
CDMTCS

Research

Report

Series

Decidable Kripke Models of

Intuitionistic Theories

Hajime Ishihara

Japan Advanced Institute of Science and

Technology,

Tatsunokuchi, Ishikawa, Japan

Bakhadyr Khoussainov

Cornell University, Ithaca NY, USA,

The University of Auckland, Auckland,

New Zealand

Anil Nerode

Cornell University, Ithaca NY, USA

CDMTCS-027

January 1997

Centre for Discrete Mathematics and

Theoretical Computer Science



Decidable Kripke Models of Intuitionistic

Theories

Hajime Ishihara�

Japan Advanced Institute of Science and Technology,

Tatsunokuchi, Ishikawa, 923-12 Japan

Bakhadyr Khoussainovy

Cornell University, Ithaca, NY, 14850, USA,

The University of Auckland, Auckland, New Zealand

Anil Nerodez

Cornell University, Ithaca NY 14853 USA

1 Motivation

The introduction of computable (alternately, recursive) function theory by

Post, Church, Kleene, Godel, Turing, Malcev made it possible to analyse the
computability of mathematical notions and constructions within the context
of classical mathematics. Quite separately, the constructiveness of algebra

was a principal concern of Kronecker in the late nineteenth century, and the
constructiveness of analysis was a principle concern of Brouwer in the early

twentieth century. Brouwer's work motivated the de�nition of �rst order in-

tuitionistic logic as introduced by his disciple Heyting. Kroneckerian �eld

theory was reworked as computable �eld theory by Fr/"oelich and Shepherd-

son in the 1950's, [4]. Systematic study of recursive algebra and recursive
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models of classical predicate logic was initiated by Rabin [9] and Malcev[6]

in the 1960's. In the 1970's, Ershov's school in Russia and Nerode's school

in the United States began the systematic use of the priority method to

determine whether or not classical constructions can be made computable

throughout mathematics, in such areas as vector spaces, orderings, boolean

algebras, abelian groups, �elds, rings, and models of classical �rst order logic.

We refer the reader to Nerode-Remmel [7], Hazarinov [5] and Millar [8]

for surveys.

Things are more complicated for the model theory of intuitionistic logic.

There are several model theories for intuitionistic logic with quite di�erent


avors. One is lambda calculus models, leading to the work of Girard and of

Martin Lof on typed lambda calculi, or, as D. Scott has observed, equivalently

leading to closed cartesian categories (untyped lambda calculi). In such

models existential quanti�ers are interpreted as functionals (lambda terms).
A second style of model is Kripke and Beth models. A third is the topological

models as introduced by Rasiowa and Sikorski from prior work of Tarski, for
their early 1950's proof of completeness of intuitionistic predicate logic within
classical mathematics.

All these classes of models are adaquate to give classical proofs of com-
pleteness of intuitionistic predicate logic, although the literature is especially

opaque when you look for the equivalences and proofs of completenss (see
the work of Lauchli and also of D. Scott). There is also a body of work on
constructive proofs of completeness of predicate intuitionistic logic. These

are based on a very careful choice of de�nition of model and a very careful
formulation of the statement of completeness. These proofs use so-called fee-
ble (in plain English, contradictory) models, see Troelstra and Van Dalen,

volume 2 of [12].
What does computable model theory look like for these model theories?

Here we look only at Kripke models of intuitionistic predicate logic, leaving
the others for other papers.

Classical completeness of standard predicate order logic can be expressed

by the assertion that if T is consistent, then T has a classical model. Clas-
sical completeness of intuitionistic predicate logic can be expressed by the

assertion that if T is consistent in intuitionistic predicate logic, then T has

a Kripke model M. Moreover a single Kripke model M can be chosen so
that the statements forced inM are exactly those intuitionistically provable

from T . The standard proof can be thought of as a generalization to Kripke
frames of the the Henkin 1949 construction for classical predicate logic, see
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[3] or [10] , in which the maximal �lters of classical Lindenbaum Boolean

algebras have to be replaced by presheaves of prime �lters of intuitionistic

Lindenbaum distributive lattices.

Straightforward adaptation of that argument gives the result of Gabbay

[2] : for any decidable �nitely axiomatized intuitionistic theory T and any

sentence � not intuitionistically derivable from T , there is a Kripke model of

T which does not force � , based on an underlying partially ordered set with

a computably enumerable partial ordering, and such that forcing restricted

to atomic statements is computably enumerable.

Here our main result is that by using a more re�ned argument we get that

any decidable intuitionistic theory T has a Kripke model M with decidable

forcing such that for all sentences �, � is an intuitionistic consequence of T if

and only ifM forces �. This generalizes the theorem in classical computable

model theory that a decidable theory has a decidable model.
Examination of the proof of that older theorem shows that the crucial

observation is that a computably enumerable maximal �lter in a recursively
presented Boolean algebra is in fact recursive. This is not the case for prime
�lters in computably presented distibutive lattices such as the Lindenbaum

algebra of a decidable theory in intuitionistic logic. There are generally lots of
prime �lters that are computably enumerable but not computable (recursive.)

So what we do is to locate a subclass of prime �lters for which, in recursively
presented distributive lattices, computably enumerable implies computable.
These are the prime �lters P for which there is a non-zero element  62 P

such that every element not less than or equal to  is in P .
A function is computable if there is a Turing machine which computes it.

We denote the set of all natural numbers by !. A subset of natural numbers

is computable if its characteristic function is computable. A set of natural
numbers is computably enumerable (c.e.) if it is the range of a computable

function. We refer to Soare [11] for the basic computability theory. We �x
an e�ective enumeration �0;�1; : : : of all computable partial functions. We

call number x an index of �x. We also use the �{notation for functions.

2 Decidable Kripke Models

Let L =< P n0
0 ; : : : ; P

nk

k
: : : ; c0; c1; : : : > be a countable �rst order language

without any function symbols. We suppose that the language L is com-

putable, that is the set of constants C = fc0; c1; : : :g and the function n! nk
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are computable. We denote the set of all sentences of L by Sn(L).

De�nition 2.1 A theory is a consistent set of sentences closed under the

deduction rules of intuitionistic logic.

Here is the Kripke model semantics.

A frame is a triple F = (W;�; D) consisting of a non-empty set W;

("states of knowledge" or "forcing conditions"), a partial order � ofW ,

and a map D on W to a power set such that v � w implies D(v) � D(w). D

is called the domain function:The partially ordered set (W;�) is called the

base of the frame. Let L(w) be the extension of predicate logic language L

obtained by adding to L a constant (name) ca for each element a 2 D(w).

We suppose given a mapping V , called a valuation , which assigns to

each pair consisting of a w and an n{ary predicate symbol P (resp. constant

c) from L , a n{ary relation on D(w) (resp. element of D(w)): Let A(w)

be the set of all atomic statements of language L(w) (classically) true in
D(w) under the valuation V . Suppose that for all v � w the set of all atomic

sentences from A(v) is a subset of A(w). Then the 4{tupleM = (W;�; D; V )
is called a Kripke model (over frame F ).

De�nition 2.2 Let (W;�; D; V ) be a Kripke model of language L, w be in

W and � be a sentence from L(w). We give a de�nition of w forces� by

induction on the complexity of �.

1. For atomic senetences �, w forces � i� � 2 A(w).

2. w forces �!  i� for all v � w, v forces � implies w forces  .

3. w forces :� i� for all v � w, q does not force �.

4. w forces 8x� i� for all v � w and all constants c 2 L(v), v forces �(c).

5. w forces 9x� i� for some c 2 L(w), w forces �(c).

6. w forces � _  i� w forces � or w forces  .

7. w forces �& i� w forces � and w forces  .

We say that M forces a sentence � of language L if every w 2 W forces

�. By induction on the length of sentences � 2 L(w); we can prove that if
w forces � and v � w, then v forces �. Following the lines of Henkin's proof

for classical logic, one can prove the classical completeness of intuitionistic
logic.
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Theorem 2.1 For any intuitionistically consistent theory T of language L ,

there exists a Kripke model M such that for all �, M forces � if and only if

� is deducible from T .

To motivate our next notions we need to expand on the classical proof

of this theorem. Exact proofs can be found in [3] or [10]. The proof is

based on constructing so-called "prime theories" containing T . These are

theories in languages obtained by adding to the original L in�nitely many

new constant symbols. Informally, these theories are the "prime �lters with

witnesses" of the distributive lattice which is the Lindenbaum algebra de�ned

by intuitionistic deducibility in T . The base of the desired Kripke model is

the set of all such prime theories. The ordering is set{theoretic inclusion.

Thus, one can say that under an appropriate coding of all formulas of the

expansion of language L by constants, the elements of the base are subsets

of natural numbers. Thus we are lead to the following de�nition.

De�nition 2.3 A frame is a triple (S;�; D) with the following properties:

1. S is a family of subsets of !, that is S � 2!.

2. � is the set{theoretical inclusion between subsets of !.

3. D is a function assigning to any p 2 S a subset D(p) of the natural

numbers such that D(p) � D(q0 if p � q for all p; q 2 S.

Now we can de�ne the notion of computable frame. Informally, a
frame (S;�; D) is computable if the sets S and fD(p)jp 2 Sg are uniformly

computably enumerable. Here is an exact de�nition.

De�nition 2.4 A computable frame is 5{tuple (S;�; D; f; g) such that

(S;�; D) is a frame, and f , g are computable functions with the following

properties:

1. The set S coincides with frange(�yf(x; y)jx 2 !g.

2. For all x 2 !, if p = range(�yf(x; y), then D(p) = range(�yg(x; y)).

If (S;�; D; f; g) is a computable frame, we abuse notation by omitting

mention of the functions f and g and simply say that (S;�; D) is a com-

putable frame. We are interested in those Kripke models for which forcing is

5



a decidable relation. In other words, informally, a decidable frame is one for

which there is a procedure which applied to any state of knowledge p from

the frame and any statement � from L(p) decides whether p forces �. Here

is a formal de�nition.

De�nition 2.5 A Kripke model M over a computable frame (S;�; D; f; g)

is decidable if the set

f(i; �)ji 2 !, � 2 L(range(�y(f(i; y)))) and range(�y(f(i; y))) forces �g

is a computable set.

Now we are ready to state our main theorem. But �rst we need a basic

de�nition. A theory T is computable if there is procedure which applied to

any sentence � answers if � is intuitionistically deducible from T or not.

Theorem 2.2 For every computable theory T of the language L there is a

decidable Kripke model M such that for all � 2 L, M forces � if and only if

� is deducible from T .

Proof. The proof is based on e�ectivizing the proof of the completeness

theorem. First, we show that computable prime theories withg witnesses
containing T exist. The classical proofs in [3] or [10] do not contruct com-
putable prime theories containing T . We give a slightly di�erent construction

of a prime theory containing T with an additional property that guarantee
computability. Here is the crucial new de�nition.

De�nition 2.6 Let  0 be a sentence. A theory � of a language L is L{

maximal with respect to  0 if

1. � does not contain  0 (and therefore is consistent).

2. For all �; if � is intuitionistically deducible from �; then � 2 �.

3. For all � and  if � _  2 �, then either � 2 � or  2 �.

4. For all formulas �(x)of one free variable x, if 9x�(x) 2 �, then �(c) 2 �

for some constant c 2 L.

5. For all �, if  0 can not be deduced from �
S
f�g, then � 2 �.
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The last condition is the new one [3] [10].

Lemma 2.1 Suppose that T is a computable theory in language L . Suppose

that  0 is not intuitionistically deducible from T . Let �L = L
S
C where C is

an in�nite computable set of constants such that L
T
C = ;. Then there is a

�L{maximal computable theory � with respect to  0 such that T � � and  0
is not deducible from �.

Proof. Let �0, �1, �2, : : : be a computable sequence of all sentences of

the language �L in which every sentence appears in�nitely many times. We

construct � by stages. At stage t+ 1 we de�ne �t+1 such that �t � �t+1. At

the end we put � =
S
t �t. At each stage t + 1 we treat the sentence �t. If

we do not put �t into �t+1, then � will not belong to �. Since the procedure

is e�ective, � will be computable. We note the following simple fact. If T is
computable and � is a �nite set, then by deduction theorem the closure of

T
S
� with respect to intuitionistic deduction is also computable.
Stage 0. �0 = T .

Stage t + 1. Suppose that �t has been constructed. Take �t. We have
three cases.

Case 1. �t is A_B. If  0 is not intuitionistically deducible from �t

S
fAg,

then we de�ne �t+1 as the closure of �t

S
fAg under intuitionistic deduction.

Suppose that  0 is intuitionistically deducible from �t

S
fAg. Then if  0 is

not intuitionistically deducible from �t

S
fBg, we de�ne �t+1 as be the closure

of �t

S
fBg under intuitionistic deduction. Otherwise, we de�ne �t+1 = �t.

Case 2. �t is 9x�(x). If  0 is not deducible from �t

S
f�tg, then we de�ne

�t+1 as the closure of �t

S
f�t; �(c)g under intuitionistic deduction, where c

is the �rst constant not belonging to �t. Otherwise, we de�ne �t+1 = �t.
Case 3. Suppose that the previous neither of the previous cases holds.

If  0 is not deducible from �t

S
f�tg, then we de�ne �t+1 as the closure of

�t

S
f�tg under intuitionistic deduction. Otherwise, we de�ne �t+1 = �t.
This ends the construction.

De�ne � to be
S
t �t. We prove that � is a �L{maximal theory with respect

to  0.

First, we show that  0 is not intuitionistically deducible from �. Suppose

otherwise. Then there exists a t such that  0 is intuitionistically deducible
from �t+1. We prove by induction on k that 0 is not intuitionistically de-

ducible from �k . Clearly,  0 is not intuitionistically deducible from �0 .

Suppose that  0 is not intuitionistically deducible from�t .
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Suppose that Case 1 of stage t+ 1 holds. Then �t+1 properly extends �t

since by inductive hypothesis  0 is not intuitionistically deducible from �t.

It follows that �t = A _ B and that either �t+1 is the closure of �t

S
fAg

or �t+1 is the closure of �t

S
fBg. If �t+1 is the closure of �t

S
fAg, then by

the de�nition of �t+1,  0 is not intuitionistically deducible from�i+1

S
fAg.

Similarly, if �t+1 is the closure of �t

S
fBg, then  0 is not intuitionistically

deducible from �t+1. This is a contradiction.

Suppose that Case 2 holds. Then �t+1 is the closure of �t

S
f�t; �(c)g.

Then  0 is intuitionistically deducible from �t

S
f�t; �(c)g, hence  0 is intu-

itionistically deducible from �t

S
f�tg.

Suppose that Case 3 holds, then  0is not intuitionistically dediucible from

�t+1 .

It follows that  0 is not intuitionistically deducible from �:

We need to show that � is closed under intuitionistic deduction. Suppose
that � is intuitionistically deducible from �. There is a t such that � = �t.

It follows that 0 is not an intuitionistic consequence of �t

S
f�g. So, by the

de�nition of �t+1, � belongs to �t+1.
Suppose that � _  2 �. There is a t such that � _  2 �t+1. Since

every sentence � appears in�nitely many time in the sequence �0; �1; : : :, we
see that there is a k > t such that �k = � _  . We need to show that at

stage k + 1 either � or  enters �. If �k

S
f�g and  0 is an intuitionistic

consequence of �k

S
f g: In this case  0 is an intuitionistic consequence of

�k

S
f�kg , which is contraduction. Hence at stage k+1 either � or  enters

�.
Suppose that 9x�(x) 2 �. There is a k such that �k = 9x�(x). At stage

k + 1, �(c) enters � for some c by the de�nition of the stage.

Now we prove that if 0�
S
f�g is not an intuitionistic consequence of  0,

then � 2 �. There is a t such that �t = � _ �. Then at stage t + 1, � enters

�.
Now we prove that � is a computable theory. Take a sentence �. Find

a t such that �t = �. Then � 2 � if and only if �t 2 �t+1. Hence � is

computable. The lemma is proved.

To state the next corollary we need some more notation. Let C0; C1,

: : : be an in�nite sequence of pairwise disjoint in�nite computable sets of
constants. We put L0 = L, Li+1 = Li

S
Ci.
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Corollary 2.1 There is an e�ective procedure P which, given i 2 !,  2

Sn(Li), and a �nite � � Sn(Li) such that : if  is not intuitionistically

deducible from T;� , then P (i;  ;�) is an index of a computable function

which computes a Li{maximal theory with respect to  containing T .

Proof. The corollary follows from the observation that the lemma above

can be proved e�ectively when  and � are given.

Now introduce the following frame F

(fP (i;  ;�)ji 2 !;  2 Li;� � Sn(Li); T
S
� does not deduce  g;�; D);

where D(P (i;  ;�)) is the set of all constants from Li. By the corollary

above, this frame is computable.
Now we need to de�ne a Kripke model M over frame F . Consider the

state of knowledge D(P (i;  ;�)) from F . For every predicate symbol R 2 L

we put R(c1; : : : ; cn) is (classicaly) true i� R(c1; : : : ; cn) belongs to P (i;  ;�).

Lemma 2.2 Let P (i;  ;�) be a state of knowledge from Kripke model M.

Let � be a sentence of the language Li. Then the following properties hold:

1. �! �0 2 P (i;  ;�) if, and only if, for all � containing P (i;  ;�) the
condition � 2 � implies �0 2 �.

2. :� 2 P (i;  ;�) if, and only if, for all � containing P (i;  ;�) we have
� 62 �.

3. � = 8x�0 2 P (i;  ;�) if, and only if, for all � containing P (i;  ;�)
and c 2 D(P (i;  ;�)) we have �0(c) 2 �.

4. �&�0 2 P (i;  ;�) if, and only if, � and �0 belong to P (i;  ;�).

5. � _ �0 2 P (i;  ;�) if, and only if, either � or �0 belong to P (i;  ;�).

Proof. We prove the lemma by induction on the length of sentence �. If �

is atomic, then by de�nition P (i;  ;�) forces � if and only if � 2 P (i;  ;�).
To prove parts 4 and 5 note that if � is �0&�00 or �0 _ �00, then the proof

of the lemma follows from the facts that P (i;  ;�) is closed under deduction

and is prime theory.
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We now prove part 1. If � ! �0 2 P (i;  ;�), � 2 P (j;  0;�0) and

P (i;  ;�) � P (j;  0;�0), then since P (j;  0;�0) is a theory we obtain that

�0 2 P (j;  0;�0). Suppose that �! �0 62 P (i;  ;�). It follows that �0 is not

intuitionistically deducible from P (i;  ;�)
S
f�g:. Hence by Corollary 2.1

there is a computable strongly L(i+1){prime theory � containing P (i;  ;�)

such that �0 62 �. This proves Part 1.

Part 2 as well as part 3 can be proved in a similar way. So the lemma is

proved.

>From this lemma we obtain that in frame M, the state of knowledge

P (i;  ;�) forces a sentence � if and only if � belongs to P (i;  ;�). By

Corollary 2.1, we get that the forcing in M is a computable set. Hence the

frame is decidable. Moreover, by the previous lemma we see that for any

� 2 Sn(L), � is deducible from T if and only if � is forced in frame M.

Hence the theorem is proved.

De�nition 2.7 We say that a theory T is complete for a class K of of

Kripke models if for any � not intuitionistically deducible from T; there is a

Kripke model M from K such that M is a model of T but not �.

The next result directly follows from the theorem.

Corollary 2.2 Every computable intuitionistic theory T is complete for the

class of decidable Kripke models.
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