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Abstract

We show there is a computable linear order with a �0
2 initial seg-

ment that is not isomorphic to any computable linear order.

1 Introduction

In e�ective (or computable) mathematics one seeks to understand the inter-
actions of various computability considerations on structures. There is a long
and interesting history of such structures, having roots in the work of Max

Dehn and David Hilbert. One example of such a structure is that of a linear

ordering. A linear ordering is computable if its domain is a computable set

and its ordering relation is a computable relation.

�This work is partially supported by Victoria University IGC and the Marsden Fund for
Basic Science under grant VIC-509 for all three authors. The third author acknowledges
the support of the Computer Science Department at the University of Auckland.
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Computable linear orders have been extensively studied by many authors

such as Ash [2], Chen [3], Chisholm and Moses [4], Downey [6, 7], Downey

and Knight [8], Downey and Moses [9], Feiner [10], Gandy [11], Gregorie�

[12], Harrison [13], Jockusch and Soare [14], Kierstead [16, 17], Lerman and

Rosenstein [18], Moses [19, 20, 21, 22, 23] and Remmel [25, 26].

In classical mathematics, the principal classi�cation tool is that of iso-

morphism type. However, when one studies computational aspects of math-

ematics it becomes very important in how one presents a structure in terms

of \computability" considerations. For instance if one considers a linear or-

dering of type ! the one that springs to mind is the natural numbers with

their usual ordering. However one can take another copy hA;�Ai for which

the ordering is computable (in the sense that the domain is N and there is

an algorithm P such that given x; y 2 N; P decides which of x < y; x = y or

y < x holds) yet for instance one cannot decide in general the question Sx;y
which asks if x is the successor of y: We refer to the book of Rosenstein [27],

and the surveys of Kierstead [16] and Downey [6].
In this article we are concerned with understanding the tension between

classical and e�ective order types. In particular, we seek to understand

what parts of classical types have computable (and hence polynomial time
(Gregorie� [12])) presentations within their type.

Such investigation began with the work of Feiner [10]. Our interest here is
the longstanding question of understanding what types occur as initial sege-
ments of computable linear orderings. Such segments can be very complex.

It is possible for A + B to be a computable liner order and yet A to be of
order type !CK

1 and hence not even hyperarithmetical.
On the other hand Raw [24] proved that if A is a �0

1 initial segment1 then

in fact A has a computable presentation.
The limiting result was that there is a �0

3 initial segment A with A + B

computable which has no computable presentation.
The question to answer then is whether each �0

2 initial segment of a

computable linear order is isomorphic to a computable linear order, and it

has resisted all attempts at solution for several years.
Recently, Ambos-Spies, Cooper and Lempp [1] improved the positive di-

rection of Raw's result to prove that every �0
2 initial segment of a computable

1Recall the set A is called �01 if there is a computable relation R such that x 2 A

i� 9yR(x; y) holds. R is called �0
1 if N � A is �01: Finally we call A �0

n+1 i� there is a
�0
n
relation R such that x 2 A i� 9yR(x; y) holds (and similarly for �n+1). The �

0
n
;�n

(n 2 N) sets form a proper hierarchy called the arithmetical hierarchy.
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linear order is isomorphic to a computably presentable linear order. We close

the circle by proving that there is a computable linear order with a �0
2 initial

segment not isomorphic to a computably presentable linear order. The proof

of this result (theorem 2.14) uses a priority/coding argument which we be-

lieve to be of independent interest, and may well prove to have applications

in other contexts.

We now give the main results proved in this paper together with the

de�niton of �-like. Any other necessary de�nitions are given in section 2

below.

De�nition 1.1 (�-like order type) Let L = hL;<Li be a linear order of

type � and let h be a bijection h : ! 7! L: A linear order A = hA;<Ai is

�-like if there is an injection g : ! 7! ! such that g(i) � 1 for all i 2 ! and

(i) A =
S

i<!fxi;1; : : : ; xi;g(i)g;

(ii) xi;j <A xk;l if and only if h(i) <L h(k) _ (h(i) =L h(k)& j < l):

Any �-like linear order A has in�nite domain and has no leftmost or
rightmost point. It is also dense with respect to blocks.

Theorem 2.10 If A is an �-like computable linear order then its block set S

is the range of a 00-limitwise monotonic function.

Theorem 2.13 The linear order A + !� is computably presentable if and

only if the block set S of A+ !� is �0
3:

Theorem 2.14 There is a computable linear order L of the form A + !�

such that A is an �-like �0
2 initial segment of L and A is not isomorphic to

a computable linear order.

We use three notations for the relation denoting order: < denotes the

standard ordering of the set of natural numbers !; � denotes the ordering

of strings on the priority tree used in the proof of the main theorem, and <L

denotes the ordering of elements of the linear order L: We also write �L to

denote an unbounded search for the leftmost element of a speci�ed subset of
L: If F and G are two sets of natural numbers such that F \G = ; then we

write F tG to denote the disjoint union of F and G:
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2 Computable linear orders

In this section we give some useful de�nitions and prove some lemmas and

thereoms needed for the main result.

De�nition 2.1 Let L = hL;<i be a linear order. An n-block of L is a

sequence of n > 0 elements x1; x2; : : : ; xn 2 L such that

(i) x1 < x2 < : : : < xn;

(ii) x1 � y � xn =) y = xi for some 1 � i � n;

(iii) (8y)(9z)[y < x1 =) y < z < x1];

(iv) (8y)(9z)[xn < y =) xn < z < y]:

We say x1 and xn are right and left endpoints (or limit points) respectively.

The notion of n-block can be used to code sets of natural numbers into
linear orders. We will refer to this coding technique as the standard coding

as it is frequently used when working with linear orders.

Let L = hL;<i be a linear order and consider the set

S = fn j L contains an n-blockg:

By considering what it means to be an n-block it is easy to see that S has
arithmetical complexity �L

3 : So when L is a computable linear order S is a
�0

3 set. Whenever we refer to a set of numbers S below we are thinking of S

as the set of numbers n that occur as n-blocks in a given linear ordering.
It is possible to code any �0

3 set in the standard way in a computable

linear order, see Raw [24] for example
We say that a linear order has order type � if and only if it is isomorphic

to Q with the usual ordering. We need the following:

De�nition 2.2 (�-like order type) Let L = hL;<Li be a linear order of

type � and let h be a bijection h : ! 7! L: A linear order A = hA;<Ai is

�-like if there is an injection g : ! 7! ! such that g(i) � 1 for all i 2 ! and

(i) A =
S

i<!fxi;1; : : : ; xi;g(i)g;

(ii) xi;j <A xk;l if and only if h(i) <L h(k) _ (h(i) =L h(k)& j < l):
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Any �-like linear order A has in�nite domain and has no leftmost or

rightmost point. It is also dense with respect to blocks.

Intuitively, an �-like linear order is derived from a linear order of type �

by substituting each point in the latter with some block of size 1 or more.

This process is sometimes referred to as a block shu�e.

We need two lemmas for the proof of the main theorem, the �rst of which

is a relativisation of a result of Khoussainov, Nies and Shore [15]:

De�nition 2.3 A function f is limitwise monotonic if there exists a recursive

function �(x; s) such that

(i) �(x; s) � �(x; s+ 1) for all x; s 2 !;

(ii) lims �(x; s) exists for all x 2 !;

(iii) f(x) = lims �(x; s):

Relativising this de�nition to 00 we obtain the following de�nition:

De�nition 2.4 A function f is 00-limitwise monotonic if there exists a func-

tion �(x; s) recursive in 00 such that

(i) �(x; s) � �(x; s+ 1) for all x; s 2 !;

(ii) limt �(x; s) exists for all x 2 !;

(iii) f(x) = lims �(x; s):

Lemma 2.5 (Khoussainov, Nies and Shore) There exists a �0
2 set S

which is not the range of any limitwise monotonic function.

Proof:

Let �e; e 2 !; be a uniform enumeration of all partial computable func-

tions � such that for all t0 � t; if �(x; t0) is de�ned then �(x; t) is de�ned and

�(x; t) � �(x; t0): At stage s of the construction we de�ne a �nite set As such
that A(y) = limsAs(y) exists for all y: We aim to satisfy for all e 2 !; the

requirements:

Re : f(e) lim
t
�e(x; t) < ! for all x =) range(fe) 6= A:
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The strategy for a single requirement Re as follows: at stage s pick a

witness, mesay; and enumerate me into A; that is let As(me) = 1: Now Re

is satis�ed unless there is some later stage t0 such that there is an x with

�e(x; t0) = me: If there is such a stage t0 and such an x then Re ensures that

A(�e(x; t)) = 0 for all t � t0: Thus either fe(x) " or fe(x) # and fe(x) 62 A:

However keeping �e(x; t) out of A for all t � t0 can con
ict with a lower

priority (i > e) requirement Ri since the witness mi chosen for Ri may equal

�e(x; t
0) for some t0 > t0: If fe(x) #; then this holds permanently for just

one number, and if fe(x) " then this restriction on choice of witness for Ri

is transitory for each number. Therefore we will be able to argue in the

veri�cation that each lower priority Ri requirement will be able to choose a

stable witness at some stage.

Construction.

At stage s we try to determine the values of the parameters me; xe and
ne = �e(xe; s) for Re: Each parameter may remain unde�ned. Furthermore

we de�ne the approximation As to A at stage s:
Stage 0: Let A0 = ;; and declare all parameters to be unde�ned.
Stage s : For each e = 0; : : : ; s � 1 in turn go through substage e by

performing the following actions:

(1) If me is unde�ned, let me be the least number in ![e] greater than all

mi (i < e) which is not equal to any ni: Let As(me) = 1 and proceed
to the next substage, or to stage s + 1 if e = s� 1:

(2) If xe is unde�ned and �e(x; s) = me for some x then let xe = x; ne = me

and As(ne) = 0; and proceed to the next stage s + 1 if e = s� 1:

(3) Let ne = �e(xe; s) and As(ne) = 0: If ne = mi for some i > e; declare
all the parameters of requirements Rj for j � i to be unde�ned.

For each y; if As(y) is not determined by the end of stage s; then assign
to As(y) its previous value As�1(y): The stage is now completed.

Veri�cation.

We prove three claims to show that the construction succeeds.

Claim 2.6 Each me is de�ned and is constant from some stage on.

Proof:

Suppose inductively that the claim holds for each i < e: Let s0 be a stage

such that each mi has reached its limit for i < e and if xi ever becomes
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de�ned after s0 and lims ni;s < 1 then the limit has been reached at s0:

Moreover, let k � e be the least number which does not equal any of these

limits and is greater than all mi for i < e: Also suppose that ni;s0 > k if

lims nj;s = 1; (j < e): If me is cancelled after stage s0; then me = k is

permanent from the next stage on. This proves the claim.

Claim 2.7 For each y; limsAs(y) exists. Therefore the set A = limsAs is a

�0
2 set.

Proof:

Suppose that y 2 ![e]; and let s0 be a stage at which me has reached its

limit. Since y can be enumerated into A if and only if y = me; then after

stage s0 A(y) can change at most once. This proves the claim.

Claim 2.8 If fe(x) = limt �e(x; t) exists for each x; then there A 6= range(fe):

Proof:

Suppose for a contradiction that A = range(fe): Let s0 be the stage at
which me reaches its limit. Then at some stage s > s0 we must reach part
(2) of the construction, otherwise A(me) = 1 but me 62 range(fe): Suppose

that �e(x; s) = me for the minimal s � s0 at which we reach part (2). It
follows that for t � s; ne = �e(x; t) and At(ne) = 0: So A(fe(x)) = 0: This

contradiction proves the claim.

This concludes the proof of lemma 2.5.

Relativising this lemma we have:

Lemma 2.9 There exists a �0
3 (and hence for our purposes a �0

3) set S

which is not the range of any 00-limitwise monotonic function.

Proof:

Relativise the proof of lemma 2.5 (see lemma 2.1 in [15]).

Theorem 2.10 If A is an �-like computable linear ordering then its block

set S is the range of a 00-limitwise monotonic function.

Proof:

Let A = hA;<i be an �-like computable linear ordering. Therefore A is

an in�nite computable set.

Let N(x; y) be the relation x is adjacent to y in A; i.e. N(x; y) holds if

and only if

(x < y _ y < x)& (8z)[(x � z � y _ y � z � x) =) (x = z _ y = z)]:
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Then we can observe that N is a �0
1 relation sinceA is computable. Hence

with a 00 oracle we can determine whether two elements in A are adjacent

or not.

Observe however that the relation Suc(x; y) stating that y is the successor

of x is a �0
2 relation:

Suc(x; y) () x < y&(8z)[x < z =) (N(x; z) _ y = z)]:

Construction. Fix a computable enumeration fAsgs2! of A such that

jAs+1 � Asj = 1 and A0 = ;: Let As = hAs; <i:

We build a 00-recursive function �(x; s) such that

(i) �(x; s) � �(x; s+ 1) for all x; s 2 !;

(ii) lims �(x; s) exists for all x 2 !;

(iii) S = range(lims �(x; s)):

Stage s = 0 : �(i; 0) = 0 for all i 2 !:

Stage s+ 1 : At the end of stage s we have enumerated s elements of A;

As = fa0; a1; : : : ; as�1g say. We have also de�ned �(i; s) for 0 � i < s: Let
as be the unique element in As+1 � As:

For each 0 � i < s do the following using 00 as an oracle to answer

questions about N :

(a) If N(as+1; ai) holds then let �(i; s+ 1) = �(i; s) + 1:

Also let �(s; s+ 1) = �(i; s) + 1:

(b) If N(as+1; ai) holds then let �(i; s+ 1) = �(i; s):

Finally if after the above process �(s; s+ 1) = 0 then let �(s; s+ 1) = 1:

This ends the description of the construction.
Veri�cation.

We prove two claims to obtain the lemma:

Claim 2.11 f(i) = lims �(i; s) is a 00-limitwise monotonic function.

Proof:

>From the construction it is clear that �(i; s+1) � �(i; s) for all i; s 2 !:

Since A is �-like each element ai of A is part of an n-block for some n > 0:

Therefore there is a stage t0 such that all members in the block containing
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ai have been enumerated in At0 : Then for all s � t0; �(i; s) = �(i; t0) = n as

�(i; s) can only increase when a new element is enumerated which is adjacent

to one of the elements in the same block as ai: Hence lims �(i; s) exists for

all i 2 !:

Finally observe that �(i; s) is computable from a 00 oracle. Hence all

the conditions in de�nition 2.4 are met and so f is a 00-limitwise monotonic

function.

Claim 2.12 S = range(f):

Proof:

Suppose that n 2 S: Then A contains a block of size n: There is a stage

t1 when all n elements of an n-block have been enumerated in At1 : Let ai be

one element of the n-block. Then for all s > t1; �(i; s) = �(i; t1) = n and

hence n 2 range(f):
Conversely, suppose that n 2 range(f): Then n > 0 and there is some i

for which lims �(i; s) = n: Therefore there must be n elements ix1; x2; : : : ; xn
in A such that xi is adjacent to xi+1 for 1 � i < n: These n elements must
form a block because of the density of blocks property of �-like linear orders,
and by the fact that lims �(i; s) = n: Therefore n 2 S:

This concludes the proof of the lemma.

Theorem 2.13 The linear order A + !� is computably presentable if and

only if the block set S of A+ !� is �0
3:

Proof:

This is presented in section 3.

Theorem 2.14 There is a computable linear order L of the form A + !�

such that A is an �-like �0
2 initial segment of L and A is not isomorphic to

a computable linear order.

Proof:

By lemma 2.9 there is a �0
3 set S which is not the range of a 00-limitwise

monotonic function.

Then by theorem 2.13 there is a computable linear order, L say, which
codes S in the standard way such that L is of the form A + !� and A is

9



�-like. Furthermore n 2 S if and only if A contains an n-block. Therefore

by theorem 2.10 A cannot be isomorphic to a computable linear order.

3 Proof of theorem 2.13

()) Suppose L is a linear order of the form A + !�: Then L contains an

n-block if and only if

(9x1; x2; : : : ; xn)(8y)(9z1; zn)[x1 < x2 < : : : < xn&

(x1 � y � xn =) (9i � n)[y = xi] &

(y < x1 =) y < z1 < x1)& (xn < y =) xn < zn < y)]:

Hence S is �L
3 and therefore �0

3:

(() Let S 6= ; be a given �0
3 set. We construct a computable linear ordering

L of the form A + !� such that L contains an n-block if and only if n 2 S:

Further, A = hA;<i will be a �0
2 initial segment of L since

x 62 A () (9t)(8s � t)[x 62 A]:

Since S is �0
3; n 2 S () 9x bR(n; x) holds for some �0

2 binary relation
bR: Then we can approximate S via fSsgs2! as follows:

n 2 Ss () 9xR(n; x; s) for some computable approximation R to bR:
Then S = fn j (91s)[n 2 Ss]g:

Fix such an R and hence an approximation to S:We construct L to satisfy

the following set of requirements for i � 1; i 2 ! :
Pi : i 2 S =) L contains an i-block.
Rewriting this in terms of the relation bR which approximates S we aim

to satisfy the following requirements for all i; j 2 ! :
Qi;j : bR(i; j) holds =) L contains an i-block.
First we outline the strategy for a single requirement Q1;0: Initially we

begin with just one point, x1 say. Whenever the approximation R(1; 0; s)

to bR(1; 0) holds at stage s we estimate that bR(1; 0) holds and that 1 2 S:

Therefore at stage s we add two new points to L, one immediately to the

left of x1; z1 say, and another immediately to the right of x1; z2 say. Further
between any two points to the left of x1 and between any two points to the

right of x1 we also add a new point (which we will refer to as density points).
However we also need to add a point to the left of the leftmost point and

to the right of the rightmost point to successfully build �; which we will call
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extension points. (In fact we can add extension points density points and so

do not need to deal with them seperately as extension points.)

In the full construction points will be chosen from some computable par-

tition of ! in increasing G�odel number to ensure that L is a computable

linear order.

Whenever the approximation R(1; 0; s) to bR(1; 0) does not hold at a stage
s we leave Ls unchanged.

Then suppose 1 2 S with witness 0 and so bR(1; 0) holds. Therefore

there are in�nitely many stages s where R(1; 0; s) holds and so the strategy

outlined above builds a computable linear order of order type � + 1 + �: So

L contains a 1-block as required. Otherwise if 1 62 S then bR(1; 0) does not
hold. Therefore there is a stage t such that for all stages s � t; R(1; 0; s)

does not hold. Hence after stage t no further points are added to L and L

has order type k for some k 2 !: (When more requirements are considered
this outcome will produce the tail of L of order type !�:)

The sub-linear order of L constructed because of requirement Qi;j will
be referred to as the (i; j)-section. In the full construction each (i; j)-section
will be of order type � + i + � if j witnesses that R(i; j) holds and so i 2 S

and L contains an i-block, or otherwise will contribute �nitely many points
to the !� tail of L:

Now consider all requirements Q1;j for all j 2 !: Q1;j1 will have higher
priority than Q1;j2 if and only if j1 < j2: Also the (1; j1)-section will be
built to the right of the (1; j2) section if and only if j1 < j2: We can assume

without loss of generality that if z is the least number for which bR(1; z) holds
then bR(1; y) also holds for all y � z: Further we may assume that there are
in�nitely many stages s such that R(1; z; s) =) R(1; y; s) for all y � z:

Let zs be the least witness to 1 2 Ss at stage s: Also assume we have
started building the (1; j)-section for j < s; and that whenever we start

building a (2; j0)-section for the �rst time we add a new point, x1;j0 say,
targeted for being a 1-block in case 1 2 S via witness j0: This new point is
added in the correct position in L; namely to the left of the (1; j0�1)-section

as previously mentioned.
For (1; j)-sections with j < zs we leave L unchanged at stage s: For

(1; j)-sections with zs � j < s we add density points between every pair

not targeted for a 1-block and extend each (1; j)-section left and right with

extension points. If no such least zs exists then leave L unchanged at this

stage.

11



Now suppose 1 62 S: Therefore there is no witness z for which bR(1; z)
holds. So for each j there is a stage tj such that for all stages s � tj;

R(1; j; s) does not hold. In this outcome the strategy builds �nitely many

points in each (1; j)-section so the overall result is to build !�: Then L has

no 1-blocks as required.

Otherwise there is some least z such that R(1; z; s) holds for in�nitely

many stages s: The above strategy builds a computable linear order of order

type (�+ 1):�+ �+ k for some k 2 !: Therefore 1 is coded in L as required.

We consider one further combination of requirements before presenting

the full construction. Consider the two requirements Q1;0 and Q2;0: The

higher priority (1; 0)-section is initially constructed to the right of the lower

priority (2; 0)-section. The relative location of the two sections within L will

change depending on the estimated outcome of the strategy at each stage.

Suppose initially we have a single point x1 targeted for a 1-block in the
case that 1 2 S and two points y1 and y2 targeted for a 2-block in the case that

2 2 S: There are four cases to distinguish for a stage s depending on which
of R(1; 0; s) and R(2; 0; s) hold. Assume that during the previous stages we
have constructed �nitely many points in the (1; 0) and (2; 0) sections.

(i) Suppose neither R(1; 0; s) nor R(2; 0; s) holds. Then we add no further
points to L at this stage. The (1; 0)-section is estimated to lie to the
right of the (2; 0)-section in this case.

(ii) Suppose R(1; 0; s) does not hold but R(2; 0; s) does hold. Then we

estimate that 2 2 S and that R(2; 0; s0) will hold for in�nitely many
stages s0 > s: We do not add any points to the (1; 0)-section but locate
y1 and y2 in the original (2; 0)-section to the left of the (1; 0)-section

and add density points and extension points as described in earlier
discussions of the strategy.

(iii) Suppose R(1; 0; s) does hold but R(2; 0; s) does not. Then we estimate
that 1 2 S and that R(1; 0; s0) will hold for in�nitely many stages

s0 > s: Therefore for the (1; 0)-section we add density and extension

points. This outcome however instigates a reordering of the sections,

and we now estimate that the (2; 0)-section is to the immediate right

of the (1; 0)-section. Since we estimate that R(2; 0) does not hold we
do not add any new points to the new location of the (2; 0)-section.

However we add new points to the old (2; 0)-section which is to the

left of the (1; 0)-section to convert it into (1; j)-sections. We can think
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of this as initialising those points in sections to the left of the (1; 0)-

section. We leave the detail of how to form the other (1; j)-sections

until the full construction below. When we change at some later stage

to estimating that R(1; 0; s0) does not hold for some s0 > s we revert to

the original ordering of the sections (namely with the (1; 0)-section to

the right of the (2; 0)-section) and locate the points y1 and y2 to once

again target that section for a 2-block. Again full details are delayed

until the the construction.

(iv) Suppose both R(1; 0; s) and R(2; 0; s) hold. Then as in (iii) we estimate

that the (2; 0)-section is to the right of the (1; 0)-section. We initialise

all points to the left of the (1; 0)-section and convert them into (1; j)-

sections. We add density and extension points to the (1; 0)-section,

and similarly add density points and extend the new location of the

(2; 0)-section to be found to the right of the (1; 0)-section.

If case (i) is the true outcome then we only add �nitely many points for

both Q1;0 and Q2;0 thus constructing L with order type k for some k 2 !:

Hence L has no 1- or 2-blocks and 1; 2 62 S as required.
Suppose case (ii) is the true outcome. Then there is a stage t such that

for all s � t; R(1; 0; s) does not hold and we never again add new points to
the (1; 0)-section. Further, for in�nitely many stages s � t; R(2; 0; s) holds

and so we have 2 coded in L via the standard coding of a 2-block. In this
outcome L has order type (� + 2):� + � + k for some k 2 !:

If case (iii) is the true outcome then there is a stage t such that for all

s � t; R(2; 0; s) does not hold but for in�nitely many stages s � t; R(1; 0; s)
holds. Therefore after stage t we build L with order type (� + 1):� + � + k

for some k 2 !:

When the true outcome is (iv) we construct L with order type
(�+1):�+(�+2)+�: This linear order codes 1 and 2 as required. Notice

that the outcome for coding 2 into L does not a�ect the construction of

points for the coding of 1 into L: That is, there is no interaction between
requirements other than to reorder the sections.

Now we will present the full construction to deal with all requirements.
This involves the use of a priority tree to assist with the complications arising

from nesting the di�erent (i; j)-sections in the correct way.

De�nition 3.1 Given a �0
3 set S 6= ; let bR be a binary �0

2 relation and

R(n; x; s) an approximation to it such that:
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(i) n 2 S () 9x bR(n; x);
(ii) n 2 Ss () 9xR(n; x; s);

(iii) S = fn j (91s)[n 2 Ss]g:

(iv) (8n)(9x)[ bR(n; x) does not hold & (8s � 2hn;xi)[R(n; x; s) holds ]];

(v) bR(n; x) holds =) bR(n; y) holds for all y � x:

Clause (iv) ensures that the �nal segment of L is of order type !� (see

lemma 3.13) and not of order type k for some �nite k 2 !:

We construct stage by stage a computable linear ordering L = hL;<Li to

meet the following requirements for i � 1; i; j 2 ! :

Qi;j : bR(i; j) =) L contains an i-block.

We order the requirements with the following priority: Qi0;j0 is of higher

priority than Qi1;j1 if and only if

(i0 + j0 < i1 + j1) _ (i0 + j0 = i1 + j1 & i0 < i1) (�)

That is, in decreasing order of priority,

(1; 0); (1; 1); (2; 0); (1; 2); (2; 1); (3; 0); : : :

Fix a bijection hi; ji : ! � ! ! ! to code ordered pairs via the ordering

(�) above. Qi;j uses numbers exclusively from ![hi;ji] whenever it needs to
add points to L during the construction.

De�nition 3.2 Let the tree of outcomes T be T = !<2: Requirement Qi;j is

assigned to nodes � of T with lh(�) = hi; ji: At a stage s of the construction
we build a path through T of length s with �s(hi; ji) = 1 denoting that

R(i; j; s) holds, and �s(hi; ji) = 0 denoting that R(i; j; s) does not hold. We

desire the outcome 1 to be to left of outcome 0 on the tree and so order nodes

on the tree as follows:

� � � () � � � _ �(j(�; �)) > �(j(�; �));

where
j(�; �) = �k[�(k) # & �(k) # & �(k) 6= �(k)]:
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We say that � is to the left of � (� is to the right of �) if and only if � � �

and � 6� �: Also we say that � is above � (� is below �) if and only if � � �:

De�nition 3.3 We say � is visited at stage s of the construction if and only

if � � �s: A stage s is a �-stage if and only if � is visited at stage s of the

construction. We write �� to denote � � (lh(� � 1)):

De�nition 3.4 R�(i; j; s) holds if and only if s is a �-stage and there exists

a �-stage t < s such that

(8v)[t < v < s](v is not a �-stage)& (9w)[t < w � s](R(i; j; w) holds):

We can now prove an easy lemma about R� :

Lemma 3.5

If � is visited in�nitely often and bR(i; j) holds then there are in�nitely

many �-stages such that R�(i; j; s) holds.

Proof:

bR(i; j) holds =) (91s)[R(i; j; s) holds ]:
Let t be a stage such that R(i; j; t) holds. Let s be the least stage greater

than t such that � is visited at stage s; there is a stage w such that t < w � s

and R(i; j; w) holds, and for all v; t < v < s; v is not a �-stage. Such a stage

s exists as � is visited in�nitely often.
Then R�(i; j; s) holds by de�nition.

In the construction which follows we use P� to keep account of which
points in L are under the control of which strategy, we use B� and D� to
refer to sets of block points and density points respectively for the strategy �

and �� and �� are used to record the current leftmost and rightmost points
of the section that � controls.

Construction.

Stage s = 0: P 0
� = ; for all � 2 T: �0 = �; the empty string.

Stages s+ 1: We build a string �s+1 of length s+ 1 through T as follows.

For each hi; ji in turn beginning with hi; ji = h1; 0i; let � = �s+1 � hi; ji

and take action according to which case below applies:

(1) R�(i; j; s+ 1) does not hold.

Action:Let �s+1(hi; ji) = 0:

Let P s+1
� = P s

� :
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Let Bs+1
� = Bs

�:

Let Ds+1
� = Ds

�:

Let �s+1
� = �Lp 2 P s+1

� [q 2 P s+1
� =) p <L q]:

Let �s+1
� = �Lp 2 P s+1

� [q 2 P s+1
� =) q <L p]:

(2) R�(i; j; s+ 1) holds and �(hi; ki) = 0 for all k < j:

Action:Let �s+1(hi; ji) = 1:

Let bP s+1
� =

S
���s�hi;jibh0i

P s
� [ P s

� :

For each x 2 bP s+1
� :

(a) if x 2 ![hi;ji] \Bs
� then let x 2 bBs+1

� ;

(b) if x 2 ![hi;ji] \Ds
� then let x 2 bDs+1

� ;

(c) if x 62 ![hi;ji] then let x 2 bDs+1
� :

Add new points to the linear order by choosing unused points x from
![hi;ji] greater than any point added to L during the construction so far
such that �s+1

� <L x for � � � with �(lh(�)) = 1; and x <L �s+1
� for

� � � with �(lh(�)) = 0 as follows:

(i) add i new points x1; : : : ; xi that are adjacently ordered

x1 <L x2 <L : : : <L xi:

Let xi <L p; where p = (�Lp
0 2 bP s+1

� )[q 2 bP s+1
� =) p0 �L q]; if

such a p exists. If no such p exists then let

p = �Lp
0 2 f�s+1

�0 j �0 � �& �(lh(�0)) = 0g: Otherwise xi becomes
the rightmost elemet of L at this step in the construction.

Let Bs+1
� = bBs+1

� [ fx1; x2; : : : ; xig:

(ii) for all y0; y1 2 bP s+1
� such that y0 2 bDs+1

� and y1 2 bBs+1
� and y0 is

adjacent to y1 in Ls add a new point z such that ye <L z <L y1�e
if ye <L y1�e; for e = 0; 1:

(iii) for all y0; y1 2 bP s+1
� such that y0; y1 2 bDs+1

� and y0 is adjacent to

y1 add a new point z such that ye <L z <L y1�e if ye <L y1�e; or

e = 0; 1:
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(iv) add a new point z adjacent to x1 such that p <L z <L x1 where

p = �Lp
0 2 f�s+1

�0 j �0 � �& �(lh(�)) = 1g; if such a p exists. Oth-

erwise let z <L xi: Also add a new point z adjacent to q such that

q <L z <L p where p = �Lp
0 2 f�s+1

�0 j �0 � �& �(lh(�0)) = 0g:

and q �L q0 for all q0 2 bP s+1
� :

Let Zs+1
� = set of all points z added through (ii); (iii) or (iv) above.

Let Ds+1
� = bDs+1

� [ Zs+1
� :

Let P s+1
� = bP s+1

� [Bs+1
� [Ds+1

� :

Let P s+1
� = Ds+1

� = Bs+1
� = ; for all � � �bh0i:

Let �s+1
� = �Lp 2 P s+1

� [q 2 P s+1
� =) p <L q]:

Let �s+1
� = �Lp 2 P s+1

� [q 2 P s+1
� =) q <L p]:

(3) R�(i; j; s+ 1) holds and �(hi; ki) = 1 for some least k < j:

Action:Let �s+1(hi; ji) = 1:

Let P s+1
� = Bs+1

� = Ds+1
� = ;:

Let �s+1
� = �s+1

��hi;ki
:

Let �s+1
� = �s+1

��hi;ki
:

Any parameter P not de�ned at stage s+1 of the construction is assumed
to keep the same value at stage s + 1 as at stage s; if de�ned at stage s;

otherwise it remains unde�ned.
Let Ls+1 = hLs+1; <Li where L

s+1 =
S

���s+1
P s+1
� and <L is as de�ned

through the construction.

To complete the construction let P� = fx j (9t)(8s > t)[x 2 P s
� ]g: De�ne

L = hL;<Li where L =
S

s2! L
s and <L is as de�ned through the construc-

tion.

Veri�cation.

Note that whenever a point is enumerated into L at stage s say, it is

greater in value than any previous point, hence L is a computable set. Fur-
ther, its position within Ls with respect to all other points in Ls is de�ned

at stage s and never changes at any later stage. Hence <L is a computable

relation. Thus L is a computably presentable linear ordering.

De�nition 3.6 Let �� = lim infs �s: We call �� the true path through T:
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Lemma 3.7 (True path lemma) The true path exists.

Proof:

We proceed by induction. Fix hi; ji � 0:

Suppose �� � hi; ji = lim inf �s � hi; ji # : Let � denote �� � hi; ji: We

show that ��(hi; ji) # :

Since � is visited in�nitely often there are in�nitely many �-stages and

�nitely many � -stages for � � � with � 6� �: We consider two cases:

(a) R(i; j; s) holds for in�nitely many s:

Then there exist in�nitely many �-stages s for which R�(i; j; s) holds

by lemma 3.5. Hence there are in�nitely many �-stages s such that

�s(hi; ji = 1; and thus ��(hi; ji) = 1:

(b) R(i; j; s) holds for �nitely many s:

Then there is a stage t0 such that for all stages s > t0; R(i; j; s) does not
hold. Hence there is a stage t1 > t0 such that for all s > t1; R�(i; j; s)

does not hold by de�nition. So for all s > t1; �s(hi; ji) = 0 and thus
��(hi; ji) = 0:

Lemmas 3.8, 3.9 ,3.10 and 3.11 which follow deal with the properties
certain points of L have depending on the outcome of the strategy for a

particular node.
Lemma 3.8 (Truth of outcome lemma)

Let � � �� with lh(�) = hi; ji: Let B� = fx j (9t)(8s > t)[x 2 Bs
�]g:

Let D� = fx j (9t)(8s > t)[x 2 Ds
�]g:

Then

(i) �(hi; ji) = 0 =) jP�j < !&P� = D� t B�:

(ii) �(hi; ji) = 1& (8k < j)[�(hi; ki) = 0]

=) jP�j = jB�j = jD�j = !& P� = B� tD�:

(iii) �(hi; ji) = 1& (9k < j)[�(hi; ki) = 1]

=) jP�j = jB�j = jD�j = ;:

(iv) Let � � ��& � 6� s� such that lh(�) = hi; ji: Then P� is �nite.
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(v) (9�; t)[x 2 P t
�] =) (8s > t)[x 2 Ls]:

Proof:

In all the cases below we let t0 be the least stage such that for all s > t0

�� � hi; ji � �s � hi; ji:

(i) �(hi; ji) = 0:

Let t1 > t0 such that for all s > t1; R�(i; j; s) = 0:

Therefore by choice of t1; case (2) of the construction never applies for

� at any �-stage s > t1: Furthermore for all s > t1 there is no � � �

for which �bh0i � � and �bh1i is visited at stage s > t1: Now through

(1) of the construction it follows that (8s > t1)[P
s
� = P t1

� ] and hence

jP�j = !: Also we have (8s > t1)[B
s
� = Bt1

� &Ds
� = Dt1

� ]:

Now let x 2 P� and so x 2 P t1
� : Suppose x 2 ![hi;ji]; then either

x 2 Dt1
� : therefore (8s > t1)[x 2 Ds

� & x 62 Bs
�] and [x 2 D� & x 62 B�];

or

x 2 Bt1
� : therefore (8s > t1)[x 2 Bs

� & x 62 Ds
�] and [x 2 B� & x 62 D�]:

Suppose x 62 ![hi;ji] then (8s > t1)[x 62 Bs
�] and hence x 62 B�:

However x 2 P t1
� ; therefore x 2

bP 0

� [
bD0

� for some s0 � t1 through case
(2) of the construction. It follows that x 2 Ds

� for all s > t1:

Therefore x 2 P� =) x 2 B� tD�:

Conversely, it is clear from the construction that B� tD� � P�:

(ii) �(hi; ji) = 1& (8k < j)[�(hi; ki) = 0]:

Hence �s � hi; ki = 0 for all s > t0 and k < j: Also there are in�nitely
many stages s > t0 such that �s(hi; ji) = 1: Hence case (2) of the

construction applies in�nitely often.

By choice of a �-stage t1 with t1 > t0; we have the following:

x 2 P t1
� =) x 2 P�;

(8s > t1)[x 2 Bt1
� =) x 2 Bs

�];

(8s > t1)[x 2 Dt1
� =) x 2 Ds

�]:

Let t2 be any �-stage greater than t1: For each x 2 P t2
� a similar

argument to (i) proves that
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x 2 P� =) x 2 B� tD�:

Again the converse is clear from the construction. Hence P� = B�tD�:

Furthermore, if s1 and s2 are �-stages such that s1 < s2 then it is

clear from (i) of case (2) of the construction that jBs2
� j > jBs1

� j; and so

jB�j = !:

Similarly jDs2
� j > jDs1

� j through (iv) of case (2) of the construction and

so jD�j = !: Therefore jP�j = !:

(iii) �(hi; ji) = 1& (9k < j)[�(hi; ki) = 0]:

Let hi; ki be the least pair such that ��(hi; ki) = 1: Then at all in�nitely

many �-stages s we have that P s
� = Bs

� = Ds
� = ; through the action

of case (2) of the construction. Hence P� = B� = D� = ;:

(iv) Let lh(�) = hi; ji with � � �& � 6� �:

Then � is never visited after stage t0 and hence P� is �nite.

(v) Suppose x 2 P t
�: Then x 2 Lt:

>From inspecting the construction it can be seen that once an ele-
ment x 2 P t

� for some � at some stage t; then either x 2 P s
� for all

stages s > t; or otherwise there is some � � �� for which �bh0i � �;

�bh1i � �� and x 2 P s
� for all s greater than t1; where t1 is the least

stage such that �� � lh(�) � �s � lh(�):

Lemma 3.9 (!� tail lemma)

Suppose case (i) of lemma 3.8 applies then for any x 2 P� we have that

jfy 2 L j x <L ygj < !:

Proof:

Let �(hi; ji) = 0 and x 2 P�: Then for � � � such that �(lh(�)) = 0
we have that P� is �nite by lemma 3.8 and so � can only contribute �nitely

many points to the right of x:
For � � � such that �(lh(�)) = 1; we have that x 62 P� because x 2 P�:

Then when x was �rst enumerated into L at stage t say, we de�ned �t
� <L x

through case (2) of the construction. Then when � adds more points to L at

stages s it does so adjacent to �s
� and hence to the left of x:

For � � �; � only adds points to the left of �s
� and �s

� �L �s
� �L x for all

x 2 P� and s 2 !:
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Therefore there are only �nitely many points to the right of x:

Lemma 3.10 (�-like initial segment lemma)

Suppose case (ii) of lemma 3.8 applies. Then

(a) y0; y1 2 D� =) (9z)[z 2 D� &(ye <L y1�e =) ye <L z <L y1�e)];

for e = 0; 1:

(b) (8y 2 D�)(9x 2 B�)[x <L y]:

(c) (8x 2 B�)(9y 2 D�)[y <L x]:

(d) y 2 D� =)

(9z0; z1 2 D�)[z0 <L y <L z1 & z0 <L y
0 <L z1 =) y0 2 D�]:

Proof:

Let t0 be the least stage such that for all s > t0

�� � hi; ji � �s � hi; ji:

Then for all s > t0 we have that x 2 P s
� =) x 2 P s+1

� :

(a) There are in�nitely many �-stages greater than t0 and at all such stages
case (2) of the construction applies. Then through part (ii) of case (2)

whenever y0; y1 2 Ds
�; y0 is adjacent to y1 and y0 <L y1 then a new

point z is added to Ds+1
� such that y0 <L z <L y1:

If y0; y1 2 Ds
� are not adjacent, y0 <L y1 but for all y0 such that

y0 <L y0 <L y1; y
0 62 Ds

�; then there exists some y0 2 Bs
� such that we

have y0 <L y
0 <L y1: Then through part (ii) of case (2) of the construc-

tion a new point z is added to Ds+1
� such that y0 <L z <L y0 <L y1 as

required.

Parts (b), (c) and (d) follow in a similar way to (a) through case (2) of

the construction.

Lemma 3.11 (!� tail left of the true path lemma)

Suppose case (iv) of lemma 3.8 applies. Then for each x 2 P� ; we have

jfy 2 L j x <L ygj < !:
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Proof:

Let t0 be a stage such that for all s > t0; � is not visited at stage s and

�� � lh(�) � �s � lh(�): For each x 2 P� ; since � is to the left of the true

path x is added at stage s to the right of �s
� 0 for some � 0 such that � 0bh1i � �

and � 0bh0i � �: Then for all s > t0; x 2 P s
� and �s

� <L x hence nodes below

� only ever add points to the left of x: Also for nodes �0 of higher priority

than � with �(lh(�0)) = 1 we have �s
�0 <L x and hence �0 never add points

to the right of x after stage t0:

Lemma 3.12

Requirement Qi;j is satis�ed for all i � 1; i; j 2 !:

Proof:

Let � = �� � hi; ji:

If bR(i; j) does not hold then there is nothing to prove.

Suppose bR(i; j) holds. Then �(hi; ji) = 1 at in�nitely many �-stages s:
At each such stage a set of i elements are added to L through case (2) of the
construction and x1; : : : ; xi 2 P s

� B for all s > t0: Then by lemma 3.10, x1

and xi are the endpoints of an i-block. Hence Qi;j is satis�ed.

Lemma 3.13

L is a linear order of the form A + ! where A is an �-like �0
2 initial

segment of L which codes S in the standard way.

Proof:

Let A = hA;<Li be a sub-linear order of L such that:

x 2 A () 8y9z[x �L y =) y <L z] and
x 62 A () 9y8z[x �L y =) z �L y]:

Clearly A is a �0
2 initial segment of L:

A is in�nite by the choice of R (see de�nition 3.1) and the fact that
hi; ji < 2hi;ji since each � � �� with lh(�) = hi; ji and �(hi; ji) = 0 con-

tributes at least one point to A though case (2) of the construction.
It follows from lemmas 3.8, 3.9 and 3.11 that A = hA;<Li has order type

!�:

Since S 6= ; and every requirement Qi;j is satis�ed for i � 1; i; j 2 !; it

follows that A is in�nite and �-like and also that L codes S via the standard

coding.
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Since A is of order type !� it does not contain any n-blocks for n > 0:

Therefore since A is �-like S must be coded in A via the standard coding.

This completes the proof of the main theorem.
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