describe the structure A we need some notation. For a natural number

n � 1, consider the directed graph

(f0; 1; : : : ; n+ 1g; E)

such that E(0; 0), E(n+1; 1), E(1; 0), and E(i; i+ 1) hold for all i 2 f1; : : : ; ng. We denote

this graph by [n]. Thus, we see that [n] is a cycle of length n + 1 with a tag. We call 0 the

top of [n] and n+ 1 the coding location of the graph [n].

Let A be any set not containing 0. Consider a sequence fBngn2A of pairwise disjoint

graphs such that each Bn is isomorphic to [n]. De�ne a graph by taking the disjoint union

of the graphs Bn and identifying the top elements of these graphs. We denote this graph
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by [A]. Note that [n] is isomorphic to [fng]. (Warning: We abuse notation by confusing

the isomorphism type of [A] and individual graphs isomorphic to [A]. Similarly, we leave

the details of choosing computable representations of such graphs for computable sets A and

associated operations on such representations (such as disjoint union) to the reader.)

Let [A] and [B] be graphs with disjoint domains. Suppose that the set C = B n A is

nonempty. Let a and c be the top elements of [A] and [C], respectively. Suppose also that

the domain of [A] has empty intersection with the domain of [C]. We de�ne a new graph

[A] � [B] as follows:

1. The domain of [A] � [B] consists of all elements from [A] or [C] except for the top

element of [C].

2. The edge relation E is de�ned as follows. The pair (x; y) belongs to E if and only if

[(x; y) 2 E([A])
_

((x; y) 2 E([C]) & y 6= c)]
_

(y = a&(x; c) 2 E([C])):

For example, if G1 is isomorphic to [f3; 4g] and G2 is isomorphic to [f4; 6g], then G1 �G2

is isomorphic to [f3; 4; 6g]. Note that [A] � [B] is isomorphic to [B] � [A].

On the set of all graphs we also consider the operation + which, when applied to two

graphs, produces a graph isomorphic to the disjoint union of the graphs. The operation +

can be extended as follows. Let G1; : : : ;Gn; : : : be a sequence of graphs with disjoint domains.

Then

G1 + � � �+ Gn + � � � (1)

is, by de�nition, the graph whose domain G is
S
Gi and the edge relation E(G) is

S
iE(Gi).

Note that the components of a graph of the form

[B1] + � � �+ [Bn] + � � �

are [B1]; [B2]; : : :.

We want to produce two computable presentations A0;A1 of a graph A of the form

[B1] + [B2] + � � �+ [Bn] + � � �

with Bi n Bj 6= ; for all i 6= j. We will, in fact, also guarantee that this property holds at

every stage. More precisely, at stage t the presentations Ak;t (for k = 0; 1) will be of the form

[B1;t] + [B2;t] + � � �+ [Bn;t] + � � � with Bi;t nBj;t 6= ; for all i 6= j. Note that since Bi nBj 6= ;

for all i 6= j, the graph A is clearly rigid, that is, it has no nontrivial automorphisms. In

addition, we also want to produce a unary relation U on A with the following properties:

1. Any element of U is a coding location.

2. The image UA0 of U in A0 is computably enumerable but not computable.

3. The image UA1 of U in A1 is computable.

4. Every computable copy of A is computably isomorphic to either A0 or A1.
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Thus, the dimension of A is two and the degree spectrum, DgSp(U), of U consists of

exactly two c.e. degrees one computable and the other not. Since UA1 is computable and

UA0 is not, the structures A0 and A1 are not computably isomorphic.

Another important aspect of our construction will provide a computable binary predicate

P such that P (x; y) holds if and only if x belongs to UA0 , y belongs to UA1 , and there exists

an isomorphism from A0 to A1 extending the map x! y. We will need this property to con-

struct computably categorical structures whose expansions by constants are not computably

categorical.

Let G0; G1; G2; : : : be a standard enumeration of all partial computable directed graphs.

We also consider a standard enumeration 	0;	1;	2; : : : of all computable partial functions.

In order to build a structure A and a unary relation U with the properties above we need

to satisfy at least the following requirements for e; j 2 !; k 2 f0; 1g:

De : U
A0 6= 	e

and

Rj : If Gj is isomorphic to A then Gj is computably

isomorphic to A0 or A1

As we wish to show that any computable graph G isomorphic to A is computably isomorphic

to A0 or A1 and we know about the special form described above that Ak must have, we can

limit ourselves to computable graphs Gj which are of this form: Gj = [B1]+[B2]+� � �+[Bn]+

� � � with Bi n Bj 6= ; for all i 6= j. Indeed, we can require that this be true at every stage:

Gj;t = [B1;t]+ [B2;t]+ � � �+[Bn;t]+ � � � with Bi;t nBj;t 6= ; for all i 6= j. Moreover, without loss

of generality, we can require that the enumerations Gj;t be such that for every component [Yt]

of Gj;t there is one [Xt] of each Ak;t such that Yt � Xt. (Only enumerate components in Gj

when they are of the right form, i.e., a top with cycles attached (to which more cycles can be

added later) and contained in one of Ak;t. If there are components partially enumerated, do

not allow any extensions until it is once again possible to make all the components distinct.

This can be done so as to add any single desired element to G if it has the required form.)

During the construction we will also need to make UA1 computable. This will be achieved

by e�ectively listing all the elements of UA1 in strictly increasing order.

The action to meet requirement De is based on the operations on graphs that we now

de�ne.

De�nition 2.2 The L{operation applied to [B1] + � � � + [Bn] produces a graph denoted by

L([B1]; : : : ; [Bn]) which is isomorphic to

[B1] � [B2] + � � �+ [Bn�1] � [Bn] + [Bn] � [B1]:

We also adopt the important convention that the elements of the component [Bi] are the

same ones in the corresponding graph in the component [Bi] � [Bi+1] of L([B1]; : : : ; [Bn]) while

those elements in the new graph corresponding to ones in [Bi+1] of the original graph are

new elements in [Bi] � [Bi+1] (with 1 for n+ 1 when i = n).
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The R{operation applied to [B1]+ � � �+[Bn] produces the graph R([B1]; : : : ; [Bn]) isomorphic

to

[B1] � [Bn] + [B1] � [B2] + : : :++[Bn�1] � [Bn]:

We will apply an R operation in the construction only when we also apply an L one and

we also have the corresponding convention that the elements of the component [Bi] are the

same ones in the corresponding graph in the component [Bi�1] � [Bi] of R([B1]; : : : ; [Bn]) while

those elements in the new graph corresponding to ones in [Bi] of the original graph are new

elements in [Bi�1] � [Bi] (with n for 0 when i = 1).

>From this de�nition we obtain the following lemma.

Lemma 2.3 For any graph [B1]+� � �+[Bn] the graphs L([B1]; : : : ; [Bn]) andR([B1]; : : : ; [Bn])

are isomorphic and extend [B1] + � � �+ [Bn]. 2

The L and R{operations can also be applied to some components of a graph G to obtain

extensions of G. Indeed, suppose that we have a graph G of the form

[C1] + [C2] + � � �+ [B1] + [B2] + � � �+ [Bn] + � � �+ [Ck]:

Then we can consider two extensions of G:

[C1] + [C2] + � � �+ L([B1]; [B2]; : : : ; [Bn]) + � � �+ [Ck]

and

[C1] + [C2] + � � �+R([B1]; [B2]; : : : ; [Bn]) + � � �+ [Ck]:

By Lemma 2.1 these two extensions of G are isomorphic.

Now we explain how to meet each of the requirements De or Rj separately. Here is a

strategy to meet just one De. Begin by constructing structures A0 and A1 of type

[f1g] + [f2g] + [f3g] + � � �+ [f3e+ 1g] + [f3e+ 2g] + [f3e+ 3g] + � � �

As soon as 	e equals 0 on the number x which is the coding location in [f3e + 2g], the

construction acts by extending structure A0 to the structure:

[f1g] + [f2g] + [f3g] + � � �+ L([f3e+ 1g]; [f3e+ 2g]; [f3e+ 3g]) + � � �

and by extending structure A1 to the structure:

[f1g] + [f2g] + [f3g] + � � �+R([f3e+ 1g]; [f3e+ 2g]; [f3e+ 3g]) + � � �

The construction then puts x into UA0 and puts its image y in A1 into UA1 . This action

meets requirement De. Note that the number put into UA1 is new by our convention on

applying the L and R operations. The construction also puts (x; y) into P .

A strategy to meet just one Rj is as follows. Begin by constructing structures A0 and

A1 of the type

[f1g] + [f2g] + [f3g] + � � �+ [f3e+ 1g] + [f3e+ 2g] + [f3e+ 3g] + � � �
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At stage 0 let the partial isomorphism fromGj toA0 toA1 be empty. At stage i wait until Gj

provides components B1, B2 and B3 isomorphic to [f3i+1g], [f3i+2g], and [f3i+3g]. As soon

as Gj provides such components, say B1, B2, B3, extend the previous partial isomorphism

by adding partial isomorphisms from B1, B2, and B3 to [f3i+1g], [f3i+2g], and [f3i+3g],

respectively. If Gj is isomorphic to the structure the construction is building, then the above

strategy constructs a computable isomorphism from Gj to the structure

[f1g] + [f2g] + [f3g] : : : [f3e+ 1g] + [f3e+ 2g] + [f3e+ 3g] + : : :

However, a problem can arise even in the case when the construction tries to satisfy all

requirements De and just one Rj simultaneously. Here is a brief and informal explanation

of the problem. Suppose that the construction has acted to meet requirement Rj on the

components [f3e+1g], [f3e+2g], and [f3e+3g] and has not yet acted to meet De. In other

words Gj has provided components, say B1, B2, B3, isomorphic to [f3e+1g], [f3e+2g], and

[f3e+ 3g], respectively, and hence the construction has a partial isomorphism, say r0, from

Gj into A0 de�ned on this coding locations; in addition 	e has not yet been de�ned on the

coding location in [f3e + 2g]. Suppose that at a later stage of the construction 	e equals

0 on the coding location in [f3e + 2g]. The construction acts to meet De using R and L{

operations. However, the construction now cannot guarantee that r0 can be extended to an

isomorphism from Gj to A0. Indeed, suppose that at a later stage Gj provides components

isomorphic to the components of A0 containing the coding location and that r0 cannot be so

extended. (Perhaps the component previously isomorphic to [f3e+2g] is now isomorphic to

[f3e+1g] � [f3e+2g] and so not to [f3e+2g] � [f3e+3g] which is the new isomorphism type of

the component to which it had previously been isomorphic.) The construction now changes

its mind and attempts to begin constructing a new isomorphism from Gj to A1. But, an

action to meet another requirement De0 at some later stage can force the construction to

change its mind again and begin constructing yet another isomorphism from Gj to A0, etc.

Thus, one can see that in�nitely many De's can potentially force the construction to change

its mind in�nitely many times, and hence, to not satisfy Rj.

Now, we de�ne some of the basic notions of our construction. First, we present a module

satisfying all requirements De and just one requirement R = Rj for G = Gj, the j
th partial

computable graph of the appropriate form. For t 2 !, let Gt be the approximation to G at

stage t:We always use k to be either 0 or 1, and let k+1 = 1 if k = 0 and k+1 = 0 if k = 1.

This module will construct isomorphic structures A0 and A1, unary relations UA0 and UA1 ,

and a binary predicate P . If G is isomorphic to A0, then G will be computably isomorphic

to either A0 or A1. Our construction proceeds by stages. At stage t of the module, we use

the following notions and terminology.

1. Finite Structures A0;t and A1;t. These are approximations to the isomorphic

structures A0 and A1 that the construction is building. That is, for k = 0; 1, we will have

Ak;t � Ak;t+1 and Ak =
[

t

Ak;t:

11



Therefore the structure Ak =
S

tAk;t is computable. The structures A0;t and A1;t are

isomorphic to each other. Each Ak;t is of the form

[A0
k;t] + [A1

k;t] + : : :+ [At
k;t];

where, for all n 6= m, An
k;t n A

m
k;t 6= ;. By construction, we also guarantee that An

k;t � An
k;t+1

and that at the end A is isomorphic to

[A0
k] + [A1

k] + : : :+ [An
k ] + : : : ;

where each Am
k =

S
tA

m
k;t and A

m
k n A

s
k 6= ; for s 6= m.

2. To each requirement De the construction assigns a coding location ae not in UA0 .

One of the goals of the construction is to put ae into U
A0 if 	e(ae) = 0. (Its image in A1

will go into UA1 but ae itself will not.) Each of these coding locations will be in a di�erent

component of A0;t. Success in such an attempt meets requirement De on the number put

into UA0 .

3. Functions r0t and r1t . At stage t each r
k
t is a partial isomorphism from Gt into Ak;t

one of which is the construction's (designated) isomorphism. The function rkt may extend

its previous isomorphism rkt�1. If r
k
t does not extend the previous isomorphism, then we say

that the construction changes its (designated) isomorphism from rkt to r
k+1
t .

4. The special G{component. The construction picks a component St(G) of the

structure G called the special G{component. If there exist in�nitely many stages at which

the construction changes its isomorphism, then the special component S(G) =
S

t St(G)

becomes in�nite, all components in A0 (and hence in A1) which can be embedded into

S(G) are �nite, and therefore G is not isomorphic to A0. (We say a component [Y ] can

be embedded into one [X] just in case Y � X.) If, after some stage t0, the construction

never changes its (designated) isomorphism from rk and G is isomorphic to A, then G will

be computably isomorphic to Ak via r
k = [frkt jt � t0g.

5. Special Components [S]kt , k = 0; 1. The construction ensures that [S]0t is isomor-

phic to [S]1t . The special component [S]kt is one of the components of Ak;t, that is [S]
k
t is

one of the [A
j

k;t] for some j � t. At stage t, the special G{component St(G) in the structure

G can be embedded into these components. Moreover, if R recovers at stage t (see the

de�nition of recovery below), then these components satisfy the following properties.

1. If the construction does not change its isomorphism from rk, then [S]kt�1 is a substruc-

ture of [S]kt and, if it participated in an L or R operation at t, [S]k+1
t

T
[S]k+1

t�1 = ;.

2. If the construction changes its isomorphism from rk to rk+1, then [S]k+1
t�1 is a substruc-

ture of [S]k+1
t and [S]kt�1

T
[S]kt = ;.

3. If, after some stage t0, the construction never changes its isomorphism from rk, recovers

in�nitely many times, and G is isomorphic to A, then the construction guarantees that

the special G{component S(G) is isomorphic to
S

t>t0 [S]
k
t .

12



6. Marking with 2w and Recovery. If, for a component X in Ak;t, there exists a

unique component Y in Gt such that Y can be embedded into X but not into any other

component of Ak, then we say that Y is covered by X, or equivalently, X covers Y .

During the construction some components in Ak;t will be marked with a special symbol 2w

called a waiting mark. We say that R recovers at stage t, or equivalently that stage t

is a recovery stage, if, at the beginning of stage t, for each component X in Ak;t marked

with a 2w, there exists a unique component Y such that X covers Y . We use the notion of

recovery to show that if G is isomorphic to A, then G is computably isomorphic to either

A0 or A1. The idea is the following. Suppose that G is isomorphic to A. By construction,

each component X in Ak;t marked with a 2w waits to cover a component in G. As soon as

R recovers at a stage t1 � t and a unique component Y in Gt1 is found such that X covers

Y , the construction de�nes an isomorphic embedding from Y to X and then attempts to

guarantee that Y is isomorphic to X. If R does not recover at stage t, then we say that R is

in the waiting state. If R is always in the waiting state after stage t, then, by construction,

G will not be isomorphic to Ak.

In the general construction all the objects, as for example coding locations ae, functions

rkt , waiting mark 2w, etc., de�ned above will have additional indices which correspond to

the nodes of the priority tree. Now we present a module to satisfy R and all requirements

De.

Stage 0. Let A0;0 and A1;0 be isomorphic to the graph [2]. Let the partial isomorphisms r00
and r10 be empty with r00 the designated partial isomorphism. Put R into the waiting state

and mark the components of A0;0 and A1;0 with 2w. When we �rst have a recovery stage t

we will de�ne St(G) so that St(G), [S]
0
t and [S]1t are isomorphic to the graph [2].

Stage t + 1: Substage 1: If this is not a recovery stage we go on to substage 2. If it is a

recovery stage, proceed as follows:

Action. De�ne the partial isomorphisms r0t+1 (and r
1
t+1) on the components marked with

a 2w: Partial isomorphism r0t+1 ( r1t+1) maps a component Y in Gt into a component X in

A0;t (A1;t) if and only if Y is covered by X. Suppose rkt was the construction's previously

designated isomorphism. We now have the following two cases.

Case 1. Suppose that rkt+1 extends r
k
t . In this case, set the special component in Ak;t+1

to be [S]kt+1. This special component extends the special component [S]kt of the previous

stage. [[In this case, [S]k+1
t

T
[S]k+1

t+1 = ; if it participated in an L or R operation at t.]]

Case 2. Suppose that rkt+1 does not extend r
k
t . In this case, the construction changes its

designated partial isomorphism to rk+1
t+1 . Set the special component [S]k+1

t+1 in Ak+1;t+1 to be

the image of the special G{component St(G) under the partial isomorphism rk+1
t+1 . [[In this

case, [S]kt
T
[S]kt+1 = ;.]]

Substage 2: Extend both A0;t and A1;t by adding a new component isomorphic to the

graph [a], where a � 2 is a new number. This extends A0;t and A1;t. Let at+1 be the coding

location in the component isomorphic to [a] in A0;t+1. Find the least e � t + 1 for which

	e;t+1(ae) = 0 such that we have not yet acted for De, ae is not in UA0 and one of the

13



following conditions is satis�ed. (If there is no such e, then go to Substage 3.)

1. There does not exist a z such that rkt+1(z) = ae.

2. This is a recovery stage and, for some z, rkt+1(z) = ae.

Action for De. Suppose that the �rst condition holds. Let X be the component in A0;t

containing the coding location ae. Let X
0 be the isomorphic image of X in A1;t. Extend A0;t

and A1;t by performing operations L(Y;X; Z) in A0;t+1 and R(Y 0; X 0; Z 0) in A1;t+1, with Y; Z

and Y 0; Z 0 new components isomorphic to [y], [z], respectively, where y; z are new numbers.

Put ae into U
A0 and its image v in R(Y 0; X 0; Z 0) (which is a new number and hence greater

then all the numbers in UA1 up to this stage) into UA1 . Put (ae; v) into P . Note that we

have successfully met requirement De. Also the structures A0;t and A1;t have been extended

to new isomorphic structures A0;t+1 and A1;t+1, respectively. Now go to substage 3.

Suppose that the second condition holds. Consider the special components [S]0t , [S]
1
t ,

St(G) in A0;t, A1;t, and Gt, respectively. We have two subcases.

Subcase 2.1. There is a sequence of components B0
2 ; X

0; C0
2 ; B

0
1 ; [S]

0
t ; C

0
1 in A0;t and of

their isomorphic images B1
2 ; X

1; C1
2 ; B

1
1 ; [S]

1
t ; C

1
1 in A1;t such that the following conditions

hold:

1. The coding location ae is in X
0.

2. The components Bk
2 and Ck

2 have never before participated in any operation.

3. For each k 2 f0; 1g, the image of rkt+1 has nonempty intersection with every component

in the corresponding sequence.

4. If [S]0t and [S]1t have participated in an L{ or R{operation (respectively) an even

number of times (possibly 0) since the construction last changed its isomorphism (e.g.,

it just changed it now) then the components Bk
1 , C

k
1 have never participated in any L{

or R{operations.

5. If [S]0t has participated in an L-operation an odd number of times since the construction

last changed its isomorphism and the designated isomorphism is now r0t , then C
0
1 is the

component that played the role of B0
1 the last time a special component participated

in an L{operation and B0
1 , B

1
1 have never participated in any L{ or R{operations. (C1

1

is the component in A1 isomorphic to C0
1 which was [S]1 the last time an operation

was applied.)

6. If [S]1thas participated in an L-operation an odd number of times since the construction

last changed its isomorphism and the designated isomorphism is now r1t , then B
1
1 is the

component that played the role of C1
1 the last time a special component participated in

an R{operation and C1
1 , C

0
1 have never participated in any L{ or R{operations. (B0

1

is the component in A0 isomorphic to B1
1 which was [S]0 the last time an operation

was applied.)
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In this case, extendA0;t by applying an L{operation to the sequence B
0
2 ; X

0; C0
2 ; B

0
1 ; [S]

0
t ; C

0
1

and extend A1;t by applying an R{operation to the sequence B1
2 ; X

1; C1
2 ; B

1
1 ; [S]

1
t ; C

1
1 : Note

that the image of the coding location ae is a new number v in A1;t+1. Put the pair (ae; v) into

P , the number ae into U
A0 , and the number v into UA1 . Note that we have successfully met

requirement De and now have extended structures Ak;t+1 and Ak+1;t+1. Go on to substage

3.

Subcase 2.2. Suppose that the previous subcase does not hold. In this case, add new

components to A0;t+1 and A1;t+1 isomorphic to [b1],[b2], [c1], [c2], where b1; b2; c1; c2 are new

numbers. Go on to substage 3.

Substage 3: If this is not a recovery stage go on to the next stage. If it is, put a mark 2w

on each component that has participated in an L{ or R{operation, on the new components

isomorphic to [a] [bi] or [ci] added on to A0 and A1 and on the component X in A0;t+1 (and

on its image X 0 in A1;t+1) which has the least number in any component not yet marked

with a 2w. Go on to the next stage.

This concludes the description of the construction. Now we state several claims about

the construction and sketch their proofs. It may be helpful in following the construction

above and the proofs below to refer to the diagrams of the results of applying the operations

to the special sets and their immediate neighbors in the sequences used supplied later in the

proof of Lemma 2.7.

Claim 1. The construction meets all the requirements De. Moreover, if at some stage the

enumeration of G enters the waiting state and never recovers, then G is not isomorphic to

A0.

Proof of Claim 1. Suppose that at stage t, G enters the waiting state and never recovers.

There is now clearly an e0 such that for every e > e0 for which 	e(ae) = 0 there is a stage

t0 such that at all stages t > t0 the construction satis�es condition 1 of substage 2 via e.

Therefore 	e 6= UA0 by our action at such a stage t. Of course, if �e(ae) 6= 0, then De is

met automatically. Note that, in this case, all components of Ak are �nite by construction.

Thus it follows from the de�nition of recovery and the description of stages t + 1 that G is

not isomorphic to A0. (Of course, satisfying De for all e > e0 implies that De is satis�ed for

every e.)

Suppose now that G recovers at in�nitely many stages. Let e be the smallest number for

which De is not met. Let t1 be such that for all e0 < e, all action for the requirements De0

are �nished before stage t1. (Clearly we act at most once for each De.) Then there exists

a stage t + 1 > t1 at which 	e;t+1(ae) = 0 while condition 2 and Subcase 2.1 of Substage 2

holds. It follows that at stage t + 1, the construction must meet requirement De. This is a

contradiction. 2

The next claim gives one of the fundamental properties of recovery.
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Claim 2. Consider the sequence

Y1; Y2; Y3; Y4; St(G); Y5

in Gt, and the sequences Bk
2 ; X

k; Ck
2 ; B

k
1 ; [S]

k
t ; C

k
1 corresponding to it via the maps rkt . Sup-

pose that at stage t an L{operation is applied to B0
2 ; X

0; C0
2 ; B

0
1 ;

[S]0t ; C
0
1 in A0 and an R{operation is applied to B1

2 ; X
1; C1

2 ; B
1
1 ; [S]

1
t ; C

1
1 in A1. Let t

0 > t be

the least stage at which G recovers. Then Gt0 satis�es one of the following mutually exclusive

properties:

1. Components Y1, Y2, Y3, Y4, St(G), Y5 are covered by B0
2 �X

0, X0 �C0
2 , C

0
2 �B

0
1 , B

0
1 � [S]

k
t ,

[S]kt � C
k
1 , C

k
1 � B

0
2 , respectively, in A0 and the corresponding isomorphic components

in A1. If r0t was the designated isomorphism at stage t, this covering corresponds to

the fact that at stage t0 the construction did not change its isomorphism from r0 to r1.

If r1t was the designated isomorphism at stage t, this covering corresponds to the fact

that at stage t0 the construction changed its isomorphism from r1 to r0.

2. Components Y1, Y2, Y3, Y4, St(G), Y5 are covered by Ck
1 �B

0
2 , B

0
2 �X

0, X0 �C0
2 , C

0
2 �B

0
1 ,

B0
1 � [S]

k
t , [S]

k
t � C

k
1 , respectively, in A0 and the corresponding isomorphic components

in A1. If r0t was the designated isomorphism at stage t, this covering corresponds to

the fact that at stage t0 the construction changed its isomorphism from r0 to r1. If r1t
was the designated isomorphism at stage t, this covering corresponds to the fact that

at stage t0 the construction did not change its isomorphism from r1 to r0.

Proof of Claim 2. Note �rst that there are no changes in any component of Ak with

elements in the range of rkt between t and t0 as these happen only at recovery stages by

construction. The claim now follows directly from the fact that Bk
2 , X

k, Ck
2 and one of Bk

1

and Ck
1 have never participated in any operations before and so are of the form [fzg] for

distinct numbers z and the de�nitions of recovery, L{operation, and R{operation. (Each Yi
in G can grow into one of two components in Ak but once one is determined so are all the

others by the requirements of uniqueness in the de�nition of recovery.) 2

Claim 3. Ak are of the form [Ak
0] + � � �+ [Ak

n] + � � �; A
k
nnA

k
m 6= ; for n 6= m and k = 0; 1;

and, for each stage t, Ak;t are of the form [Ak
0;t] + � � �+ [Ak

n;t] + � � �; A
k
n;tnA

k
m;t 6= ; for n 6= m

and k = 0; 1.

Proof of Claim 3. The second version of the claim (for each stage t) follows immediately

by induction from the construction. Moreover, the only way that any of the components [Ak
n]

can be in�nite is for there to be in�nitely many recovery stages and for the construction to

never change its isomorphism after some stage t0. In this case, if the isomorphism remains

rk then [S]kt becomes the one in�nite component of Ak. Thus the disjointness condition for

the �nal components follows from the one at each stage. 2
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Claim 4. Suppose that G recovers at in�nitely many stages. If, after a stage t0, the

construction never changes its isomorphism from rkt , then the following hold:

1. For each t > t0, the special component [S]kt+1 extends [S
k
t ]. Therefore

S
t!1[S]

k
t is an

in�nite component.

2. If t0 < t1 < t2 < : : : is the sequence of all stages such that during each stage ti the

partial isomorphism rkti properly extends the function rkti�1
, then [S]k+1

t2
extends [S]k+1

t0

and each [S]k+1
t2(i+1)

extends [S]k+1
t2i

. Therefore the components
S

t�t0 [S]
k
t and

S
t�t0 [S

k+1
2t ]

are isomorphic.

3. Each component of Ak distinct from
S

t!1[S]
k
t is �nite.

4. If G is isomorphic to A, then G is computably isomorphic to Ak.

Proof of Claim 4. The �rst part of this claim follows from the de�nition of [S]kt at stage t

and the assumption. The second part follows from Claim 2 about the properties of the L{

and R{operations and the description of the construction at stage t+1. The third part was

already noted in the last Claim as, for any component X distinct from [S]kt , there exists a

stage t > t0 such that after this stage the component X will never be used and so it is �nite.

To prove the last part of the claim consider the function rk =
S

t>t0 r
k
t . By construction,

every component X in Ak is eventually marked with a 2w and so there exists a stage t00 > t0

such that rkt00Y � X for some component Y in G and so rkY � X (as the construction

never changes its isomorphism). As X is the only component of Ak contained in X and G

is isomorphic to Ak, r
k must restrict to an isomorphism of Y onto X. Finally, if there were

some component Y 0 of G not in the domain of rk then as G is assumed isomorphic to Ak, Y

would be is isomorphic to some component X of Ak but each such X is isomorphic to some

Y in G. Thus G would have two isomorphic components and so not be isomorphic to Ak by

the last Claim.

Claim 5. If the construction changes its isomorphism at in�nitely many stages, then the

special G{component S(G) is in�nite and all components in A0 are �nite. Therefore G is

not isomorphic to A0.

Proof of Claim 5. For each component X, if X is distinct from [S]0t for all t, then X is

�nite. Therefore it is enough to prove that the components in A0 which contain [S]0t for

some t are also �nite. Let t1, t2, : : : be the sequence of all stages at which the construction

changes its isomorphism. We can suppose that at stage t1 the construction changes its

isomorphism from r0t1 to r
1
t1
. Consider [S]0t1 and [S]0t1�1. We have [S]0t1�1

T
[S]0t1 = ;. Hence,

by the construction [S]0t1�1 will never be used again. At stage t2 the construction changes its

partial isomorphism from A1 to A0. Now [S]1t1
T
[S]1t2 = ; but [S]

0
t2
extends [S]0t1 . However,

after stage t3 the component [S]0t2 will never be used. Hence the component containing

17



[S]0t1 is �nite. Continuing this procedure we see that neither A0 nor A1 contains an in�nite

component.

Claim 6. A0 and A1 are isomorphic.

Proof of Claim 6. It is immediate from the construction that A0;t and A1;t are isomorphic

for every t. If there are only �nitely many recovery stages, then every component of Ak

is �nite and the claim follows. Otherwise, there is exactly one in�nite component in each

and they are isomorphic by item 2 of Claim 4. Of course, the �nite components are again

isomorphic by the existence of isomorphisms at each stage. 2

Claim 7. The relation P is computable.

Proof of Claim 7. Each time a pair (x; y) is put into P; y is a new number. Thus, the

construction enumerates P in increasing order. 2

The above claims prove the correctness of the construction with respect to one R and all

De. 2

General Construction. We now describe a construction on a priority tree T that

satis�es all the requirements. All nodes of a given length will have a �xed set of possible

outcomes with a left to right ordering on them. The induced lexicographical ordering �L on

the tree T coincides with the usual priority ordering on T .

For every � 2 T of length 3j + 2, we will de�ne an �{strategy to meet the requirement

Dj. At stage t, the construction guarantees that some coding location is attached to each

accessible node � 2 T of length 3j + 2. One of the goals of the construction is to satisfy Dj

on one of these coding locations. The strategy to meet the requirement Dj employs the L{

and R{operations. These strategies (nodes) have two possible outcomes at a stage t: The

outcome is c if the construction now acts or has acted at some previous stage (since � was

last initialized) to satisfy the requirement Dj. Otherwise, it is d. The left-to-right ordering

on these outcomes is c <L d.

For every � 2 T of length 3j+1, we will de�ne an �{strategy R� to meet the requirement

Rj. As the structure A we are building will be of the form [A0] + [A1] + � � � + [An] + � � �

with An 6� Am for n 6= m, we can limit ourselves to computable graphs Gj which are of

this form. Moreover, without loss of generality, we can require that the enumerations Gj;t

be such that at no stage are there components [Y0] and [Y1] of Gj;t with Y0 � Y1 and that

for every component [Y ] of Gj;t there is one [X] of A such that Y � X. (Only enumerate

components in Gj when they are of the right form, i.e., a top with cycles attached (to which

more cycles can be added later) and contained in one of A. If there are components partially

enumerated, do not allow any extensions until it is once again possible to make all the

components distinct. This can be done so as to add any single desired element to G if it has

the required form.)
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The �-strategy to meet the requirement Rj is based on a stagewise de�nition of potential

partial isomorphisms rk� which try to de�ne isomorphisms from the structure Gj to Ak for

k = 0; 1. These strategies have four possible outcomes at a stage t: The outcome is w if R�

is in the waiting state; the outcome is k if R� recovers at stage t and the construction does

not change its isomorphism from rk�;t to r
k+1
�;t ; the outcome is1 if R� recovers at stage t and

the construction changes its isomorphism from rk�;t to r
k+1
�;t . (These notions are analogous

to the ones in the construction above and are de�ned precisely in the general construction

below.) The outcomes are ordered as follows: 1 < 0 < 1 < w.

The nodes � 2 T of length 3j are devoted to guessing the components of Gj that are

isomorphic to the in�nite special components of A0 and A1 constructed (one each) by nodes

� � � of length 3n + 1 such that �^i � � for i = 0; 1. This information is needed by the

nodes  of length 3j + 1 to successfully de�ne the required isomorphism rk . The possible

outcomes of a node of length 3j in order are 1 < 0 < 1 < : : : < n < : : : for n 2 !. The

intention is that each n corresponds to a di�erent guess as to the required components in Gj

together with the correspondence to the desired components in Ak and 1 is the outcome

that there is no \eligible" guess or each such guess is eventually proven false.

We will de�ne the accessible nodes of the priority tree at stage t by induction on their

length. The empty sequence ; of length 0 is the root of the priority tree and is accessible

at every stage t. If � is accessible at stage t and o is the outcome of � at t, then �^o is

accessible at t. If j�j < t, we deal with �^o, otherwise we terminate the stage and go on to

the next one.

To cancel a component means to guarantee to never use it again in any L{ or R{

operation. By construction, any component X in Ak;t (and therefore its isomorphic image in

Ak+1;t) cancelled at stage t, will never be used at later stages of the construction. Therefore

the component containing X in Ak will be equal to X itself. Hence X will be �nite. To

initialize a node � of length 3j+2 at stage t means to cancel all the components associated

with �. To initialize a node � of length 3j + 1 at stage t means to cancel the previous

isomorphism rk�;t�1 and �-special components [S]k�;t�1 in Ak and the choice of S(G�;t�1)

in Gj and all other components associated with � that have participated in an L- or R-

operation. If a special component [S]k�;t�1 is not cancelled or changed to another component

at stage t, the construction keeps [S]k�;t an extension of [S]k�;t�1. We will use this convention

(of not changing [S]k�;t without explicit mention) for all other parameters as well.

Now we describe the general construction. Remarks enclosed in double brackets [[like

this one]] are explanatory only and not part of the formal construction.

Stage 0. Initialize all requirements �. For each � 2 T take distinct numbers

b�;t; c�;t; b�;�;t; c�;�;t; p�;t; q�;t � t + 2

such that the sets fb�;t; c�;t; b�;�;t; c�;�;t; p�;t; q�;tj t 2 !g form a uniformly computable collec-

tion of disjoint sets for � � � 2 T with in�nitely many numbers not in any of them. We say

that the numbers b�;t; c�;t; b�;�;t; c�;�;t; p�;t; q�;t are associated with �.
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Stage t+1. We proceed to act for each accessible node � in turn until the stage is

terminated. Let u be the stage at which � was last initialized and s be the last stage after

u at which � was accessible (u if there is no such stage). As a node � is declared accessible

we initialize all nodes  to the right of �, i.e., � <L  but � 6� .

Case 0: j�j = 3j. If the outcome of � at s was 1 or s = u, the outcome of � is now

the least n that has never been the outcome of � since u and is a code for a sequence of

components of Gj that is eligible to be isomorphic to the corresponding special components

[S]k of Ak for ^k � �. (If there are no  of length 3i + 1 with ^k � � for k = 0 or 1, no

guessing is needed and the outcome of � is always 0, the code for the empty correspondence.)

We say that a component [Y ] of Gj (which at stage t is [Yt]) is eligible to be isomorphic

to [S]k at stage t, if q;v 2 Yt where v is the stage at which [S]k was last de�ned after u

[[necessarily as [q;v]]] and Yt � Xt or Yt � Ztwhere [S]
k
;t = [Xt] and [Zt] is isomorphic to a

component that participated in an L- or R-operation with [S]k the last time it participated

in one. [[This last option is included because such a set may grow into the desired special

component.]] If there is no such n, the outcome of � is1. If the outcome of � at s was some

n 2 !, we see if we have irrefutable evidence that one element of the sequence of components

of Gj coded by n is not isomorphic to the corresponding special components [S]k of Ak for

^k � �. If so, the outcome of � is 1; if not, it is n. We say that we have irrefutable

evidence at stage t that a component [Y ] of Gj (which at stage t is [Yt]) is not isomorphic

to [S]k if there is a z 2 Yt which is not associated with .

Case 1: j�j = 3j + 1. If � = �^1, we think that Gj is not isomorphic to A and so

do not need to do anything for Rj. In this case, the outcome of � is w. Suppose then that

� = �^n for some n 2 !. We say that R� recovers at stage t + 1, or equivalently that

stage t+ 1 is a �-recovery stage, if the following conditions hold:

1. Ignoring the components of Gj picked out by the outcome n of � and the associated

special components in A0 and A1 in the de�nition of covering, there exists (for each of

k = 0; 1), for each component X in Ak;t+1 marked with a 2�
w, a unique component Y

such that X covers Y .

2. If there has already been a �-recovery stage since u, we also require that, for each

component [Zt] in the sequence coded by n that is supposed to correspond to [S]k for

^k � �, Zt � W where [W ] = [S]k;v for the last �-recovery stage v.

Otherwise, we say that R� is in the waiting state at t+1. In the latter case, the outcome

of � is w. If at t+ 1 there is no special component for �, we add components isomorphic to

[q�;t+1] toA0;t+1 andA1;t+1 which we say are associated with �. (Note that when we perform

an L- or R-operation the components maintain their association with a node � the same

way they maintain their original elements, that is if a component originally associated with �

contains various numbers when �rst added to the graph then the component containing those

numbers is associated with � at every later stage.) We declare the components isomorphic

to [q�;t+1] to be the special components [S]k�;t+1 for � and mark them with 2�
w. We also let

r0�;t+1 and r1�;t+1 be empty and designate r0�;t+1 as the construction's isomorphism for � at

t+ 1. In this case, too we let the outcome of � be w.
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If t+1 is a recovery stage forR� and there is a special component for � we de�ne the partial

isomorphisms rk�;t+1 (for k = 0; 1 ) from some components Y of Gj;t+1 into components X of

Ak marked with 2�
w by making rk�;t+1Y � X if this is correspondence coded by n matches Y

and X : If the correspondence does not mention Y or X, we make rk�;t+1Y � X if and only

if Y is covered by X when we ignore the components mentioned by the code n and their

corresponding components in A0 and A1. If S(G�;s) was not de�ned, we set it to be the

component of Gj mapped into [S]0� by r0�;t+1. We now de�ne the outcome of R� as follows:

Subcase 1. Suppose that rk�;t+1 extends the previous designated isomorphism rk�;s[[= rk�;t
and component [S]k�;t+1 extends [S]

k
�;t (and [S]k�;t = [S]k�;s)]]. In this case, the outcome of �

is k.

Subcase 2. Suppose that rk�;t+1 does not extend the previous designated isomorphism rk�;t.

In this case, the construction changes its (designated) isomorphism from rk�;t to r
k+1
�;t+1 and

the outcome of � is1. [[Note that, in this case, the component [S]k+1
�;t+1 extends [S]

k+1
�;t (and

[S]k+1
�;t = [S]k+1

�;s ) and [S]k�;t+1

T
[S]k�;t = ;.]]

In either subcase of a recovery stage with the special component already de�ned, we put

marks 2�
w on any component of Ak that has participated in an L- or R-operation since s;

on any new components added since s and on the component which has the least number of

any one without a mark 2�
w.

Case 2: j�j = 3j + 2. If �^c was the outcome of � at s, it is so again. If not, and

there is no coding location attached to �, we add components isomorphic to [b�;t+1], [c�;t+1]

and [p�;t+1] to each of A0;t+1 and A1;t+1 which we associate with � and attach the coding

location in the copy of [p�;t+1] to �. Let a be the coding location attached to the node �. Let

X0 be the component in A0;t+1 containing the coding location a and X1 be the isomorphic

image of X0 in A1;t+1. Let B
k
n+1 and C

k
n+1 be the components that we associated with � at

the stage at which a was attached to it.

Let k1 < : : : < kn � t+ 1 be the sequence of numbers i such that �(3i+ 1) 6= w. We let

�i denote � �(3ki+1). If there are no such numbers, n = 0 and the corresponding conditions

in the description below are vacuous. If it is not the case that 	j;v(a) = 0, the outcome of �

is d. If this is the �rst stage v since u at which � is accessible such that 	j;v(a) = 0, we add

new components to A0;t+1 and A1;t+1 isomorphic to [b�;�i;;t+1] and [c�;�i;t+1] associated with

�i for each i � n . In this case, the outcome of � is also d. Otherwise, we have two subcases.

Subcase 2.1. There exists a sequence

B0
n+1; X

0; C0
n+1; B

0
n; [S]

0
�n;t+1; C

0
n; : : : ; B

0
1 ; [S]

0
�1;t+1; C

0
1

of components in A0;t+1 and the corresponding isomorphic image

B1
n+1; X

1; C1
n+1; B

1
n; [S]

1
�n;t+1; C

1
n; : : : ; B

1
1 ; [S]

1
�1;t+1; C

1
1

of the sequence in A1;t+1 such that Bk
i and Ck

i are associated with �i with the following

properties:
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1. For each i 2 f1; : : : ; ng and k 2 f0; 1g, the image of rk�i;t+1 has nonempty intersection

with every component in the sequence Bk
n+1; X

k; Ck
n+1; B

k
n, [S]

k
�n;t+1; C

k
n; : : : ; B

k
i ; [S]

k
�i1;t+1; C

k
1 .

2. If [S]0�i;t+1 and [S]1�i;t+1 have participated in an L{ or R{operation (respectively) an

even number of times (possibly 0) since the construction last changed its isomorphism

for �i after u (e.g., it just changed it now and so �i^1 � �) then the components Bk
i ,

Ck
i have never participated in any L{ or R{operations and are isomorphic to fb�;�i;ug

and fc�;�i;ug, respectively, for some u < t+ 1.

3. If [S]0�i;t+1 has participated in an L-operation an odd number of times since the con-

struction last changed its isomorphism for �i and the designated isomorphism is now

r0�i;t+1, then C
0
i is the component that played the role of B0

i the last time a special com-

ponent for �i [[necessarily [S]0�;i;u for some u < t + 1]] participated in an L{operation

and B0
i , B

1
i have never participated in any L{ or R{operations and are isomorphic to

fb�;�i;ug for some u < t+ 1. [[C1
i is the component in A1 isomorphic to C0

i which was

[S]1�i the last time an operation was applied.]]

4. If [S]1�n;t+1has participated in an L-operation an odd number of times since the con-

struction last changed its isomorphism for �i and the designated isomorphism is now

r1�i;t+1, then B
1
i is the component that played the role of C1

i the last time a special com-

ponent for �i [[necessarily [S]1�i;;u for some u < t + 1]] participated in an R{operation

and C1
i , C

0
i have never participated in any L{ or R{operations and are isomorphic to

fc�;�i;ug for some u < t+ 1. [[B0
i is the component in A0 isomorphic to B1

i which was

[S]0�i the last time an operation was applied.]]

Action for Dj at �: In this subcase, extend A0;t+1 by applying an L{operation to the

sequence

B0
n+1; X

0; C0
n+1; B

0
n; [S]

0
�n
; C0

n; : : :D
0
1; B

0
1 ; [S]

0
�1;t+1; C

0
1

and extend A1;t+1 by applying an R{operation to the sequence

B1
n+1; X

1; C1
n+1; B

1
n; [S]

1
�n
; C1

n; : : :D
1
1; B

1
1 ; [S]

1
�1;t+1; C

1
1 :

Note that the image of the coding location a is a new number v in A1;t+1. Put the pair (a; v)

into P , the number a into UA0 , and the number v into UA1 .

In this subcase, the outcome of � is c.

Subcase 2.2. Otherwise, the outcome of � is d.

This concludes the description of the construction.

Thus, we have constructed two structures A0 and A1, where

A0 =
[

t

A0;t and A1 =
[

t

A1;t:

The following two lemmas state several basic obvious facts about the construction.
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Lemma 2.4 The following properties hold of the construction:

1. For any component Xk, if Xk is cancelled at stage t, then the construction never uses

the component Xk or Xk+1 in any L{ or R{operation after stage t. Therefore Xk and

Xk+1 are �nite isomorphic components.

2. Component X is in�nite if and only if the set ftj at stage t the set X participated in

an L{ or R{operationg is in�nite. 2

Lemma 2.5 Suppose that at a stage t an L{operation (R{operation) is applied to the se-

quence

Bk
n+1; X

k; Ck
n+1; B

k
n; [S]

k
�n;t

; Ck
n; : : : ; B

k
1 ; [S]

k
�1;t
; Ck

1 .

Consider the node �i. If there exists a stage t0 > t at which a node to the left of �i is

accessible, then the components

Bk
n+1; X

k; Ck
n+1; B

k
n; [S]

k
�n
; Ck

n; : : : ; B
k
i ; [S]

k
�i;t
; Ck

i

never participate in any L{ or R{operation at any t1 > t0, and therefore the components in

Ak containing

Bk
n+1; X

k; Ck
n+1; B

k
n; [S]

k
�n;t

; Ck
n; : : : ; B

k
i ; [S]

k
�i;t
; Ck

i

are �nite. 2

Now in order to prove the correctness of the construction, we need to consider the true

path P on the tree T , that is the leftmost path on T whose nodes are accessible in�nitely

often. Thus, � is on the true path i� there are in�nitely many stages at which � is accessible

and there exists a stage t after which no � to the left of � is accessible. It is clear that there

is a unique true path P on T .

Lemma 2.6 The relation UA0 is computably enumerable but not computable. The relation

UA1 is computable. In particular, the structures A0 and A1 are not computably isomorphic.

Proof. Note that at stage t if we put an element v into UA1 , then v is new and hence is greater

than all elements appearing in UA1 before stage t. Therefore the construction e�ectively lists

all the elements in UA1 in a strictly increasing order. Hence UA1 is computable.

Suppose that UA0 is also computable and 	j is a characteristic function for U
A0 . Consider

the requirement Dj and the node � = a0 : : : a3j+1 on the true path corresponding to Dj. Let

t be the �rst stage such that � is accessible at t but no � to the left of � is ever accessible

after stage t. Let a be the coding location which is attached to the node � at stage t and

Bk
n+1; C

k
n+1 be the components associated with � when a was attached to it. If there is no

t1 > t such that 	j;t1(a) = 0, the requirement is clearly satis�ed, so suppose there is such a

stage and let t1 be the �rst such at which � is accessible. We add new components isomorphic

to [b�;�i;t1 ] and [c�;�i;t1 ] at stage t1 by construction that can be used in an operation only

when we act to satisfy Dj at �. Since � is on the true path there exists a stage t2 > t1
such that at stage t2 the node � is accessible and all of these components as well as Bk

i ; C
k
i ,
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the components isomorphic to [b�;�i;t1] and [c�;�i;t1], respectively, where the �i are de�ned

as in the construction, have marks 2
�j
w for each j � i � n. (As there are in�nitely many

�i-recovery stages for each i � n by assumption, there must be such a stage.) At this stage

Subcase 2.1 of Case 2 of the construction must hold if we have not already satis�ed Dj by

acting for �. (None of the new components needed can have been used in other operations

by construction.) It follows that the construction must meet the requirement Dj at stage t2
and so 	j can not be the characteristic function of UA0 . 2

Lemma 2.7 1. Suppose that at a stage t an L{operation is applied to the sequence

B0
n+1; X

0; C0
n+1; B

0
n; [S]

0
�n;t

; C0
n; : : : ; B

0
1 ; [S]

0
�1;t
; C0

1 :

(And so each �i in the sequence is accessible at t.) Consider the node �i and suppose

that the designated partial isomorphism from Gki to A0;t is r
0
�i;t

at t. If t1 is the �rst

recovery stage for �i after t (and so, in particular, �i is accessible at t1) and, between

stage t1 and stage t, no nodes to the left of �i are accessible, then the following hold:

(a) If the construction changes its isomorphism from r0�i to r
1
�i
at stage t1, then [S]0�i;t

and so the Gki{special component S(�i; t1) is embedded into B0
i � [S]

0
�i;t

(the compo-

nent corresponding to B0
i ) which becomes [S]0�i;t1 and [S]

0
�i;t1

has empty intersection

with component [S]0�i;t.

(b) If the construction does not change its isomorphism from r0�i to r
1
�i

at stage t1,

then [S]0�i;t and so the Gki{special component S(�i; t1) is embedded into [S]0�i;t �C
0
i

(the component corresponding to [S]0�i;t) which becomes [S]0�i;t1 and [S]
0
�i;t1

extends

component [S]0�i;t. Moreover, the component B0
i becomes B0

i � [S]
0
�i;t

.

2. Suppose that at a stage t an R{operation is applied to the sequence

B1
n+1; X

1; C1
n+1; B

1
n; [S]

1
�n;t

; C1
s ; : : : ; B

1
1 ; [S]

1
�1;t
; C1

1 :

(And so each �i in the sequence is accessible at t.) Consider the node �i and suppose

that the designated partial isomorphism from Gki to A1;t is r
1
�i;t

at t. If t1 is the �rst

recovery stage for � after t (and so in particular �i is accessible at t1) and no nodes to

the left of �i are accessible between stage t1 and stage t then the following hold:

(a) If the construction changes its isomorphism from r1�i to r
0
�i
at stage t1, then [S]1�i;t

and so the Gki{special component S(�i; t1) is embedded into C1
i � [S]

1
�i;t

(the compo-

nent corresponding to C1
i ) which becomes [S]1�i;t1 and [S]

1
�i;t1

has empty intersection

with component [S]1�i;t.

(b) If the construction does not change its isomorphism from r1�i to r
0
�i

at stage t1,

then [S]1�i;t and so the Gki{special component S(�i; t1) is embedded into B1
i � [S]

1
�i;t

(the component corresponding to [S]1�i;t) which becomes [S]1�i;t1 and [S]
1
�i;t1

extends

component [S]1�i;t. Moreover, the component C1
i becomes C1

i � [S]
0
�i;t

.

24



Proof. This lemma is an analog of Claim 2. It is immediate from the de�nitions of

recovery, L{operation, R{operation, and the construction. To make it easier to see this

and later points we schematically display the results of applying the operations in various

circumstances. For the sake of simplicity, we omit the subscripts for the node � and the

stages t as well as the duplications in the product notation (�) for the results of applying the

operations. We also omit the superscripts designating which component is in A0 and which

in A1 and just display �rst the results in A0 and then those in A1.

Here is the result of a sequence of operations when the designated isomorphism remains

r0. Note that the Bi are new components each time. First on A0:

B0  [S]0 = S0  C0

B1  S0 � C0  B0 � S0
B2  S0 � C0 �B0  C2

B3  S0 � C0 �B0 �B1  B2 � S0 � C0 �B0

1a (2)

Next on A1:

B0 ! [S]1 = S0 ! C0

B1 ! C0 � S0 ! S0 �B0

B2 ! S0 �B0 � C0 ! C2

B3 ! C2 � S0 �B0 � C0 ! S0 �B0 � C0 �B2

1b (3)

Here are the results of applying the operations when the designated isomorphism remains

r1 with the same conventions. Note here that the Ci are new components each time. First

on A0:

B0  [S]0 = S0  C0

S0 � C0  B0 � S0  C1

B2  S0 � C0 �B0  C2

S0 � C0 �B0 �C2  B2 � S0 � C0 �B0  C3

2a (4)

Next on A1:

B0 ! [S]1 = S0 ! C0

C0 � S0 ! S0 �B0 ! C1

B2 ! S0 �B0 � C0 ! C2

C2 � S0 �B0 � C0 ! S0 �B0 � C0 �B2 ! C3

2b (5)

And �nally, here are the results if the construction starts with r0 and then changes its

isomorphism at each stage so that all the Bi and Ci are new. First on A0:

B0  [S]0 = S0  C0

B1  B0 � S0  C1

B2  B0 � S0 � C1  C2

B3  B2 �B0 � S0 � C1  C3

3a (6)
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Next on A1:

B0 ! [S]1 = S0 ! C0

B1 ! S0 �B0 ! C1

B2 ! C1 � S0 �B0 ! C2

B3 ! C1 � S0 �B0 �B2 ! C3

3b (7)

2

Before we prove the next lemma we again note that each component in A0 (A1) is of

the form [
S

t A
n
0;t] ([

S
tA

m
1;t]) for some n (m). We denote this component by An

0 (Am
1 ).

Lemma 2.8 For any component An
0 in A0 there is a component Am

1 in A1 such that An
0

and Am
1 are isomorphic. Similarly, for any component An

1 in A1 there is a component Am
0

in A0 such that An
1 and Am

0 are isomorphic.

Proof. Suppose that An
0 is �nite. There exists a stage t such that An

0 = An
0;t. This

component cannot participate in an L{operation at any stage t0 > t . Hence its image, say

Am
1;t0 does not participate in an R{operation. Therefore component An

0 is isomorphic to Am
1 .

(Only components in A0 participate in L-operations and ones in A1 in R-operations.)

Suppose now that the component An
0 is in�nite. Then the set

ftj at stage t the set An
0;t participates in an L-operation g

is in�nite. Let t1 < t2 < : : : < tn < : : : be the list of all elements of this set. Consider stage

tj for any j. At this stage A
n
0;tj

participates in an L-operation. Let

B0
v+1; X

0; C0
v+1; B

0
v ; [S]

0
�v;tj

; C0
v ; : : : ; B

0
1 ; [S]

0
�1;tj

; C0
1

be all the components participating in this L{operation including An
0;tj

. As the components

B0
v+1; X

0; C0
v+1 can participate in an L-operation at most once, An

0;tj
belongs to the set

fB0
i ; [S]

0
�i;tj

; C0
i g and is associated with an accessible �i for some i � v (and remains so

associated). For any stage t between stages tj and tj+1, no node to the left of �i can be

accessible since otherwise, by Lemma 2.3, An
0;t would be cancelled and hence �nite.

If the construction changes its isomorphism at �i in�nitely often then no component

associated with �i can participate in an operation in�nitely often: The ones playing the

roles of Bk
i and Ck

i are new each time the isomorphism changes and the [S]k�i change every

other time by Lemma 2.7 and once changed can never be used again. (See (3a) and (3b)

above.) Thus there is a least j such that the construction never changes the isomorphism

for �i after tj. There are two cases to consider:

Case 1. Suppose that the designated isomorphism is always r0tk for k � j. In this case,

the only component of A0 that participates in�nitely often is the special component [S]0tk
which is increasing in k � j. (See (1a) and (1b) above.) Moreover, the components [S]1tj+2k+2

are isomorphic to [S]0tj+2k+2
and also form an increasing sequence. Thus the two limits
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[f[S]0tj+2k+2
g, which is the given An

0 , and [f[S]
1
tj+2k+2

g, which is some Am
1 , are isomorphic as

required.

Case 2. Suppose that the designated isomorphism is always r1tk for k � j. In this case,

the only component of A0 that participates in�nitely often is the one that alternates between

being [S]0tj+2k
and playing the role of B0

i in the operations at stages tj+2k+1. (See (2a) and

(2b) above.) In this case, the two increasing limits [f[S]0tj+2k
g which is the given An

0 and

[f[S]1tj+2k
g which is some Am

1 are isomorphic as required.

The proof going from An
1 to Am

0 is similar. 2

Lemma 2.9 For each k = 0; 1 and n 6= m, An
k 6� Am

k , Moreover, for each k = 0; 1 and

n 6= m, An
k;t 6� Am

k;t for every t. In addition, each in�nite special component [S]k� = [X] has

only numbers associated with � in the set X.

Proof. The stage by stage distinctions follow immediately from the construction by induc-

tion. The only additional concern is the in�nite components. As there is at most one for each

� and they are all clearly di�erentiated by having only cycles of length some q�;t; b�;t; c�;t; b�;�;t
or c�;�;t which are all distinct for di�erent �. 2

Lemma 2.10 The structures A0 and A1 are isomorphic.

Proof. A back and forth argument constructs the desired isomorphism by the previous two

lemmas.2

We now wish to prove that all the requirements Rj are satis�ed. We �rst analyze the out-

comes of the appropriate nodes on the true path under the assumption that Gj is isomorphic

to A.

Lemma 2.11 If Gj is isomorphic to A, � is the node of length 3j on P and n is the code

of the sequence of components of Gj isomorphic to the in�nite special sets of higher priority

(the [S]k for ^k � � and jj = 3i + 1 for i < j) and the correct correspondence between

them and the isomorphic components of A0 and A1, then �^n is on P.

Proof. Let u be the last stage at which � is initialized. It is clear that n is eventually

eligible to be the outcome of � as Gj is isomorphic to A. As n represents the correct

isomorphism on the relevant components, once eligible it can never later fail to be eligible.

As all these components [X] = [S]k only have numbers z associated  in the set X, with we

can never have irrefutable evidence that n is not the correct outcome. Thus, we only need

to show that we get irrefutable evidence that each code m < n is not correct. Each one

must have some correspondence between a component [Y ] of Gj and one [X] of A that is

eligible but not correct. For it to be eligible, Y must contain the number q;v for the stage

v at which we correctly de�ned [S]k. Thus, if Y is not the component of Gj isomorphic to

[S]k, it must be isomorphic to one of the ones that play the role of Bi or Ci with [S]k when

some operation is applied. It is obvious from the de�nition of the sequence of operations

(as displayed above) that each such component eventually gets an addition which includes

a number not associated with  for the desired contradiction. 2

27



Lemma 2.12 If Gj is isomorphic to A and � = �^n is the node of length 3j+1 on P, then

�^k 2 P for k = 0 or 1.

Proof. Let u be the last stage at which � is initialized. Suppose �rst that �^1 2 P.

Consider the components [S]k�;t and k 2 f0; 1g. Let t0 < t1 < t2 < : : : be the sequence of

stages after u at which �^1 is accessible so the construction changes its isomorphism from

r0�;t2n to r1�;t2n at stage t2n and from r1�;t2n+1
to r0�;t2n+1

at stage t2n+1 . Then, by construction,

after stage t2n+k+3 no extension of [S]k�;t2n+k
will ever participate in any L{ or R-operations.

(See (3a) and (3b) above.) Therefore, by the construction, all components extending [S]k�;ti
are �nite. Consider the corresponding special Gj{component �(S) in the structure Gj. Note

that this special component is in�nite but as we have just argued, all of the components of

A0 which can be embedded in �(S) are �nite. (Only components associated with � can be

embedded in �(S) by construction.) Thus, we have contradicted the assumption that A and

Gj are isomorphic.

Next suppose that �^w 2 P and let t0 be that least stage at which �^w is accessible

but after which no node to its left is accessible. So for all t � t0, R� is in the waiting state.

Since n is the correct correspondence between the in�nite special sets of higher priority and

the appropriate components of Gj, the enumeration of Gj must eventually put into these

components all the members in the ones in those of A at t0 and so we cannot be waiting for

this part of the desired recovery.

Thus we need only consider the �nitely many components X in Ak;to (k = 0; 1) marked

with 2�
w other than those coded by n. (No new marks are put down while R� is in the waiting

state.) Moreover, each such component X in this set is �nite and so eventually constant.

(Any components associated with a node to the right of �^w were canceled when � was last

accessible before t0 by our choice of t0 and so are �nite. None introduced after that stage can

get a 2�
w mark since these are assigned only at �-recovery stages. Components associated

with nodes either extending � or to its left can also never participate in an operation again

and so are �nite. This leaves only components associated with ^k � �. Of these, the only

ones that can possibly become in�nite are the special components [S]k and their isomorphic

images in Ak+1but these are excluded from consideration as being coded for by n by the

previous Lemma.) As Gj is isomorphic to A, there is eventually be a stage t > t0 at which

Gj;t has an isomorphic copy of each such �nite marked component X. The only way we

would not now get a recovery stage (for the desired contradiction) is for there to be an

additional component of Gj;t which is also isomorphically embeddable into one of these X's:

However, we explicitly prohibited such a situation from ever occurring in our enumeration

of Gj. 2

Lemma 2.13 If Gj is isomorphic to A, � = �^n is the node of length 3j + 1 on P and

�^k 2 P for k = 0 or 1, then Gj is computably isomorphic to Ak.

Proof. Consider the e�ective sequence

t1 < t2 < t3 < : : :
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such that no  to the left of �^k is accessible after t1 and �^k is accessible at each stage ti.

Since the outcome of the node � at each of these stages is k, it follows that the sequence

rk�;t1 ; r
k
�;t2
; rk�;t3 ; : : :

is a sequence of partial isomorphisms such that rk�;ti � rk�;ti+1
for all i � 1. (The argument is

as in the case of only one Rj with a few additional remarks: All components associated with

nodes to the right of �^k are cancelled and so undergo no further changes. None associated

with nodes to the left of �^k can participate in an operation (and so change) by our choice of

t1. None associated with a node extending �^k can participate in an operation until �^k is

again accessible. Finally, the only ones associated with nodes  � �^k that can participate

in operations must participate only with triples one of whose components is the true special

set for . As the image for this set is �xed by the code n, the other components cannot

change their preimage under rk either.)

Moreover, by the assignment procedure for marks 2�
w, every component eventually gets

such a mark. Consider the function rk =
S

i�1(r
k
�;ti

) and any component [Y ] of G such that

[Y ]
T
dom(rk) 6= ;. It is clear that rk is an embedding of [Y ] into some component [X] of

Ak. As Gj is isomorphic to Ak and there are no two components of Ak such that one can

be embedded in the other by Lemma 2.9 nor can there be any proper embedding of any

component into itself by construction, rk must restrict to an isomorphism of [Y ] into [X].

As every component of Ak eventually gets a 2
�
w, r

k maps onto Ak. If some component [Y ] of

Gj were not in the domain of rk then it would still be isomorphic to some [X] in Ak and so

there would be two isomorphic components in Gj and so in Ak again contradicting Lemma

2.9. Thus rk is the desired computable isomorphism. 2

Lemma 2.14 The relation P is computable.

Proof: Each time a pair (x; y) is put into P; y is a new number. Thus, the construction

enumerates P in increasing order. 2

The above lemmas prove the correctness of the construction. Thus we have proved

Theorem 2.1 2

3 The Degree Spectra Problem

This section gives a positive solution to the The Degree Spectra Problem (Question 1.4).

Our proof is based on the ideas of the proof of Theorem 2.1 from the previous section. We

give the basic ideas of our proof. However, we do not intend to give the full proof of this

result simply because we do not want to repeat the arguments and construction which are

similar to the ones from Theorem 2.1.

Theorem 3.1 For any computable partially ordered set D there exists a relation U in a

computable structure A whose degree spectrum DgSp(U) is isomorphic to D. Indeed, we can

guarantee that UB is computably enumerable for every computable presentation B of A and
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that if D contains a least element, then the least element of DgSp(U) is 0. Moreover, we

can choose representatives Ai of the degree spectrum of A such that the relation P = f(x; y)j

there are i and j such that di 6� dj ^ x 2UAi ^ y 2UAj ^ there is an isomorphism from Ai

to Aj which extends the map x 7! yg is computable where the isomorphism between DgSp(U)

and D takes di to U
Ai .

Sketch of the Proof. Let d0; d1; : : : be an e�ective list, without repetitions, of all elements

of the partially ordered set D. The goal is to construct a computable sequence A0, A1, : : :

of computable structures (actually digraphs) each one isomorphic to a single rigid structure

A which has a relation U such that the following properties hold:

1. Any computable presentation B of A is computably isomorphic to one of A0, A1, : : :.

2. The isomorphic images UA0 ; UA1 ; : : : of the relation U in A0, A1, : : :, respectively, are

such that for all i; j 2 !, di � dj in D if and only if UAi �T U
Aj .

3. The predicate P , such that for all (x; y) the pair (x; y) 2 P if and only if there are

i; j such that di 6� dj with x 2 U
Aiand y 2 UAj for which the mapping x! y can be

extended to an isomorphism from Ai to Aj, is computable.

Let G0; G1; G2; : : : be a standard enumeration of all computably enumerable digraphs. In

order to build a structure A and a unary relations U with the properties above we need to

satisfy at least the following requirements:

Dn;m : dm � dn if and only if UAm �T U
An

and

Rj : If Gj is isomorphic to A then Gj is computably

isomorphic to one of A0;A1; : : :

where n;m; j 2 !, and n 6= m. Let 	X
0 ;	

X
1 ; : : : be an e�ective enumeration of all computable

partial functions with oracle X. For all n;m 2 !, in order to satisfy requirement Dn;m, our

construction needs to divide the requirement into in�nitely many (sub)requirements:

1. If dm � dn, then De;n;m : UAn �T U
Am .

2. If dm 6� dn, then De;n;m: UAm 6= 	UAn

e where e; n;m 2 !.

Thus, our construction must satisfy requirements Rj and De;n;m for all j, n, m, e 2 !

with n 6= m.

A construction of the sequence A0;A1;A2; : : : and unary predicates UA0 , UA1 , UA2 ,

: : : can be carried out in a priority construction on a tree T de�ned as follows. For each

requirement Rj there is level l(Rj) � j on the tree T such that each node � of this level

is devoted to satisfying Rj and has exactly j + 2 immediate successors �^1, �^0, �^1,

: : :, �^j, �^w. For each requirement De;n;m with dm 6� dn there is a level l(De;n;m) on the
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tree T such that each node � of this level is devoted to satisfy De;n;m and has exactly 2

immediate successors �^c and �^d. Moreover, we also assume that l(De;n;m) > l(Rn) and

l(De;n;m) > l(Rm) for all e; n;m 2 !. Here are the notions and ideas which are used in the

construction.

At stage t each accessible node � of length l(Rj) has a special component S�;t. The

node � also has a potential �nite partial isomorphisms r0�;t, : : :, r
j
�;t from Gj to A0;t, : : :,

Aj;t (one of which is the designated one for the construction at t). (As before these partial

isomorphisms are based on a guess as to the correct correspondence between the in�nite

special components of higher priority and the appropriate components of Gj.) The idea

is that if Gj is going to be isomorphic to the graph the construction is building, then the

construction attempts to force the graph Gj to be computably isomorphic to one of A0, : : :,

Aj as follows. Suppose that � is on the true path. Then � can have j+2 many outcomes. If

the outcome is �^1, then this corresponds to the fact that the construction changes its mind

about its potential isomorphism in�nitely often. Hence the special component S� becomes

in�nite, all the components in A which can be embedded into S� are �nite, and therefore

Gj is not isomorphic to A. If the outcome of � is �^w, then at node � Gj is the waiting

state and hence can not be isomorphic to A. If the outcome is �^i for some i � j, then Gj

is computably isomorphic to Ai.

At stage t for each node � of length l(De;n;m) the construction picks a coding location

a�;t and attempts to meet requirement De;n;m of the form UAm 6= 	UAn

e at this location.

The idea is the following. First of all the action to meet any requirement of type De;n;m is

based on performing L as well as R{operations in the structures the construction is building.

Suppose that � on the true path. There is a stage t0 such that no � to the left of � is ever

accessible after t0. We can assume that the coding location a�;t is attached to the node after

this stage. If there exists a stage t1 > t0 such that 	U
An;t

e;t1
(a�;t) = 0, then the construction

puts a�;t into U
Am at some �-stage. Moreover, the construction puts the images of a�;t into

UAi for i 6= m. These images of the coding location a�;t are new numbers if dm 6� di and

are the same number a�;t put into U
Am if dm � di. This is accomplished by performing an

L{operation in Ai;t when dm � di and an R{operation in Ai when dm 6� di. This clearly

makes UAm �T UAi if dm � di. It is also basically why the predicate P is computable:

whenever a pair is put into P at t, one of its elements and so the pair itself is larger than t.

Note, that the requirement De;n;m is met as all lower priority requirements are initialized and

so cannot put a number less than the use of the computation into UAn . No higher priority

requirement can act to put in any numbers by our choice of t0. Hence 	UAn

e can not be the

characteristic function for UAm . Of course, all the UAi are c.e. by construction. If di is the

least element of D, then there are no diagonalization requirements of the form De;n;i and so

the only new numbers are put into UAi which is therefore computable as desired.

The argument that the requirements Rj are all satis�ed by the node � on the true path

associated with Rj is the same as in the construction of the previous section except that there

are possible outcomes 0; 1; : : : ; i; : : : ; j corresponding to claim that the map ri� = [fr
i
�;tjt >

t0g is a computable isomorphism from Gj to Ai where �^i is on the true path and t0 is the

least stage at which �^i is accessible but no node to its left is ever accessible again. (As

before, if the �^w or �^1 is on the true path then Gj is not isomorphic to A.) 2
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4 Applications

In this section we provide several applications of the techniques developed in the previous

sections. The �rst application answers Question 1.1 posed by Goncharov. The second

application answers Question 1.2 and thus giving a new solution to the Ash{Goncharov

problem. The third application answers Question 1.3 about the connections between Scott

families and categoricity. We begin by answering Question 1.1:

Theorem 4.1 There exists a structure B which has exactly two computably enumerable pre-

sentations B1 and B2 such that the following properties hold:

1. B1 is a computably enumerable but not computable structure.

2. B2 is a computable structure.

3. Any computably enumerable presentation C of B is computably isomorphic to either B1
or B2.

Proof. Consider the structure A constructed in the proof of Theorem 2.1. Let U be the

unary relation in A for which UA0 is computably enumerable but not computable and UA1 is

computable. Expand the structure A by adding to the language of A two predicate symbols

U and E. Set the interpretation ofU to be the unary predicate U constructed in Theorem 2.1.

Set the interpretation of E to be a binary predicate E such that for all x; y, (x; y) 2 E if and

only if x 6= y. De�ne B to be the expanded structure (A; U; E). Obviously, the structure B0
de�ned as (A0; U

A0 ; E) is a computably enumerable but not computable presentation of B.

The structure B1 de�ned as (A1; U
A1 ; E) is a computable presentation of B. The structures

B0 and B1 are isomorphic and are computably enumerable presentations of B. These two

presentations are not computably isomorphic. Let C be any other computably enumerable

presentation of B. The relation E is a computably enumerable relation in C. The equality

relation in C is also computably enumerable. Hence, the equality relation f(x; y)jx = yg of

the structure C is computable. Therefore, if we omit the predicate symbols U and E from

the language of C, then the structure C 0 with the predicates U and E omitted is computably

isomorphic to either A0 or A1. Hence C is computably isomorphic to either B1 or B2. 2

Our next result provides a new solution to the Ash{Goncharov problem originally solved

in [7]:

Theorem 4.2 For each natural number k � 2 there exists a computably categorical structure

B whose expansion by �nitely many constants has exactly k many computable isomorphism

types.

Proof. By Theorem 3.1 there is a computable structure A with a unary relation U such

that the following properties hold:

1. The structure A has exactly k many computable presentations A1, : : :, Ak whose

domains are pairwise disjoint.
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2. For all distinct i; j 2 f1; : : : ; kg, UAi and UAj are Turing incomparable.

3. The binary predicate P , such that for all (x; y), (x; y) 2 P if and only if there are

distinct i; j with x 2 Ai and y 2 Aj for which the mapping x! y can be extended to

an isomorphism from Ai to Aj, is computable.

To see this, simply let D be a set of k pairwise incomparable elements. (So di 6= dj is the

same as di 6� dj.)

Now, de�ne the desired structure B to be the graph

A1 + : : :+Ak

expanded by the predicate P and the equivalence relation E whose equivalence classes are

A1, : : :, Ak. Clearly B is a computable structure. Now let B0 be a computable presentation of

B. Let A01 and A
0
2 be two equivalence classes in B

0. These two substructures of B0 considered

as graphs are isomorphic to A. Hence A01 is computably isomorphic to one of A1, : : :, Ak.

Without lost of generality suppose that A01 is computably isomorphic to A1 via a computable

function f1 : A1 ! A
0
1. If A02 were computably isomorphic to A1 via computable function

f2 : A1 ! A
0
2, then we would be able to decide UA1 in A1 as follows: x in A1 belongs to

UA1 if and only if (f1(x); f2(x)) 2 P . Hence all A01, : : :, A
0
k are pairwise noncomputably

isomorphic. Hence B0 is computably isomorphic to B. Thus, B is computably categorical.

Let a be any designated element from A1. Consider the expanded structure (B; a) with

a new constant for a. Let ai and aj be the image of a in Ai and Aj, respectively. It follows

that the structures

A1 + : : :+ (Ai; ai) + : : :+Ak

and

A1 + : : :+ (Aj; aj) + : : :+Ak

expanded by the predicate P and the equivalence relation E are isomorphic but not com-

putably isomorphic. Thus, (B; a) has exactly k many computable isomorphism types. 2

An immediate consequence is

Corollary 4.3 There exists a computably categorical structure without a Scott family. 2

Now our goal is to strengthen this corollary so as to answer Question 1.3.

Theorem 4.4 There exists a structure without a Scott family such that every expansion of

the structure by a �nite number of constants is computably categorical.

Proof. The structure required to establish the theorem is constructed by coding certain

(uniformly) computably enumerable families of sets of natural numbers.

De�nition 4.5 A family S of sets of natural numbers has a one-to-one computable

enumeration if there is a bijection f : ! ! S such that f(i; x)jx 2 f(i)g is computably

enumerable. We then call f a (computable) one-to-one enumeration of S.
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We wish to consider a standard preordering on the one-to-one computable enumerations of

S that naturally induces an equivalence relation corresponding to computable isomorphism:

De�nition 4.6 A computable enumeration f of S is reducible to g, f � g, if there is

a computable � such that f = g�. If f � g and g � f , then we say that f and g are

equivalent.

Note that if f is a one-to-one enumeration of S and f = g�, then � is a permutation of !

and so f � g: Thus the equivalence classes of one-to-one enumerations are minimal elements

in the induced partial ordering. These are the enumerations that we need to consider to

de�ne the family that supplies the structure required for the theorem. Informally, computable

categoricity corresponds to there being a single such equivalence class and the dimension of

a structure corresponds to the number of such classes.

De�nition 4.7 Two computable structures A and B are of the same computable iso-

morphism type if there is computable isomorphism taking A to B. The dimension of a

computable structure A is the number of its computable isomorphism types.

De�nition 4.8 A computable sequence D0; D1; : : : of (canonical indices for) �nite sets is

a Scott sequence for a family S if the following properties hold:

1. For each Di there exists exactly one M 2 S, denoted by Mi, such that Di �M .

2. The set S n fM0;M1; : : :g is �nite.

>From this de�nition the next lemma follows easily:

Lemma 4.9 If S has a Scott sequence, then any two computable enumerations of S are

equivalent. 2

For any given family S, we want to construct a structure AS such that AS has a Scott

family if and only if S has a Scott sequence. Thus, let S be a family of sets and let f be

a one-to-one computable enumeration of S. We assume that each set in S has at least two

elements and does not contain 0 or 1. Consider the following structure Af :

[f(0)] + [f(1)] + [f(2)] + [f(3)] + : : :

We can assume that Af is a computable structure constructed uniformly in f . Note that the

set of all top elements of Af is computable in every computable presentation of Af (they are

the elements with outdegree at least 2 and also the ones not part of a cycle.) The following

lemma describes the relationship between S and Af .

Lemma 4.10 The structure Af satis�es the following conditions.

1. If g is a one-to-one computable enumeration of S, then Af is isomorphic to Ag.
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2. The structure Af is rigid, that is it does not have any nontrivial automorphisms.

3. If g is a one-to-one computable enumeration of S, then Af is computably isomorphic

to Ag if and only if f and g are equivalent.

4. The dimension of the structure Af is equal to the maximal number of nonequivalent

one-to-one computable enumerations of S.

5. The structure Af has a Scott family if and only if S has a Scott sequence.

Proof. To prove 1, �rst, note that for any pair i; j 2 ! the graphs Af;i and Ag;j are

isomorphic if and only if f(i) = g(j). Hence, since f and g are one-to-one enumerations of

S, we can conclude that Af is isomorphic to Ag.

Any automorphism � of Af must be the identity by the construction of Af and the fact

that f is a one-to-one mapping. This proves 2.

Suppose that f and g are equivalent. There exists a computable function � such that

f = g�. Hence Af and Ag are computably isomorphic. Let B be a computable presentation

of Af . Consider an e�ective sequence e0; e1; e2; : : : without repetition of all top elements in

B. We de�ne a one-to-one computable enumeration fB of S as follows:

fB(i) = fnj ei is connected to a cycle of length ng:

It follows that B is computably isomorphic to Ag if and only if g is equivalent to fB
Part 4 follows from the proof of 3.

We are left to prove the last part of the lemma. Suppose that S has a Scott se-

quence D0; D1; D2; : : :. Without lost of generality we suppose that Di � f(i). The case

S n fM0;M1; : : :g 6= ; can be derived easily from our considerations below simply using the

fact that S n fM0;M1; : : :g 6= ; is �nite. We have to prove that Af has a Scott family. Take

an x 2 Af . Find a top element di which is connected to x. Suppose that the length of the

path which connects x with di is n. De�ne the following formula:  (x) = [there exists

a path of length n which connects x with a top element y such that for each m 2 Di the

element y is connected to a cycle of lengthm]: Now for every s{tuple (x1; : : : ; xs) let �(x1;:::;xs)
be  (x1)& : : :& (xs). It is not hard to check that the sequence f�(x1;:::;xs)g is a Scott family

for Af .

Now suppose for simplicity that Af has a Scott family

�0(x1; : : : ; xn0); �1(x1; : : : ; xn1); : : :

without parameters. The proof below will show that we do not lose any generality by making

this assumption. Let d0; d1; d2 : : : be an e�ective sequence of all top elements from Af . Let

�i0(x0); �i1(x1); : : :

be an e�ective subsequence of the original sequence such that �ik(dk) holds for each k 2 !.

Since the formulas are all existential and the structure is computable, we can e�ectively �nd

a �nite substructure Bi of Af such that di 2 Bi and �ik(dk) holds in Bi. De�ne

Di = fnj di is connected to a cricle of length n in substructure Big:
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Since we have a Scott family for Af and since the structure Af is rigid, we can see that the

sequence D0; D1; : : : is a Scott sequence for family S. 2

Corollary 4.11 Any two one-to-one computable enumerations of S are equivalent if

and only if Af is computably categorical. 2

Now, to prove the Theorem 4.3 it su�ces, by the lemma, to build a computably enumer-

able family S of sets without a Scott sequence any two computable one-to-one enumerations

of which are equivalent.

Lemma 4.12 There is a computably enumerable family S of sets with no Scott sequence any

two computable one-to-one enumerations of which are equivalent.

Proof. In order to build a such family S and its one-to-one enumeration f , we need to

satisfy the following requirements:

De : Fe is not a Scott sequence for S;

Rj : gj � f or gj is not a one-to-one enumeration of S;

where each fgjgj is a computable sequence of all potential one-to-one enumerations of a

family of sets and fFege is a computable sequence of all potential Scott sequences for S.

Now one can see that these requirements are similar to the requirements for constructing a

computable structure in Theorem 2.1. We briey explain how to meet one Rj and all De.

The veri�cations for this much and the modi�cations needed to prove the full theorem are

similar to those for Theorem 2.1 and are left to the reader.

We set g = gi. For t; n 2 ! and n � t, let gt(n) be

fxj x � t and x appears in g(n) in fewer than t+ 1 steps of a �xed computation procedure

for gg:

Our construction proceeds by stages. At stage t, we use the following notions and termi-

nology similar to those in the proof of Theorem 2.1.

1. Enumeration ft. This is an approximation to the enumeration f that the construc-

tion is building. That is, for each i 2 !; we will have

f(i) =
[

t

ft(i):

2. The family St. The function ft enumerates a family denoted by St.

3. To each Fe, we assign a set fceg and a number pe, called witnesses, such that

D = fce; peje 2 !g is a coin�nite computable set and we set f0(ce) = fpeg. One of the goals

of the construction is to meet De on one of these numbers.

4. Potential Reduction Function rt. The map rt, is the function which potentially

reduces gt to ft at stage t. The function rt can extend the previous potential reduction rt�1.
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If rt does not extend the previous potential reduction, then we say that the construction

changes its potential reduction.

5. Let i 2 dom(ft). The construction will guarantee that

ft(i) n
[
f ft(j) j j 6= i& j 2 dom(ft)g 6= ;:

Thus at stage t, each ft(i) possesses an element which does not belong to ft(j) for i 6= j.

The purpose of this property is to ensure that f will be a one-to-one enumeration. We will

also guarantee that at the end f(i)nf(j) 6= ; for i 6= j.

6. A special g{set. The construction needs to pick a set g(sg) in the enumeration g

which is called a special g{set. If there exist in�nitely many stages at which the construction

changes its reduction, then the set g(sg) becomes in�nite, all sets in f contained in g(sg)

are �nite, and therefore g is not a one-to-one enumeration of S. On the other hand, if after

some stage the construction never changes its reduction and g is a one-to-one enumeration

of the family S, then g will be equivalent to f .

7. Special Numbers s
f
t . The construction uses these numbers so that rt(sg) = s

f
t .

Thus ft(s
f
t ) is the set in ft which, at stage t, corresponds to g(sg). Moreover, if g recovers

at stage t (as de�ned below), then these numbers satisfy the following properties.

1. If the construction does not change its previous reduction at stage t, then s
f
t+1 = s

f
t .

2. If the construction changes its reduction at stage t, then s
f
t+1 6= s

f
t .

3. If, after some stage, the construction never changes its reduction, recovers in�nitely

often, and g is a one-to-one enumeration of the family S, then the construction guar-

antees that the set f(limn!1s
f
n) becomes in�nite.

8. Marking with 2w and Recovery. If, for a ft{index x, there exists a y � t such

that gt(y) � ft(x) and for all z 6= x the pair gt(y) is not contained in ft(z), then we say

that gt(y) is covered by ft(x), or equivalently, ft(x) covers gt(y). During the construction

some ft{indices will be marked with a special symbol 2w called a mark. We say that the

enumeration g recovers at stage t, or equivalently that stage t is a recovery stage, if for

each ft{index x marked with a 2w, there exists a unique y such that ft(x) covers gt(y). We

use the notion of recovery to show that if g is a one-to-one enumeration of the family S, then

g is equivalent to f . The idea is the following. Suppose that g is a one-to-one enumeration

of S. By construction, each ft(x) marked with a 2w waits to cover a set in g. As soon as

g recovers at a stage t1 � t and a unique gt1{index y is found such that ft(x) covers gt1(y),

the construction de�nes rt1(x) = y and then attempts to guarantee that g(y) = f(x). If

the enumeration does not recover at stage t, then we say that g is in the waiting state.

If g is always in the waiting state after t, then, by construction, g will not be a one-to-one

enumeration of S.

Now we need a de�nition for an operation which corresponds to the L{operation in the

proof of Theorem 2.1. This operation will be needed to meet requirements De.
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De�nition 4.13 Let Xk; : : : ; X1 be a sequence of sets. The L{operation applied to this

sequence gives, by de�nition, the sequence

Xk

[
Xk�1; : : : ; X1

[
Xk:

We also say that the sets Xk; : : : ; X1 participated in the L{operation.

Now we will describe the construction for satisfying all De and one R.

Stage 0. Let dom(f0) = D
S
fag, where a is a new number not in D. Let p also be a

new number. We set f0(a) = fpg. Put a mark 2w on a. Let the reduction r0 be the empty

function. Put g into the waiting state. When we �rst have a recovery stage we will de�ne

sg so that s
f
0 = a.

Stage t+ 1: Substage 1: If this is not a recovery stage we go on to substage 2. If it is a

recovery stage, we proceed as follows:

Action. De�ne the reductions r
f
t+1 on the indices marked with a 2w as follows: Put

r
f
t+1(x) = y if and only if gt+1(y) is covered by ft+1(x). We now have the following two cases.

Case 1. Suppose that r
f
t+1 extends the previous reduction r

f
t . In this case, set s

f
t+1 = s

f
t :

Case 2. Suppose that r
f
t+1 does not extend the previous reduction r

f
t+1. In this case, the

construction changes its reduction. Note that s
f
t+1 6= s

f
t .

Substage 2: Compute Fe;t+1 for all e � t + 1. Let ft+1(a) = fbg where a; b are new

numbers. Find the least e � t+ 1 for which Fe;t+1(qe) = ft(ce) for some q2 � t+1 such that

we have not yet acted for De and one of the following cases is satis�ed (If there is no such

e, then go on to the next stage).

1. There does not exist j1 such that rt+1(ce) = j1.

2. This is a recovery stage and, for some j1, rt+1(ce) = j1.

Action for De. Suppose that the �rst case holds. Let ft+1(ce) = fpe; p
0
eg, ft+1(u) =

fpe; p
00
egg where p

0
e, p

00
e , and u, are new numbers. Note that we have successfully met the

potential reduction De. Also the family St has been changed to a new family St+1 in such a

way that ft can naturally be extended to an enumeration ft+1 of the family St+1.

Suppose that the second case holds. In this case, we have two subcases.

Subcase 2.1. There exist distinct numbers a1; a2; a3 not in D such that for some x1; x2; x3,

rt(ai) = xi, and none of the numbers ai have previously participated in any L{operation. In

this case, consider the sequence

a1; ce; a2; s
f
t ; a3:

and the corresponding �nite sequence

ft(a1); ft(ce); ft(a2); ft(s
f
t ); ft(a3):

Perform L{operations on the sequence. Put into each of these changed sets new elements.

Thus the family St has been changed to a new family St+1 in such a way that ft can naturally
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be extended to an enumeration ft+1 of the family St+1. Put a mark 2w on each ft+1{index

that participated in the L-operation, on a, on the least number x which has not yet been

marked with a 2w. Go on to the next stage.

Subcase 2.2. Suppose that the previous subcase does not hold.

In this case, take distinct new elements a1; a2; a3. Set ft(aj) to be fujg, where uj are new

distinct numbers, j = 1; 2; 3. Add these sets to St. Thus, the family St has been changed to

a new family St+1 in such a way that ft can naturally be extended to an enumeration ft+1

of the family St+1.

Substage 3: If this is a recovery stage, put a mark 2w on each new ft+1{index and on

the least number x which has not yet been marked with a 2w. In any case, we now go on to

the next stage.

This concludes the description of the construction.

For each i 2 !, de�ne f(i) =
S

t ft(i): De�ne the family S by S = ff(i)ji 2 !g:

We leave to the reader the veri�cation of the correctness of this construction as well as the

details of the general construction. 2
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