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Abstract

Finite obstruction set characterizations for lower ideals in the minor order are guaran-

teed to exist by the Graph Minor Theorem. In this paper we characterize several families of

graphs with small feedback sets, namely k1-Feedback Vertex Set, k2-Feedback Edge

Set and (k1,k2){Feedback Vertex/Edge Set, for small integer parameters k1 and k2.

Our constructive methods can compute obstruction sets for any minor-closed family of

graphs, provided the pathwidth (or treewidth) of the largest obstruction is known.

1 Introduction

One of the most famous results in graph theory is the characterization of planar graphs due to
Kuratowski: a graph is planar if and only if it does not contain either of K3;3 or K5 as a minor.
The obstruction set (set of forbidden minors) for planarity thus consists of these two graphs.

The deep results of Robertson and Seymour [13] on the well-quasi-ordering of graphs under
the minor (and other) orders, have the consequence of establishing non-constructively that
many natural graph properties have \Kuratowski-type" characterizations; that is, they can
be characterized by �nite obstruction sets in an appropriate partial order. Finite forbidden
substructure characterizations of graph properties have been an important part of research in
graph theory for many years, and there are many theorems of this kind.

We describe in this paper a theory of obstruction set computations, which we believe has
the potential to automate much of the theorem-proving for this kind of mathematics. This
approach was �rst successfully used to �nd the obstructions for the graph families with small
vertex covers, k{Vertex Cover, 1 � i � 5 (see [3]). This current paper is a full-version,
including new results, of our workshop paper on computing several feedback vertex and edge
set obstructions [4].

Graphs with small feedback sets are desirable for many reasons. One speci�c application
deals with the task of minimizing costs in the construction of broadcast-display networks. For
this particular model we have two types of nodes and two types of connecting lines. Each node
can display and broadcast messages. The less expensive nodes have simple hardware that simply
receives, displays and sends messages to neighboring nodes. The more expensive nodes can also
detect whether an incoming message is currently being displayed and when not to rebroadcast it.

�Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

(Email: mjd@cs.auckland.ac.nz)
yDepartment of Computer Science, University of Victoria, P.O. Box 3055, Victoria, B.C. Canada V8W 3P6

1



Likewise, the expensive communication lines can sense and censor what is transmitted (by using
some type of message bu�er). In this model any node can originate a message. Once the message
has been 
ooded and displayed, further broadcasts of the message should cease. By designating
a small subset (i.e., a feedback set) of the nodes or edges as smart (expensive) hardware the
broadcasting will terminate automatically. (We assume that all nodes do not resend a message
back along its incoming message line.) Thus minimizing the size of these feedback sets within
the network is important.

This paper is organized as follows. The next section formally introduces our graph families
based on feedback sets. Section 3 presents our general computation theory for computing ob-
struction sets within the minor order. The last three sections contain our main family-speci�c
results: Section 4 addresses the feedback vertex set families, Section 5 covers the feedback edge
set families, and Section 6 investigates the feedback vertex/edge set families.

2 Preliminaries

We begin with some standard de�nitions and notations. For two graphs G and H, H is a minor

of G (denoted by H �m G) if and only if a graph isomorphic to H can be obtained from G by
a sequence of operations chosen from: (1) taking a subgraph, and (2) contracting an edge. This
operation de�nes the minor order on graphs. A family of graphs F is a lower ideal with respect
to �m if for all graphs G and H, the conditions (1) H �m G and (2) G 2 F imply H 2 F . The
obstruction set O(F) for F with respect to �m is the set of minimal elements of the complement
of F . This characterizes F in the sense that G 2 F if and only if it is not the case that for some
H 2 O(F), H �m G. The motivation for our research is the consequence of the following Graph
Minor Theorem (GMT), formerly known as Wagner's Conjecture, by Robertson and Seymour.

Theorem 1 (GMT) The minor order, �m, is a well-partial order.

This theorem guarantees that O(F) is �nite for any minor-order lower ideal F .

2.1 Graphs with small feedback sets

In this paper we characterize by obstructions two main types (and a third hybrid type) of simple
graph families. The �rst family consists of those graphs for which all cycles can be covered with
a small set of vertices. The second family consists of those graphs for which all cycles can be
covered with a small set of edges. We also study a generalized variety of these two graph families.
In this later case cycles are covered by a small number of both vertices and edges.

These graph families are based on the following two well-known problems (see [9]).

Problem 2: Feedback Vertex Set (FVS)

Input: A graph G = (V;E) and a non-negative integer k � jV j.
Question: Is there a subset V 0

� V with jV 0
j � k such that V 0 contains at least one vertex from

every cycle in G?

A set V 0 in the above problem is called a feedback vertex set for the graph G. The family of
graphs that have a feedback vertex set of size at most k is denoted by k{Feedback Vertex
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Set. It is easy to verify that for each �xed k the set of graphs in k{Feedback Vertex Set

is a lower ideal in the minor order. For a given graph G, let FV S(G) denote the least k such
that G has a feedback vertex set of cardinality k. Our second problem of interest is now stated.

Problem 3: Feedback Edge Set (FES)

Input: A graph G = (V;E) and a non-negative integer k � jEj.
Question: Is there a subset E 0

� E with jE 0
j � k such that G n E 0 is acyclic?

The edge set E 0 is a feedback edge set. Also, for a given graph G, let FES(G) denote the least
k such thatG has a feedback edge set of cardinality k, and the family k{Feedback Edge Set =
fG j FES(G) � kg.

Example 4 Displayed below is a graph in the 2{Feedback Vertex Set family. Notice that

when the two black vertices are removed from the example, the graph becomes acyclic (a forest).

The reader should note that the graph in the previous example requires 6 edges in any
feedback edge set and thus it is a member of 6{Feedback Edge Set.

We now de�ne a third problem based on the above two feedback set problems, where we
keep both vertex and edge integer parameters.

Problem 5: Feedback Vertex/Edge Set (FVES)

Input: A graph G = (V;E) and two non-negative integers k1 � jV j and k2 � jEj.
Question: Is there a subset V 0

� V with jV 0
j � k1 and a subset E 0

� E with jE 0
j � k2 such

that (G n E 0) n V 0 is acyclic?

For �xed integer parameters k1 and k2, the graphs that satisfy Problem 5 are members
of the feedback set family (k1,k2){Feedback Vertex/Edge Set. For instance, the graph
in Example 4 is a member of (1,3){Feedback Vertex/Edge Set. Figure 1 shows the set-
inclusion relationships between various (k1,k2){Feedback Vertex/Edge Set graph families.
This diagram illustrates, via the horizontal arrow, that it is easier to cover a graph's cycles with
vertices as opposed to edges. Note that we have the following family equivalences:

k1{Feedback Vertex Set = (k1,0){Feedback Vertex/Edge Set and
k2{Feedback Edge Set = (0,k2){Feedback Vertex/Edge Set :
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(k1 + 1; k2 + 1)

(k1 + 1; k2)

(k1; k2)

(k1; k2 + 1)

Figure 1: The (k1,k2){Feedback Vertex/Edge Set family containment diagram.

2.2 Membership algorithms for the feedback set problems

We now discuss what is known about the computational complexity of solving the various
feedback set problems.

It is well-known that the general feedback vertex set problem (Problem 2, where k is part of
the input) is NP -complete [9]. However, for many families of graphs the optimization problem
of �nding the minimum size k for a feedback vertex set can be done in polynomial time. For ex-
ample, an O(n4) algorithm is given in [5] for the feedback vertex set problem on co-comparability
graphs, which is a superclass of permutation graphs. Among many other known NP -complete
problems, Problem 2 can be solved in linear-time for graphs of bounded treewidth (or path-
width) [1, 2]. Later in Section 4.1 we present a linear-time algorithm for the case of graphs of
bounded pathwidth. We use a �nite-state version of this algorithm to compute the obstruction
set for k{Feedback Vertex Set.

It is also known that the general feedback edge set problem (Problem 3) is in the polynomial-
time solvable class P. In fact, by a simple formula, given in Section 5.1, we can compute in
linear time the minimum size k for a feedback edge set of any graph.

If k is �xed then Problem 2 can be solved in polynomial time by a standard brute-force
algorithm. Membership testing is done by checking whether any subset of vertices (or edges) of

size k is a feedback set. That is, for �xed k, this brute-force algorithm runs in
�
n

k

�
�n = O(nk+1)

time, where n equals the number of vertices of the input graph. There exists a more practical
membership algorithm that runs in O((2k)kn2) time. This algorithm by Fellows and Downey
(see [7]) is based on (1) a quick algorithm by Itai and Rodeh in [10] for �nding short cycles and
(2) the fact that a graph G of minimum degree three with girth at least 2k is not in k{Feedback
Vertex Set.

There are two families of optimization problems related to the generalized feedback set
problem (Problem 5). If either k1 or k2 is �xed, the problem is to minimize the other parameter
for any input graph. The �rst class of problems is tractable (in the complexity class P) and
the second class is intractable (i.e., NP -complete). For checking graph membership in (k1,k2){
Feedback Vertex/Edge Set we have one polynomial-time membership algorithm. This
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algorithm runs in O(nk1+k2+1) time by checking all subsets of vertices and edges of size at most
k1 and k2, respectively.

2.3 Graphs with bounded width

Before presenting our theory for computing minor-order obstructions, we formally de�ne the
concept of graphs of bounded (combinatorial) width. Our search theory for �nding obstructions
is based upon two types of widths. The �rst classi�es those graphs with a narrow path-like
structure.

De�nition 6 A path decomposition of a graph G = (V;E) is a sequence P = X1; X2; : : : ; Xr

of subsets of V that satisfy the following conditions:

1.
[

1�i�r

Xi = V .

2. For every edge (u; v) 2 E, there exists an Xi, 1 � i � r, such that u 2 Xi and v 2 Xi.

3. For 1 � i < j < k � r, Xi \Xk � Xj.

The width of a path decomposition X1; X2; : : : ; Xr is max1�i�r jXij � 1. The pathwidth of a

graph G, denoted PW (G), is the minimum pathwidth over all path decompositions of G. The

family of graphs that have pathwidth at most k is denoted by k{Pathwidth.

The second width metric, which is more popular in the literature, classi�es those graphs with
a narrow tree-like structure.

De�nition 7 A tree decomposition of a graph G = (V;E) is a tree T together with a collection

of subsets Tx of V indexed by the vertices x of T that satis�es:

1.
[
x2T

Tx = V .

2. For every edge (u; v) of G there is some x such that u 2 Tx and v 2 Tx.

3. If y is a vertex on the unique path in T from x to z then Tx \ Tz � Ty.

The width of a tree decomposition is the maximum value of jTxj � 1 over all vertices x of the

tree T . A graph G has treewidth at most k if there is a tree decomposition of G of width at most

k. The family of graphs that have treewidth at most k is denoted by k{Treewidth.

3 E�ciently Computing Obstructions

In this section we present a general theory for computing minor-order obstructions when we
have the following two ingredients: (1) a pathwidth or treewidth bound on the obstructions,
and (2) a family congruence for the family.

Our current theory has evolved from the seminal work presented in [8], where the underlying
theory uses the GMT to prove termination of a �nite-state search procedure. The results in
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[12] can be used to prove termination without the GMT. The application of these results for
the computation of any particular obstruction set requires additional problem-speci�c results.
These results are nontrivial, but seem to be generally available (in one form or another) for
virtually every natural minor-closed family of graphs. We contribute to the feasible aspects of
computing obstruction sets.

The basic theory of �nite-state obstruction-set computations is applied to a particular lower
ideal F as follows. First, the search space is framed by some type of lemma (speci�c to F
and of variable di�culty to prove in a su�ciently tight form) that establishes a bound on the
maximum pathwidth or treewidth of the graphs inO(F). Once the search space has been limited
to graphs of a speci�c pathwidth or treewidth bound, we organize the search space algebraically.
This is accomplished by describing a �nite set of graph-building operators � such that every
graph in the search space is represented by a string in ��. Associated to F we de�ne a partial
order � on �� such that: (1) � is compatible with concatenation, (2) � has a �nite number of
minimal elements, and (3) from the minimal elements of �� with respect to � we can recover the
obstruction set for F . In order to implement the search we employ problem-speci�c algorithms
that determine � minimality, and decide membership in F .

The text that follows is a brief but complete description of our search theory. The interested
reader should read [6] for further details regarding the actual computer implementation, which
includes many e�ciency improvements omitted from this paper.

We search for obstructions within the set of graphs of bounded pathwidth (or bounded
treewidth). We now describe an algebraic representation for these graphs of bounded-width.

De�nition 8 A t-boundaried graph G = (V;E; @; f) is an ordinary graph G = (V;E) together
with (1) a distinguished subset of the vertex set @ � V of cardinality t, the boundary of G, and

(2) a bijection f : @ ! f0; 1; 2; : : : ; t� 1g. A boundaried graph G = (V;E; @; f) is an ordinary

graph G = (V;E) together with a boundary @ � V and labeling injection f : @ ! f0; 1; 2; : : :g.

The graphs of pathwidth at most t are generated exactly by strings of (unary) operators
from the following operator set �t = Vt [ Et:

Vt = f 0k; : : : ; tkg and Et = f i j j 0 � i < j � tg:

To generate the graphs of treewidth at most t, an additional (binary) operator �, called circle

plus, is added to �t. The semantics of these operators on boundaried graphs G and H of
boundary size at most t+ 1 are as follows:

G ik Add an isolated vertex to the graph G, and label it as
the new boundary vertex i.

G i j Add an edge between boundary vertices i and j of G
(ignore if operation causes a multi-edge).

G�H Take the disjoint union of G and H except that equal-
labeled boundary vertices of G and H are identi�ed.

It is syntactically incorrect to use the operator i j without being preceded by both ikand jk,
and the operator � must be applied to graphs with the same boundary @. A graph described
by a string (tree, if � is used) of these operators is called a t-parse, and has an implicit labeled
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boundary @ of at most t+ 1 vertices. By convention, a t-parse always begins with the operator
string [ 0k; 1k; : : : ; tk] which represents the edgeless graph of order t + 1. Throughout this
paper, we refer to a t-parse and the graph it represents interchangeably.

Example 9 A 2-parse and the graph it represents; the shaded vertices denote the �nal boundary
@.

0

1

2

0

1

2

1

[ 0k; 1k; 2k; 0 1 ; 1 2 ; 1k; 0 1 ; 1 2 ; 1k; 0 1 ; 1 2 ; 0k; 0 1 ; 0 2 ; 2k; 0 2 ; 1 2 ]

For ease of discussion throughout the remaining part of this paper, we limit ourselves to
bounded pathwidth in the obstruction set search theory and only point out places where any
di�culty may occur with a bounded treewidth search.

De�nition 10 Let G = (g1; g2; : : : ; gn) be a t-parse and Z = (z1; z2; : : : ; zm) be any sequence of

operators over �t. The concatenation (�) of G and Z is de�ned as

G � Z = (g1; g2; : : : ; gn; z1; z2; : : : ; zm):

The t-parse G � Z is called an extended t-parse, and Z 2 ��t is called an extension. (For the

treewidth case, G and Z are viewed as two connected subtree factors of a parse tree G �Z instead

of two parts of a sequence of operators.)

The following sequence of de�nitions and results forms our theoretical basis for computing
minor-order obstruction sets.

De�nition 11 Let G be a t-parse. A t-parse H is a @-minor of G, denoted H �@m G, if H

is a combinatorial minor of G such that no boundary vertices of G are deleted by the minor

operations, and the boundary vertices of H are the same as the boundary vertices of G.

De�nition 12 Let G be a t-parse. A t-parse H is a one-step @-minor of G if H is obtained

from G by a single @-minor operation (one isolated vertex deletion, one edge deletion, or one

edge contraction).

Both the family of graphs of pathwidth at most k, k{Pathwidth, and the family of graphs
of treewidth at most k, k{Treewidth, are lower ideals in the minor order. Thus any @-minor
H of a t-parse G can be represented as a t-parse. Our minor-order algorithms actually operate
on the t-parses directly, bypassing any unnecessary conversion to and from the standard graph
representations.
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De�nition 13 Let F be a �xed graph family and let G and H be t-parses. We say G and H

are F-congruent (written G �F H) if for every extension Z 2 ��t ,

G � Z 2 F () H � Z 2 F :

If G is not congruent to H, denoted by G 6�F H, then we say G is distinguished from H (by

Z), and Z is a distinguisher for G and H. Otherwise, G and H agree on Z. The congruence

�F is called the canonical congruence for F (of width t).

De�nition 14 A set T � ��t is a testset if G 6�F H implies there exists Z 2 T that distinguishes

G and H.

In the more familiar and general setting of t-boundaried graphs (using an analogue of the
Myhill{Nerode Theorem [8]), a testset T may be considered to be a subset of t-boundaried graphs
where concatenation (�) is replaced solely by circle plus �. It is all right for the pathwidth of
G � T to be greater than the pathwidth of the t-boundaried graph G that is being tested. As
we will see later, a testset is only useful for �nding obstruction sets if it has �nite cardinality.

De�nition 15 A t-parse G is nonminimal if G has a @-minor H such that G �F H. Otherwise,

we say G is minimal. A t-parse G is a boundary obstruction if G is minimal and G 62 F .

In general, if a family F is a minor-order lower ideal and G is minimal with respect to F ,
then for each @-minor H of G, there exists an extension Z such that

G � Z 62 F and H � Z 2 F :

That is, there exists a distinguisher for each minor H of G.
The obstruction set O(F) for a family F is obtainable from the boundary obstruction set

O@(F), by contracting (possibly zero) edges on the boundaries of O@(F), whenever the search
space of width @ � 1 is large enough. In our search for O@(F), we must prove that each
t-parse generated is minimal or nonminimal. The following two results substantially reduce the
computation time required to determine these proofs.

Lemma 16 A t-parse G is minimal if and only if G is distinguished from each one-step @-minor

of G. Or equivalently, G is nonminimal if and only if G is F-congruent to a one-step @-minor.

Proof. We prove the second statement. Let G be nonminimal and suppose there exists two
minors K and H of G such that K �@m H and K �F G. It is su�cient to show H �F G.

For any extension Z 2 ��t , if G � Z 2 F then H � Z 2 F since H � Z �@m G � Z and F is a
@-minor lower ideal. Now let Z be any extension such that G � Z 62 F . Since K �F G, we have
K � Z 62 F . And since K � Z �@m H � Z, we also have H � Z 62 F . Therefore, G is F-congruent
to H. 2

Lemma 17 (Pre�x Lemma) If Gn = [g1; g2; : : : ; gn] is a minimal t-parse then any pre�x

t-parse Gm = [g1; g2; : : : ; gm], m < n, is also minimal.
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Proof. Assume Gn is nonminimal. It su�ces to show that any extension of Gn is nonminimal.
Let H be a one-step @-minor of Gn such that for every Z 2 ��t ,

Gn � Z 2 F () H � Z 2 F :

Let gn+1 2 �t and Gn+1 = Gn � gn+1. Now H 0 = H � gn+1 is a one-step @-minor of Gn+1 such
that for all Z 2 ��t ,

Gn+1 � Z = Gn � (gn+1 � Z) 2 F () H 0 = H � (gn+1 � Z) 2 F :

Thus, any extension of Gn is nonminimal. 2

The above two lemmata also hold when the circle plus operator � is included in �t. For
illustration consider the Pre�x Lemma: If G is a nonminimal t-parse with a F-congruent minor
G0, and Z is any t-parse, then (G� Z)0 is a F-congruent minor of a nonminimal G� Z, where
we use the prime symbol to denote the corresponding minor operation done to the G part of
G�Z. (The awkward notation is needed since G0

�Z may equal G�Z when common boundary
edges exist in both G and Z.)

The Pre�x Lemma implies that every minimal t-parse is obtainable by extending some mini-
mal t-parse, providing a �nite tree structure for the search space. In other words, the search tree
may be pruned whenever a nonminimal t-parse is found. See Figure 2 for an illustration of this
search process. Since most (t+1)-boundaried graphs have many t-parse representations, we can
further reduce the size of the search tree by enforcing a canonical structure on the t-parses con-
sidered. That is, we want to generate just one isomorphic copy of each underlying boundaried
graph. To do this we have to ensure that every pre�x of every canonic boundary obstruction (a
minimal leaf of the search tree) is also canonic (see [6]). This reduces the out-degree of every
node in the search tree to sometimes less than j�tj (and sometimes 0).

We currently use the four techniques given in Figure 3 to prove that a t-parse in the search
tree is minimal or nonminimal. They are listed in the order that they are attempted; if one
succeeds, the remainder do not need to be performed. The �rst three of these may not succeed,
though the fourth method always will. However, if we are fortunate to have a minimal �nite-
state congruence (i.e., not a re�nement of the minimum automaton for �F ) in step 2 of Figure 3
then we can stop at that step since distinct �nal states (equivalence classes) imply the existence
of an extension to distinguish the two states (and their t-parse representatives). An example of
such a �nite-state congruence was used in our k{Vertex Cover characterizations [3].

4 Graphs with Small Feedback Vertex Sets

We now focus on two problem-speci�c details for �nding the k{Feedback Vertex Set ob-
struction sets: a �nite-index congruence and a complete testset (i.e., steps 2 and 4 of Figure 3).
We �rst present a practical, linear time algorithm for the feedback vertex set problem on graphs
of bounded pathwidth/treewidth in t-parse form. This general-purpose algorithm is altered to
act as a �nite-index congruence, that is a re�nement of the canonical congruence. We then show
how to produce testsets for the graph families k{Feedback Vertex Set, k � 0, with respect
to any boundary size t.
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Nonminimal, in F (leaf)

Nonminimal, not in F (leaf)Minimal t-parse, not in F

(@-obstruction, leaf)

Minimal t-parse, in F

;

Figure 2: A typical t-parse search tree (each edge denotes one operator).
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1. Direct nonminimal test. These are easily observable properties of
t-parses that imply t-parses nonminimal. For any k{Feedback

Vertex Set family, the existence of a degree one vertex is an
example of such a property.

2. Finite-state congruence algorithm. Such an algorithm is a re�ne-
ment of the minimal �nite-state (linear/tree) automaton for �F .
This means that if a t-parse G and a one-step @-minor G0 of G
have the same �nal state, then G �F G0, and G is nonminimal. If
G and G0 have distinct �nal states, no conclusion can be reached.

3. Random minor-distinguisher search. The proof that a t-parse G is
minimal can consist of a distinguisher for each one-step @-minor
G0 of G. Such distinguishers can often be easily obtained by
randomly generating a sequence of operators Z such that G �Z 62

F , and then checking if G0
� Z 2 F .

4. Full testset proof. We use a complete testset (see De�nition 14)
to determine if a t-parse G is distinguished from each of its one-
step @-minors. A t-parse G is nonminimal if and only if it has a
one-step @-minor G0 such that G and G0 agree on every test.

Figure 3: Determining if a t-parse is minimal or nonminimal.

4.1 A �nite state algorithm (for FVS)

Throughout the following discussion the boundary size (and width) of a t-parse is �xed. Recall
that the current set of boundary vertices of a t-parse Gn is denoted by the @ symbol. For any
subset S of the boundary @, we de�ne the following for all pre�xes Gm of Gn, m � n.

Fm(S) =

8><
>:

The least k such that there is an feedback vertex set V 0 of
Gm with V 0

\ @ = S and jV 0
j = k, otherwise 1 whenever

(G \ @) n S contains a cycle.

For any witness set V of Gm consisting of Fm(S) vertices, there is an associated witness

forest consisting of the trees that contain at least one boundary vertex in Gm n V . A witness
forest tells us how tight the boundary vertices are held together. Some of these forests are more
concise than others for representing how vertex deletions can break up the boundary.

For two witness forests A and B, with respect to Fm(S), we say A �w B if the following two
conditions hold:

1. For any two boundary vertices i and j, i and j are connected in A if and only if i and j

are connected in B.

2. If for any t-parse extension Z where there exists some non-boundary vertex b of B such
that (B n fbg) � Z is acyclic then there exists a non-boundary vertex a of A such that
(A n fag) � Z is acyclic.
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Also two witness forests A and B are equivalent (A �w B) if A �w B and B �w A. A witness
forest in reduced form (minimal number of vertices) is called a park. The next lemma provides
a way of cleaning up a forest to yield a park.

Lemma 18 A witness forest W of Gm may be reduced to a park as follows:

(a) all leafs (end-vertices) not on the boundary may be pruned, and

(b) any non-boundary vertex v of degree two may have an incident edge contracted if the neigh-

borhood N(v) 6� @.

Proof. We �rst show that any \separable" information is not lost after doing either of the above
operations.

Let v be a non-boundary end-vertex of W . Since v is not on the boundary of W , there does
not exist an extension Z such that W �Z has a cycle containing v. (Vertex v always has degree
one.) Thus, all end-vertices of W not on the boundary can not be included with the other
witness vertices associated with the witness forest W in any minimal feedback vertex set of any
extended Gm.

Now assume v is a non-boundary vertex of degree two of W and N(v) = fa; bg where a 62 @.
Let Z be an extension of W such that the removal of vertex v kills some cycles of W � Z. Since
the degree of v is two, all cycles through v must also pass through a. Thus, vertex a is also a
kill vertex for the cycles killed by v in W � Z. This shows that we may replace vertex v with
vertex a in any feedback vertex set containing v. (Vertex v always has degree two.)

Let Wc be the forest W with edge (a; v) contracted. The vertices v and a of W are replaced
with the vertex labeled a in Wc. We now show Wc �w W . For all extensions Z, there is a
bijection between cycles in Wc �Z and cycles in W �Z. (All cycles that pass through v of W �Z

now pass through a cycle with one less edge in Wc � Z; all other cycles are identical.) For any
cycle killed by vertex v inW �Z, the corresponding cycle inWc �Z is still killed by vertex a. The
other vertices of Wc or W still kill the same cycle extensions. Thus Wc �w W and W �w Wc.

We now show that the reduced park P derived from W using steps (a) and (b) is minimal.
Let vertex v be a non-boundary vertex of P . Since P is acyclic and contains no end-vertices

adjacent to the boundary, vertex v is on some unique path between two boundary vertices i and
j. Deleting v disconnects i and j. So (P n fvg) 6�w P .

Now let P 0 be the forest P where edge (a; b) is contracted for two non-boundary vertices
a and b of degree three or more. Let a1 and a2 be two (distinct) boundary vertices connected
to vertex a such that vertex b is not on the connecting paths. Likewise, Let b1 and b2 be two
boundary vertices connected to vertex b such that vertex a is not on the connecting paths. The
vertices a1 and a2 are distinct from the vertices b1 and b2, for otherwise a cycle would contain
edge (a; b) in P . Pick a graph extension Z to be the set of boundary vertices �S with the edges
(a1; a2) and (b1; b2). The graph (P

0
nfag) �Z is acyclic while the graph P �Z contains two disjoint

cycles. This tells us that (P n fxg) � Z is cyclic for all x in P n @. Thus, P 6�w P 0.
Finally assume P 0 is the forest P where edge (a; b) is contracted, a 2 @, b 62 @, and

degree(b) � 3. Let b1 and b2 be two boundary vertices connected to vertex b such that the
path between b1 and b2 passes through vertex b and a 62 fb1; b2g. Pick an extension Z to be the
set of boundary vertices �S with the edges (a; b1) and (a; b2). The graph (P n fbg) � Z is acyclic.
The graph P 0

� Z contains two cycles which intersects at a. Since the boundary vertex a is not
allowed to be deleted, the graph (P 0

n fxg) � Z is cyclic for all x in P 0
n @. Thus, P 0

6�w P . 2
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There may exist alternative witness forests that preserve minimum-sized feedback vertex sets
for all extensions of Gm. A witness forest W is considered to be a park if the above lemma can
not be applied to W .

Lemma 19 There are at most 3t� 3 vertices in any park for boundary size t.

Proof. First we consider the degree two non-boundary vertices. For such a vertex v, each of its
neighbors must be a boundary vertex. After viewing v and its two incident edges as a single edge
between two boundary vertices, we see that at most t� 1 such vertices can occur. Otherwise, a
cycle would exist on the boundary.

Now we consider the remaining non-boundary vertices. Let p be the number of such vertices
and e be the edge size of the subpark. Using the fact that the size of a forest must be strictly
less than the order, we have e < t+ p. Since the sum of the vertex degrees is twice the size, we
also have t+ 3 � p � 2 � e. Combining these inequalities while solving for p we get

t + 3 � p

2
� e � t + p� 1, or p � t� 2:

Summing up the boundary (t), the degree two vertices (t� 1), and the degree three or more
vertices (t� 2), shows that the order of any park can be at most 3t� 3. 2

Corollary 20 There is a �nite number of parks with boundary size t.

Proof. Since we have a bound on the number of vertices for a park, we can apply Cayley's
Tree Formula (i.e., by counting the number of labeled trees/forests) to get a bound on the total
number of distinct parks. There are nn�2 labeled trees of order n. 2

The results of the previous lemma and its corollary may be strengthened. See, for example,
the closely related Lemma 24. However, these bounds are su�cient for our purposes|to show
that there is a manageable (constant) number of parks (i.e., our algorithm can be used as a
�nite-index congruence).

For each subset S (with complement �S = @ nS) of the set of boundary vertices our algorithm
keeps track of the related parks in the following sets.

Pm(S) = fP j P is a park of Gm with leaves and branches over �Sg

Now we �nally present a linear time dynamic-programming algorithm for the feedback vertex
set problem which is used as our �nite congruence for t-parses. This general-purpose algorithm
has the same structure as our vertex cover algorithm given in [3], indicating a standard approach
for developing such algorithms. The one-pass algorithm simply makes a transition from one state
to another for each operator of a t-parse Gn = [ 0k; : : : ; tk; g1; : : : ; gn]. Thus, after all the parks
fPm(S) j S � @g are determined (for Gm), all the parks fPi(S) j S � @g for i < m � n are
never referenced and may be discarded.

Our algorithm, given in Figure 4, starts by setting the sizes for the minimal feedback vertex
sets on Gm = G0, the edgeless graph with t + 1 boundary vertices. This is done for all S � @.
There is only one park associated with F1(S) at this stage, namely the isolated forest with
t + 1 � jSj vertices. We break up the dynamic step into cases depending on what type of
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I For m = 1 and every S � @ set

F1(S) = jSj :

II For 1 < m < n do the following cases:
Case 1: vertex operator ikand i 62 S

Fm+1(S) = minfFm(S); Fm(S [ fig)g

Case 2: vertex operator ikand i 2 S

Fm+1(S) = minfFm(S); Fm(S n fig)g+ 1

Case 3: edge operator i j where i 2 S or j 2 S

Fm+1(S) = Fm(S)

Case 4: edge operator i j where i 62 S and j 62 S

a) If the edge operator creates a cycle on �S in Gm+1 or Fm(S) =1 then

Fm+1(S) =1 :

b) If there exists a park in Pm(S) such that i and j are in di�erent trees then

Fm+1(S) = Fm(S)

else
Fm+1(S) = Fm(S) + 1 :

III Compute answer:

FV S(G) = minfFn(S) j S � @g :

Figure 4: A general feedback vertex set algorithm for t-parses.
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Table 1: Feedback vertex set state tables computed for Example 21.

m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S gm � 0 1 1 2 1k 0 1 1 2 1k 0 1 1 2 0k 0 1 0 2 2k 0 2 1 2

; 0 0 0 0 0 1 1 1 2 1 1 1 1 1 1

f0g 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

f1g 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

f2g 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

f0; 1g 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
f0; 2g 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
f1; 2g 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
f0; 1; 2g 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4

operator is at position m+ 1 and the condition (selected in S or not) of any a�ected boundary
vertices of Gm or Gm+1. These transitions are described in cases 1-4 of Figure 4. When the
algorithm reaches the end of the t-parse, it computes the minimum number of vertices needed
in any feedback vertex set for Gn by taking the least Fn(S).

For space reasons we leave out the rules required to update the sets of parks Pi(S) throughout
each iteration of step II of the feedback vertex set algorithm. This procedure essentially entails
extending the parks with the current operator and reducing them by the rules given in Lemma 18,
and combining park sets if the two Fm()'s are equal in cases 1 and 2.

Example 21 Table 1 shows values of Fm(S) for the application of the feedback vertex set algo-

rithm to the 2-parse given in Example 9 on page 7. As can been seen by examining the graph in

Example 9, a minimum feedback vertex set has cardinality 2, which corresponds to the minimum

value in the last column.

Theorem 22 For any t-parse Gn = [ 0k; : : : ; tk; g1; : : : ; gn], the algorithm in Figure 4 correctly

computes FV S(Gn).

Proof. For part I of the algorithm, we note that jSj vertices are selected from the boundary of
G1 for each S � @. Thus the minimum feedback vertex set for such a requirement is initially
set, that is, F1(S) = jSj.

For a vertex operator ikappended to Gm we relabel vertex i of Gm as i0 and label the new
vertex in Gm+1 as i. The correctness for the dynamic step of the algorithm (part II) is now be
proved.
Case 1: Fm+1(S) = minfFm(S); Fm(S [ fig)g

First, for the (m+ 1)-th operator being ikwhere i 62 S, we show that

Fm+1(S) � minfFm(S); Fm(S [ fig)g :
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Let K be a witness feedback vertex set of Gm where S = K \ @ or S [ fig = K \ @. The graph
Gm+1 resulting from adding an isolated vertex to Gm with new boundary vertex i also has K
as a feedback vertex set but with @ \K = S.

Now we show that minfFm(S); Fm(S [ fig)g � Fm+1(S). Assume K is a minimal feedback
vertex set of Gm+1. Vertex i is not in K since removing i from K would leave a smaller feedback
vertex set for Gm+1, contradicting K being minimal. If i0 2 K then K is a witness for Gm where
@ \K = S [ fig. Likewise, if i0 62 K then K is a witness for Gm where @ \K = S. This then
shows that either Fm(S) � Fm+1(S) or Fm(S [ fig) � Fm+1(S).
Case 2: Fm+1(S) = minfFm(S); Fm(S n fig)g+ 1

This case assumes that the next operator is a vertex operator ikand i 2 S. We �rst show
Fm+1(S) � minfFm(S); Fm(S � fig)g+ 1. Let K be a witness feedback vertex set of Gm where
S = K \ @ or S [ fig = K \ @. Adding an isolated vertex to Gm with new boundary vertex
i has K 0 = K [ fig as a feedback vertex set for Gm+1 with @ \ K 0 = S. Thus, the inequality
holds this way.

Now assume that K is a witness feedback vertex set for the graph Gm+1 and

jKj � 1 < minfFm(S); Fm(S n fig)g :

If i0 2 K then K 0 = K nfig is a witness for Gm where @ \K 0 = S. Likewise, if i0 62 K then K 0 =
K n fig is a witness for Gm where @ \K 0 = S n fig. Thus, we either have Fm(S) � Fm+1(S)� 1
or Fm(S n fig) � Fm+1(S)� 1.
Case 3: Fm+1(S) = Fm(S)

The net result of adding an edge with operator i j to Gm where either vertex i or vertex
j is marked for deletion is the same as if this operator was not present. The edge gets deleted
from the graph when the designated selected boundary S is a subset of the minimal feedback
vertex set, with respect to Fm(S), of Gm. If Fm+1(S) < Fm(S) then the witness feedback vertex
set for Gm+1 would also be a witness feedback vertex set for Gm (i.e., a contradiction of Fm(S)
being minimal).
Case 4: Fm+1(S) = Fm(S) or Fm(S) + 1 or 1

If the edge operator i j creates a cycle on the non-selected boundary vertices �S = @ n S or
Fm(S) =1 then there is no feedback vertex set for Gm+1. Thus, Fm+1(S) is correctly set to1.

We now consider the cases where Fm+1(S) is �nite. Clearly, Fm(S) � Fm+1(S) since Gm n S

is a proper subgraph of Gm+1 n S.
Assume there is a park for Fm(S) such that boundary vertices i and j are in di�erent trees.

This means that there exists a feedback vertex set K of cardinality Fm(S) of Gm with @\K = S

that disconnects the vertices i and j. Adding an edge (i; j) with operator i j to Gm nK does
not create any cycles. Thus, Gm+1 nK = (Gm [f(i; j)g) nK = (Gm nK)[f(i; j)g is acyclic. In
this case Fm+1(S) = Fm(S).

If the above case is not true, then all parks have the boundary vertices i and j connected.
Since Fm(S) 6= 1, there must be at least one park (witness forest) associated with a minimal
feedback vertex set K of Gm. Since operator i j does not create a cycle on the non-selected
boundary, the unique cycle created in Gm n K by adding the edge (i; j) has at least one non-
boundary kill vertex v. Hence, the set K [fvg is a feedback vertex set of Gm+1. We have shown
Fm+1(S) � Fm(S) + 1.

We now consider the possibility that Fm+1(S) = Fm(S) in this latter case. Let K be a
witness for Gm+1 of cardinality Fm(S). The set K is also a feedback vertex set for Gm. Since
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K is a minimal feedback vertex set for Gm, the witness forest Gm nK must have vertices i and
j connected (by assumption that no park disconnects i and j). However, adding the edge (i; j)
to Gm n K causes a cycle. This is a contradiction since Gm+1 n K = (Gm [ f(i; j)g) n K =
(Gm nK) [ f(i; j)g. (Recall that i and j are not in S.) So Fm+1(S) = Fm(S) + 1. 2

The dynamic program, given in Figure 4, for determining the feedback vertex set of a path-
width t-parse is easily modi�ed to handle treewidth t-parses. All that is needed is to add a case
5 in part II which takes care of the circle plus operator Gi�Gj. This new case is a little messy
since the states for the two subtree parses Gi and Gj need to be interleaved. Brie
y stated,
this is done by checking all combinations (unions) of boundary subsets Si and Sj of Gi and Gj

(resulting in a subset S of Gi�Gj) along with checking which best parks from Gi can be glued
together with the compatible parks from Gj to form a set of parks for Gi � Gj. If the glued
parks create any cycles then the value of F\tree index"(S) needs to be increased to account for
additional kill vertices.

We can convert the above feedback vertex set algorithm to a �nite-index congruence for
k{Feedback Vertex Set. This is accomplished by restricting the values of Fm(S) to be in
f0; 1; : : : ; k; k + 1g; we are only interested in knowing whether or not there exists a feedback
vertex set of size at most k containing S. (The value of k + 1 acts as the value 1 in the
congruence.) In our application for �nding the k{Feedback Vertex Set obstruction sets,
we actually use a congruence with slightly fewer states then the one just described. The key
idea to this improvement is noticing that if a park P is a minor of a park P 0 then only the
representative P is needed as a witness. We estimate that this allows us to prove approximately
5% more t-parses nonminimal via the dynamic-programming congruence check. That is, for
certain instances we avoid our CPU-intensive testset proof method, which is described next.

4.2 A complete testset (for FVS)

A �nite testset for the feedback vertex set canonical congruence �F is easy to produce. The
individual tests closely resemble the parks described above. The testset that we use consists of
forests augmented with isolated triangles (and/or triangles solely attached to a single boundary
vertex). Our k{Feedback Vertex Set testset T k

t consists of all t-boundaried graphs that
have the following properties:

1. Each graph is a member of k{Feedback Vertex Set.

2. Each graph is a forest with zero or more isolated triangles, K3's.

3. Every isolated triangle has at most one boundary vertex.

4. Every degree one vertex is a boundary vertex.
(i.e. every tree component has at least two boundary vertices.)

5. Every non-boundary degree two vertex is adjacent to two boundary vertices.

Example 23 Some 3-boundaried tests (of T 1

3
) for 1{Feedback Vertex Set are shown below.
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The above restrictions on members of T k
t gives an upper bound on the number of vertices,

as stated in the following lemma. Hence T k
t is a �nite testset.

Lemma 24 The number of vertices for any test T 2 T k
t is at most 3k + 2t� 1.

Proof. Since T 2 k{Feedback Vertex Set there can be at most k isolated triangles, con-
sisting of at most 3k non-boundary vertices. We now show by induction that there can be at
most t�1 interior forest vertices for boundary size t. Without loss of generality, we may assume
the acyclic part of T is a tree (i.e., we can add edges to make another test with the same order.)
For a tree with 2 boundary vertices the largest test consists of one interior vertex of degree two.
Thus the base case holds. Now assume T is a valid test with t boundary vertices. We consider
three cases. If T has a degree one boundary vertex v that is adjacent to another boundary
vertex, then T n fvg is a valid test for boundary size t � 1 containing, by induction, at most
t� 2 interior vertices. Hence T also has at most t� 2 < t� 1 interior vertices. Otherwise, if T
has a degree two interior vertex v then T n fvg partitions the boundary into two valid tests T1
and T2 each with positive boundary sizes b1 + b2 = t. By induction, jV (T1)j � b1 � b1 � 1 and
jV (T2)j � b2 � b2� 1, so jV (T )j � t � (b1� 1) + (b2� 1) + 1 = t� 1. Lastly, if all of T 's interior
vertices have degree at least 3 then there must be at least twice the number of leaves (boundary
vertices). Thus, any acyclic test T can have at most t� 1 interior vertices. 2

The above bound is tight since the test T consisting of k isolated triangles and t� 1 interior
degree two vertices, each adjacent to boundary vertex i and i+ 1, has 3k + 2t� 1 vertices (see,
for example, the last test given in Example 23).

Since these k{Feedback Vertex Set testsets are based solely on t-boundaried graphs,
they are useful for both pathwidth and treewidth t-parse obstruction set computations.

Theorem 25 The set of t-boundaried graphs T k
t is a complete testset for the graph family k{

Feedback Vertex Set.

Proof. Assume G and H are two t-boundaried graphs that are not F-congruent within the
family F = k{Feedback Vertex Set. Let Z be any t-boundaried graph that distinguishes
G and H with G � Z 2 F and H � Z 62 F . We show how to build a t-boundaried graph
T 2 T k

t from Z that also distinguishes G and H. Let W be a set of k witness vertices such that
(G�Z)nW is acyclic. FromW , letWG = W \G, W@ = W \@ and WZ = W \Z. Take T 0 to be
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Z nW plus jWZ j isolated triangles, plus jW@j triangles with each containing a single boundary
vertex from W@. If T 0 contains any component C 6' K3 without boundary vertices, replace it
with FV S(C) isolated triangles. Clearly, G � T 0

2 F since WG plus one vertex from each of
the non-boundary isolated triangles of T 0 is a witness set of k vertices. If H � T 0

2 F then this
contradicts the fact that H �Z 62 F by using a witness set containing WZ , W@ and the interior
witness vertices of H (with respect to H � T 0). Finally, we construct a distinguisher T 2 T k

t

by minimizing T 0 (using the reducing operations of Lemma 18) to satisfy the 5 properties listed
above. (Note that the extension T is created by not eliminating any cycles in the extension T 0.)
2

For the graph family 1{Feedback Vertex Set on boundary size 4, the above testset
consists of only 546 tests. However, for 2{Feedback Vertex Set on boundary size 5, the
above testset contains a whopping set of 14686 tests. As can be seen by the increase in the
number of tests, a more compact feedback vertex set testset would be needed (if possible) before
we attempt to work with boundary sizes larger than 5. The large number of tests (especially
T 2

5
) for the feedback vertex set families indicates why using the testset step to prove t-parses

minimal or nonminimal is the most CPU-intensive part of our obstruction set search (and is
why this is attempted last).

4.3 The k{Feedback Vertex Set obstructions

Our search for the 1{Feedback Vertex Set and 2{Feedback Vertex Set obstructions
is now presented. As mentioned in Section 3, we need some type of lemma that bounds the
search space. The following well-known treewidth bound can be found in [14] along with other
introductory information concerning the minor order and obstruction sets. We provide a proof
in order to suggest how generous the bound is for the k{Feedback Vertex Set obstructions,
which is a very small subset of the (k + 1){Feedback Vertex Set family.

Lemma 26 A graph in k{Feedback Vertex Set has treewidth at most k + 1.

Proof. Let G = (V;E) be a member of k{Feedback Vertex Set and V 0
� V be a set of k

witness vertices such thatG0 = GnV 0 is acyclic. The remaining forestG0 has a tree decomposition
T of width 1. The tree decomposition T 0 consisting of the vertex sets of T = fTxg augmented
as T 0

x = Tx [ V
0 is a tree decomposition for G of width k + 1. 2

Corollary 27 An obstruction for k{Feedback Vertex Set has treewidth at most k + 2.

Proof. Let G be an obstruction and v any vertex of G. By de�nition of being a minor of an
obstruction, G0 = G n fvg is a member of k{Feedback Vertex Set. Since G0 has a tree
decomposition T of width at most k + 1, we can add the vertex v to each vertex set of T yields
a tree decomposition of width at most k + 2 for G. 2

For the graph family 2{Feedback Vertex Set we can derive a stronger statement.

Theorem 28 If G is an obstruction to 2{Feedback Vertex Set then the pathwidth of G is

at most 4.
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u

v

Figure 5: Forbidden substructure within the 2{Pathwidth obstructions.

Proof. For any obstruction G we use the following two properties:

1. For any edge (u; v), G n f(u; v)g is in 2{Feedback Vertex Set by witness vertices x
and y such that fu; vg \ fx; yg = ;.

2. The obstruction G does not contain any vertices of degree 1, and for any vertex u of degree
2 there is an edge between the neighbors of u.

Property 1 implies that there exist two vertices x and y such that G0 = Gnfx; yg has exactly
one cycle. If G0 has pathwidth at most 2 then G has pathwidth at most 4. If G0 has pathwidth
more than 2 then it must contain at least one of the pathwidth 2 obstructions as a minor. In
particular, any such obstruction for 2{Pathwidth must also be a member of 1{Feedback
Edge Set. All of the 20 possible forbidden minors with one cycle, given in [11], have at least
three pendant paths of length 2, i.e., three legs of the spider graph S(K1;3), attached to the
single cycle.

Property 2 is applied as follows. By considering incident edges from vertices x and y to G0, we
know that G must have: (a) three disjoint cycles or (b) one cycle and a disjoint mini-clover (see
Figure 5) as proper minors. But this means for (a) that G is properly above the 2{Feedback
Vertex Set obstruction 3K3 and for (b) Property 1 can not hold for the stem edge (u; v) of
the mini-clover.

Thus for any obstruction G there exists two vertices x and y such that G0 = G n fx; yg has
pathwidth at most 2. This fact implies that G has pathwidth at most 4. 2

Besides the single obstruction K3 for the trivial family 0{Feedback Vertex Set, the
connected obstructions for 1{Feedback Vertex Set and the connected obstructions for 2{
Feedback Vertex Set are shown in Figures 8{9. The two connected obstructions for 1{
FeedbackVertex Set were found in about 3 hours of accumulated CPU time when combining
4 worker processes, a database manager process, and a dispatcher process running concurrently.
Our pathwidth 4 search for 2{Feedback Vertex Set consumed over 40 thousand hours of
CPU time running for about three months in duration while averaging 20 workers (initially with
a collection of 15-30 SUN Sparcs, and later including a few IBM 6000s and two Cray Y-MPs).

Table 2 contains a brief summary of how many proofs our distributive computer system had
to �nd for 2{Feedback Vertex Set (pathwidth 4). The �rst column states various starting
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Table 2: Summary of our 2{Feedback Vertex Set obstruction set computation.

Pathwidth Four Pre�xes Boundaried Minimal Total
for Feedback Vertex Set 2 Obstructions t-parses proofs
[0,1,2,3,4,01,02,0,03,12] 0
[0,1,2,3,4,01,02,0,01,13] 0
[0,1,2,3,4,01,02,03,0,12] 0
[0,1,2,3,4,01,02,03,12,14] 0
[0,1,2,3,4,01,02,03,14,24] 0
[0,1,2,3,4,01,02,03,12,13] 0
[0,1,2,3,4,01,02,03,04,12] 1 15 211
[0,1,2,3,4,01,02,03,0,04] 0
[0,1,2,3,4,01,02,0,01,12] 0 150 2251
[0,1,2,3,4,01,02,0,03,04] 0 233 3271
[0,1,2,3,4,01,02,03,04,0] 10 5177 74611
[0,1,2,3,4,01,02,03,0,01] 16 68634 1013641
[0,1,2,3,4,01,02,0,01,03] 13 153772 2286001
Pre�x = [0,1,2,3,4,01,02,0,01,02]
Pre�x + [03,04,0] 9 105482 1565416
Pre�x + [03,04,12] 10 91976 1359376
Pre�x + [03,04,13] 0 5241 78436
Pre�x + [03,04,34] 0 509 7636
Pre�x + [03,12] 10 35976 532651
Pre�x + [03,13] 0 260 3886
Pre�x + [03,14] 0 45 676
Pre�x + [03,34] 0 41 616
Pre�x + [12] 2 10517 157231
Pre�x + [13] 0 13 151

(or restarting) points in the search tree. Lack of memory and disk space is the main reason for the
separate runs. (Recall our search process of Figure 2; we can independently search throughout
the minimal t-parse space, beginning at various internal nodes.) The second column gives the
number of canonic non-boundaried obstructions that have the given pre�x. The `minimal nodes'
column gives the number of minimal t-parses that we encountered; these are the internal nodes
of our search tree plus any boundaried obstructions. The last column gives the total number of
graphs the system had to check. This total includes those t-parses that were proved minimal or
nonminimal. The missing entries in the table represent places that were fast dead-end runs (i.e.,
small subtrees of the search tree leading only to nonminimal t-parses) and we did not bother
keeping the proofs.

We believe that 2{Feedback Vertex Set may be the only feasible feedback vertex set
family to characterize since there are at least 744 obstructions to 3{Feedback Vertex Set.
In fact this count is a very small percentage since we know of an obstruction with order 15 and
we have only searched through a subset of the graphs with maximum order 10.
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For the two obstruction sets for the \within one/two vertices of acyclic" families, we present
only the connected obstructions since any disconnected obstruction O of the lower ideal k{
Feedback Vertex Set is a union of graphs from

Sk�1
i=0 O(i{Feedback Vertex Set) such

that FV S(O) = k + 1.

Example 29 Since K3 is an obstruction for 0{Feedback Vertex Set, and K4 is an ob-

struction for 1{Feedback Vertex Set, the graph K3[K4 is an obstruction for 2{Feedback
Vertex Set.

Some patterns become apparent in these two sets of obstructions such as the following easily-
proven observation.

Observation 30 For the family k{Feedback Vertex Set, the complete graph Kk+3, the

augmented complete graph A(Kk+2) which has vertices f1; 2; : : : ; k+2g[fvi;j j 1 � i < j � k+2g
and edges

f(i; j) j 1 � i < j � k + 2g [

f(i; vi;j) and (vi;j; j) j 1 � i < j � k + 2g ;

and the augmented cycle A(C2k+1) are obstructions.

A useful property unique to k{Feedback Vertex Set obstructions that does not hold for
the other feedback set families studied in this paper is the following result, which implies that
t-parses with cut-vertices are nonminimal.

Lemma 31 If G is an obstruction to k{Feedback Vertex Set then G has no cut-vertices.

Proof. Suppose v is a cut-vertex. Let C1; C2; : : : ; Cm�2 be the connected components of Gnfvg
and C 0

i = G[V (Ci) [ fvg]. Each C 0
i denotes the part of the graph containing the component Ci,

the vertex v, and the edges between v and Ci.
Since G is an obstruction to k{Feedback Vertex Set we have

m[
i=1

FV S(Ci) = k :

Any feedback vertex set for
Sm
i=1C

0
i is also a feedback vertex set for G, where vertex v may be

repeated in several C 0
i. Thus,

m[
i=1

FV S(C 0
i) � FV S(G) = k + 1 :

This implies that there exists an i such that FV S(C 0
i) = FV S(Ci)+1. Now G0 = (

S
j 6=iCj)[C

0
i

is a proper subgraph of G. But FV S(G0) = k + 1 contradicts G being an obstruction. So G

does not have any cut-vertices. 2
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5 Graphs with Small Feedback Edge Sets

This section �rst focuses on two problem-speci�c areas for computing the k{Feedback Edge

Set obstruction sets using our general method of computing forbidden minors: a direct minimal
test and a complete testset (i.e., steps 1 and 4 of Figure 3). With these developed ingredients
we computed the obstructions for k{Feedback Edge Set for k � 5 (pathwidth at most 4).
This section then describes a family-speci�c algorithm that does not require a pathwidth or
treewidth bound for generating all of the forbidden minors for k{Feedback Edge Set. With
this algorithm we veri�ed that the obstructions for 5{Feedback Edge Set have pathwidth at
most 4, and also computed the connected obstructions for 6{Feedback Edge Set.

5.1 A minimal t-parse algorithm (for FES)

We �rst describe a simple graph-theoretical characterization for the graphs that are within
k edges of acyclic, where k is any non-negative integer. This trivial result also shows that
Problem 3 (i.e., determining the minimum feedback edge set of a graph) has a linear time
decision algorithm.

Theorem 32 A graph G = (V;E) with c components has FES(G) = k if and only if jEj =
jV j � c+ k.

Proof. For k = 0 the result follows from the standard result for characterizing forests. If
FES(G) = k then deleting the k witness edges produces an acyclic graph and thus jEj =
jV j � c + k. Now consider a graph G with jV j � c + k edges for some k > 0. Since G has
more edges than a forest can have, there exists an edge e on a cycle. Let G0 = (V;E n feg).
By induction FES(G0) = k � 1. Adding the edge e to a witness edge set E 0 for G0 shows that
FES(G) = k. 2

Unlike the k{Feedback Vertex Set lower ideals, it is not obvious that the family k{

Feedback Edge Set is a lower ideal in the minor order. However, with the above theorem
one can easily prove this.

Corollary 33 For each k � 0, the family of graphs k{Feedback Edge Set is a lower ideal

in the minor order.

Proof. We show that the three basic minor operations do not increase the number of edges
required to remove all cycles of a graph. An isolated vertex deletion removes both a vertex and
a component at the same time, so k is preserved in the formula jEj = jV j � c + k. For an edge
deletion the number of components can increase by at most one, so with jEj decreasing by one,
the value of k does not increase. For an edge contraction, the number of vertices decreases by
one, the number of edges decrease by at least one, and the number of components stays the
same, so k does not increase. 2

The above corollary allows us to characterize each k{Feedback Edge Set lower ideal in
terms of obstruction sets. We abstractly characterize these below.
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Theorem 34 A connected graph G is an obstruction for k{Feedback Edge Set if and only

if FES(G) = k + 1 and every edge contraction of G removes at least two edges (i.e., the open

neighborhoods of adjacent vertices overlap).

Proof. This follows from the fact that an edge contraction that does not remove at least two
edges is the only basic minor operation that does not decrease the number of edges required to
kill all cycles, for a connected graph with every edge on some cycle. 2

The above theorem gives us a precise means of testing for minimal and nonminimal t-parses
(see step 1 of Section 3). Furthermore, in Section 5.3 below, we present a constructive method
based on this theorem for generating all of the connected obstructions for k{Feedback Edge

Set.

5.2 A complete testset (for FES)

Somewhat surprisingly, a usable testset for each feedback edge set family has already been
presented in Section 4.2. We now prove that the previously given feedback vertex set tests can
also be used here.

Lemma 35 The testset T k
t for the family k{Feedback Vertex Set is also a testset for k{

Feedback Edge Set.

Proof. First observe that

F = k{Feedback Edge Set � k{Feedback Vertex Set

so that the k{Feedback Vertex Set membership restriction for T k
t graphs does not preclude

any important tests (just includes some obsolete tests not in F). Consider a �xed family F
and boundary size t. It su�ces to show that if G 6�F H then there exists a test T 2 T k

t that
distinguishes G and H. Since G and H are not congruent there exists a t-boundaried graph Z

such that, without loss of generality, G � Z 2 F and H � Z 62 F . We now show how to minimize
Z into a T 2 T k

t . Let E be a witness edge set for G � Z 2 F and let EZ = E(Z) n E. The �rst
transformation on Z is to set Z 0 = (Z n EZ) [ (jEZj �K3). Clearly Z

0 is also a distinguisher for
G and H since (1) G � Z 0

2 F by using the edges E n EZ and one edge from each of the new
K3's as a witness set, and (2) H � Z 0

62 F , for otherwise, H � Z would be in F . Notice that Z 0

is a set of trees and isolated triangles. The �nal transformation on Z is to let Z 00 be Z 0 with
all non-boundary leaves deleted and non-boundary subdivided edges contracted to satisfy the
conditions of a member of T k

t . 2

It is interesting to note from the above proof that, in addition to the out-of-family tests,
the isolated triangles in the tests for k{Feedback Edge Set do not contain any boundary
vertices. Thus, the number of graphs in a testset for k{Feedback Edge Set is substantially
smaller than the order of the testset for k{Feedback Vertex Set.

24



5.3 Directly generating the k{Feedback Edge Set obstructions

A consequence of our direct characterization of graphs in k{Feedback Edge Set (recall
Theorem 34) is the following constructive characterization of the minimal forbidden minors.

Lemma 36 A graph G is a minor-order obstruction for some feedback edge family k{Feedback

Edge Set if and only if the edges of G are de�ned by a set of non-identical K3 cliques

f(a1; b1; c1); (a2; b2; c2); : : : ; (am; bm; cm)g :

Proof. Let G = h(a1; b1; c1); (a2; b2; c2); : : : (am; bm; cm)i denote the well-de�ned graph V (G) =
[
m
i=1fai; bi; cig and E(G) = f(u; v) j fu; vg � fai; bi; cig for some 1 � i � mg. Consider k0 =

FES(G). We show that G is an obstruction for k{Feedback Edge Set where k = k0 � 1.
To do this we show that every one-step minor of G is a member of k{Feedback Edge Set.
Since �(G) � 2 there are no isolated vertices to delete. Let e = (u; v) be an edge of G and
G0 = G n feg (edge deletion case). Since G does not contain any cut-edges, G0 has the same
number of components as G. So using Theorem 34 FES(G0) = k. If G0 = G=e (edge contraction
case) then jE(G0)j = jE(G)j � 2, jV (G0)j = jV (G)j � 1, and thus FES(G0) = k. Therefore, G
is an obstruction to k{Feedback Edge Set.

We now show that every obstruction G of k{Feedback Edge Set can be represented by a
set of at most k+1 non-identicalK3 cliques. By Theorem 34 we know that every edge must lie on
someK3 clique. So it is clear thatm < jE(G)j. LetGm = h(a1; b1; c1); (a2; b2; c2); : : : (am; bm; cm)i
be a representation for G such that for each clique (ai; bi; ci), 2 � i � m, at least one of the
three edges (ai; bi), (bi; ci) and (ai; ci) is not present in the graph represented by

Gi�1 = h(a1; b1; c1); (a2; b2; c2); : : : (ai�1; bi�1; ci�1)i :

To complete the proof we show that FES(Gi) > FES(Gi�1) for all i. Using our characterization
theorem of graphs in k{Feedback Edge Set, we can compute the change in FES(Gi) from
FES(Gi�1) by considering the following cases contributed by adding (ai; bi; ci) to Gi�1:

# new vertices # new edges # new components new FES

3 3 +1 +1
2 3 0 +1
1 3 f-1,0g f+1,+2g
1 2 0 +1
0 3 f-2,-1,0g f+1,+2,+3g
0 2 f-1,0g f+1,+2g
0 1 0 +1

For example, if the clique (ai; bi; ci) adds 1 vertex and 2 edges (which is incident to the new
vertex) to the previous Gi�1, the number of components stays the same. Thus in this case by
applying Theorem 34 we see that the minimum size of a feedback edge set must go up by 1. For
all possible cases, the change in the size of the minimum feedback edges set is positive. Thus,
since FES(Gm) = k + 1 we have m � k + 1. 2
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function FindObstructions(integer k)
GraphSet obsts[1].add(K3);
for i from 2 to k + 1

for each G in obst[i� 1] do
Comment: add 0 vertices (1, 2 or 3 edges)

for every triple of vertices (u; v; w) of G do

Graph H = new Graph(G);
H.addTriangle( (u; v; w) );
GraphSet obsts[i].add(H);

Comment: add 1 vertex (2 or 3 edges)

for every pair of vertices (u; v) of G do

Graph H = new Graph(G) [ fxg;
H.addTriangle( (u; v; x) );
GraphSet obsts[i].add(H);

Comment: add 2 vertices (3 edges)

for every vertex u of G do

Graph H = new Graph(G) [ fx; yg;
H.addTriangle( (u; x; y) );
GraphSet obsts[i].add(H);

next G;
next i;
O(F) = fG 2 obst[i] j FES(G) = k + 1 and 1 � i � k + 1g;
end

Figure 6: An algorithm to generate the k{Feedback Edge Set obstructions.
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An explicit simple algorithm for computing all of the connected k{Feedback Edge Set

obstructions is given in Figure 6. For this procedure, we do not need to know the pathwidth or
treewidth of the largest obstruction.

Corollary 37 The algorithm given in Figure 6 computes all the connected obstructions for the

family k{Feedback Edge Set

Proof. We show that for any connected obstruction O we can construct it without adding an
isolated triangles to a previous connected obstruction for k0{Feedback Edge Set, k0 < k.
Let fT1; T2; : : : ; Tmg be a minimum set of covering triangles for O. Consider the graph G with
vertices fT1; T2; : : : ; Tmg and edges f(Ti; Tj) j Ti\Tj 6= ;g. Since O is connected G is connected.
Thus we can construct O without adding isolated triangles by using any breadth-�rst or depth-
�rst spanning tree sequence of G. The proof of Lemma 5.3 gives us the upper bound of k + 1
times through the outer most i loop. 2

5.4 The k{Feedback Edge Set obstructions

Since the family k{Feedback Edge Set is contained in the family k{Feedback Vertex

Set, the maximum treewidth of any obstruction for k{Feedback Edge Set is at most k+2.
Also, the same arguments given in Section 4.3 regarding pathwidth apply to k{Feedback

Edge Set as well.
For the family 0{Feedback Edge Set, it is trivial to show that K3 is the only obstruc-

tion. The connected obstructions for the graph families 1{Feedback Edge Set through
3{Feedback Edge Set are shown in Figures 10, 11 and 12. There are well over 100 con-
nected obstructions for the 4{Feedback Edge Set family. Any disconnected obstruction
for k{Feedback Edge Set is easily determined by combining connected obstructions for j{
Feedback Edge Set, j < k, since FES(G1) + FES(G2) = FES(G1 [G2).

Our constructive method shows that we can obtain all of the obstructions for k{Feedback
Edge Set directly from the sets O(j{Feedback Edge Set), j < k. In fact most of the
obstructions can be obtained from the immediately preceding obstruction set (i.e. with j =
k � 1), by using the following observations.

Observation 38 If G is a connected obstruction for k{Feedback Edge Set then the follow-

ing are all connected obstructions for (k + 1){Feedback Edge Set.

1. G with an added subdivided edge attached to an edge of G.

2. G with an attached K3 on one of the vertices of G.

3. G with an added edge (u; v) when there exists a path of length at least two between u and v

in G n E for each feedback edge set E of k + 1 vertices.

It is easy to see that if an obstruction has a vertex of degree two then it is predictable by
observations 1{2. The fourth (central) 2{Feedback Edge Set obstruction in Figure 11 (wheel
W3) and the last 3{Feedback Edge Set obstruction in Figure 12 (W4) are two examples of
graphs where observation 3 predicts the graph. Those 4{Feedback Edge Set, 5{Feedback
Edge Set, and 6{Feedback Edge Set obstructions without vertices of degree two and cut-
vertices are shown in Figures 13 through 15. The third 4{Feedback Edge Set obstruction
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Table 3: The number of k{Feedback Edge Set obstructions for k � 6.

k-FES # connected with and also
obstructions �(G) > 2 biconnected

1 2 0 0
2 7 1 1
3 27 1 1
4 120 3 3
5 642 8 7
6 3767 24 21

in Figure 13 is not predictable from the 3{Feedback Edge Set obstructions by using any
of the above observations. Here deleting any edge from this obstruction leaves a contractable
edge that does not remove any cycles, that is, all single edge deleted minors are \nonminimal"
(see Theorem 34). This obstruction is easily constructed by 4 vertex triples, as promised by our
direct enumeration algorithm.

Table 3 shows a summary of how many k{Feedback Edge Set obstructions there are for
k � 6. The third column of the table gives the counts for the number of connected obstructions
without vertices of degree 2. The fourth column is obtained from the third by subtracting the
number of remaining obstructions with a cut-vertex. About 20 days of CPU time (using a single
Sparc-20) was used to compute the 6{Feedback Edge Set obstructions.

6 Graphs with Small Hybrid Feedback Sets

In this penultimate section we generalize the two earlier feedback set families where we are
allowed to cover cycles with both vertices and edges. First we need to prove that these hybrid
feedback set families (i,j){Feedback Vertex/Edge Set can be characterized by minors.

Lemma 39 For any two non-negative integers i and j, the graph family (i,j){Feedback Ver-

tex/Edge Set is a lower ideal in the minor order.

Proof. Let G be a member of (i,j){Feedback Vertex/Edge Set with a witness pair Wv

(set of vertices) and We (set of edges) such that any edge in We is not incident to any vertex in
Wv, jWvj � i and jWej � j. Consider a one-step minor G0

�m G. We have G0
nWv �m G nWv.

So G0
n Wv is a member of j{Feedback Edge Set. This implies that G0 is a member of

(i,j){Feedback Vertex/Edge Set. 2

A family congruence for (i,j){Feedback Vertex/Edge Set over boundaried graphs can
be de�ned by testsets that are very similar but not exactly the same to the (i+ j){Feedback

Vertex Set and (i+j){Feedback Edge Set testsets. Consider a test T of T (i+j)
t for (i+j){

Feedback Vertex Set, we need to distinguish between the vertex and edge witnesses. This
can be accomplished by replacing a certain number of isolated K3's in T with the graph K�

4
=

\K4 minus one edge" = \C4 with a chord".
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Figure 7: The characterized (k1,k2){Feedback Vertex/Edge Set families.

Lemma 40 We can modify the testset for (i+j){Feedback Vertex Set to be a �nite testset

for (i,j){Feedback Vertex/Edge Set.

Proof. For F = (i,j){Feedback Vertex/Edge Set, let Z be an extension such that for
two t-parses G and H, G � Z 2 F and H � Z 62 F . We show how to construct a test T from
Z with the structural properties of the (i + j){Feedback Vertex Set tests, except that at
most i isolated K�

4 may be present. Let Wv � V (G �Z) and We � E(G �Z) be a pair of witness
sets such that

(G � Z nWe) nWv 2 F

and jWvj � i and jWej � j. We create T from Z as follows: (1) replace every edge in We \ Z

with an isolated K3, (2) delete Wv from Z and add and isolated K�
4
while preserving boundary

labels, and (3) reduced the resulting trees by the methods of creating a k{Feedback Vertex

Set test (see Section 4.2). The graph G �T is a member of F by the same witness pair (Wv;We).
And the graph H � T is not a member of F or otherwise we could have found a witness pair for
H � Z. 2

6.1 The (1,1){Feedback Vertex/Edge Set obstructions

In Figure 7 we show (by shaded boxes) the 10 families of graphs based on small feedback sets
that we have characterized in this paper. We characterized the hybrid graph family (1,1){
Feedback Vertex/Edge Set by the methods of our search theory of Section 3. To do so, we
needed the following pathwidth bound on the obstructions of (1,1){Feedback Vertex/Edge
Set.

Lemma 41 If G is an obstruction to (1,1){Feedback Vertex/Edge Set then the pathwidth

of G is at most 3.

Proof. The proof is similar to our pathwidth 4 bound for the obstructions of 2{Feedback
Vertex Set. We use the following two properties for any obstruction G:

1. For any edge (u; v), there exists a vertex w 2 V (G) n fu; vg such that G0 = G n fwg is
a member of 2{Feedback Edge Set, G0 is not a member of 1{Feedback Edge Set

and G00 = G0
n fu; vg is a member of 1{Feedback Edge Set.
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2. The obstruction G does not contain any vertices of degree 1 and for any vertex u of degree
2 there is an edge between the neighbors of u.

It su�ces to show that any G0 de�ned in Property 1 has pathwidth at most 2. If it does not, then
G0 must contain, as a minor, one of the 2{Pathwidth obstructions O that is also member of 2{
Feedback Edge Set. In this case O is also one edge deletion away from being in 1{Feedback
Edge Set. We can eliminate all of these possible O's by noting that G created by adding w
to G0 would properly contain either (or both) of (a) the (1,1){Feedback Vertex/Edge Set

obstruction 3 �K3 or (b) the disjoint union of K3 and the forbidden clover of Figure 5. Regarding
case (b) the graph G would fail Property 1 if we designate the the stem edge as edge (u; v). That
is, if w is not u then we need vertex w to cover the disjoint cycle above K3 and need at least
two edges to cover the two cycles above the pedals of the clover. So G0 must have pathwidth at
most 2. Adding vertex w to each set of a width 2 path decomposition of G0 is a width 3 path
decomposition of G. 2

In Figure 16 we show the 23 connected obstructions to the (1,1){Feedback Vertex/Edge
Set family of graphs. There are also three disconnected obstructions: 3�K3, K3[K4, and 2�K

�
4 .

We have not completely classi�ed the next larger family (1,2){Feedback Vertex/Edge

Set. We display a partial list of the connected obstructions with no degree two vertices in
Figure 17. We currently have found 246 connected obstructions. We conjecture that pathwidth
4 bounds the width of the largest obstruction in O((1,2){Feedback Vertex/Edge Set).

7 Conclusion

This paper describes a practical theory for computing minor order obstruction sets. Our general
methods allow for an automated means of proving \Kuratowski-type" theorems whenever a
treewidth or pathwidth bound is known for the largest minimal forbidden minor. To illustrate
our approach we obtain several obstruction sets for graph families that are \within-X-of-acyclic".

We �rst study graphs with small feedback vertex sets, where the variable X, given above, is
read \k-vertices". We present a �nite-index dynamic-program congruence, a complete testset,
and a bound on the width of the obstructions. These ingredients allow us to apply our search
theory and calculate the obstruction sets for k{Feedback Vertex Set, k = 1 and k = 2.

We then consider graphs with small feedback edge sets, where X equals \k-edges". For
these families of graphs we develop (with respect to our general search theory) a direct minimal
congruence result and a complete testset. We also classify the structure of all k{Feedback
Edge Set obstructions, allowing us to feasibly generate all forbidden minors up to k = 6.

As a �nal example we de�ne a new class of graph families by considering X to represent \k1-
vertices-and-k2-edges". We compute the complete obstruction set for the smallest non-trivial
family, (k1=1,k2=1){Feedback Vertex/Edge Set, using a proven testset and a pathwidth
bound.

30



References

[1] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12:308{340, 1991. Also see \extended abstract" in volume
317 of Lecture Notes on Computer Science (1988) 38{51.

[2] Hans L. Bodlaender. A linear time algorithm for �nding tree-decompositions of small
treewidth. In Proceedings of the ACM Symposium on the Theory of Computing, volume 25,
1993.

[3] Kevin Cattell and Michael J. Dinneen. A characterization of graphs with vertex cover
up to �ve. In Vincent Bouchitte and Michel Morvan, editors, Orders, Algorithms and

Applications, ORDAL'94, volume 831 of Lecture Notes on Computer Science, pages 86{99.
Springer-Verlag, July 1994.

[4] Kevin Cattell, Michael J. Dinneen, and Michael R. Fellows. Obstructions to within a few
vertices or edges of acyclic. In Proceedings of the Fourth Workshop on Algorithms and Data

Structures, WADS'95, volume 955 of Lecture Notes on Computer Science, pages 415{427.
Springer-Verlag, August 1995.

[5] Satyan R. Coorg and C. Pandu Rangan. Feedback vertex set on cocomparability graphs.
Networks, 26:101{111, 1995.

[6] Michael J. Dinneen. Bounded Combinatorial Width and Forbidden Substructures. Ph.D.
dissertation, Dept. of Computer Science, University of Victoria, Victoria, B.C., Canada,
December 1995.

[7] Rod Downey and Michael R. Fellows. Parameterized computational feasibility. In P. Clote
and J. Remmel, editors, Feasible Mathematics II, pages 219{244. Birkhauser, 1995. Pro-
ceedings of the 2nd Cornell Workshop on Feasible Mathematics.

[8] Michael R. Fellows and Michael A. Langston. An analogue of the Myhill-Nerode Theo-
rem and its use in computing �nite-basis characterizations. In Proceedings of the IEEE

Symposium on Foundations of Computer Science, volume 30, pages 520{525, 1989.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP -completeness. W. H. Freeman and Company, 1979.

[10] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. In 9th Proceedings

of the ACM Symposium on the Theory of Computing, pages 1{10, 1977.

[11] Nancy G. Kinnersley and Michael A. Langston. Obstruction set isolation for the Gate
Matrix Layout problem. Discrete Applied Mathematics, 54:169{213, 1994.

[12] Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a �nite con-
gruence. In Proceedings of the 19th International Colloquium on Automata, Languages and

Programming, volume 510 of Lecture Notes on Computer Science, pages 533{543. Springer-
Verlag, 1991.

31



[13] Neil Robertson and Paul D. Seymour. Graph Minors { A survey. In Surveys in Combina-

torics, volume 103, pages 153{171. Cambridge University Press, 1985.

[14] Jan van Leeuwen. Handbook of Theoretical Computer Science: A: Algorithms and Com-

plexity Theory. MIT Press / North Holland Publishing Company, Amsterdam, 1990. See
\Graph Algorithms" chapter, pages 527{631.

The Obstruction Sets

K4 A(K3) ' A(C3)

Figure 8: Connected obstructions for 1{Feedback Vertex Set.
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K5

A(C5) A(K4)

Figure 9: Connected obstructions for 2{Feedback Vertex Set.
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Figure 10: Connected obstructions for 1{Feedback Edge Set.

Figure 11: Connected obstructions for 2{Feedback Edge Set.
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Figure 12: Connected obstructions for 3{Feedback Edge Set.
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Figure 13: Biconnected 4{Feedback Edge Set obstructions without degree 2 vertices.

Figure 14: Biconnected 5{Feedback Edge Set obstructions without degree 2 vertices.

36



Figure 15: Biconnected 6{Feedback Edge Set obstructions without degree 2 vertices.
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Figure 16: Connected obstructions for (1,1){Feedback Vertex/Edge Set.
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Figure 17: Known biconnected (1,2){Feedback Vertex/Edge Set obstructions without
degree 2 vertices.
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