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1 Introduction

Effective model theory is an area of logic that analyzes the effective content of the typical notions and
results of model theory and universal algebra. Typical notions in model theory and universal algebra
are languages and structures, theories and models, models and their submodels, automorphisms and
isomorphisms, embeddings and elementary embeddings. In this paper languages, structures, and models
are assumed to be countable.

There are many ways to introduce considerations of effectiveness into the area of model theory or
universal algebra. Here we will briefly explain considerations of effectiveness for theories and their models
on the one hand, and for just structures on the other hand.

Let us begin by considering effectiveness for theories and their models. From the model theoretic
point of view, given a first order theory, one is interested in finding models for the theory with specific
algebraic or model-theoretic properties. In this sense theories are the basic objects in model theory. A
natural way of introducing effectiveness is, therefore, to begin by considering decidable theories, i.e. ones
whose theorems form a decidable (i.e. computable or recursive) set.

Given a decidable complete theory, one can effectively carry out a Henkin type construction and
build a model of the theory. This procedure guarantees that the satisfaction predicate for the model
constructed is decidable. Thus we are led to the following definition.

Definition 1.1 A structure A is decidable if there is a computable enumeration a; of the elements of
A such that Th(A,a;) is decidable.

Just as model theory investigates the class of models of a given theory, effective model theory is
concerned with decidable models of decidable theories. There have been a significant number of results
about decidable models of decidable theories. These results typically discuss questions related to finding
decidable prime, saturated, homogeneous models; omitting or realizing types by decidable models; the
number of decidable models for decidable theories, etc. We refer the reader to [8] and [15] for survey
articles in this area.

If we begin to introduce consideration of effectiveness just for the structures themselves, then we are
essentially in the realm of general effective mathematics. Considerations of effectiveness for structures
have been extensively developed since the early 60’s beginning with Frolich and Shepherdson [5], Rabin
[17], and Malcev [13]. However, it is worth to noting that even in the early 60’s the idea of considering
effectiveness in structures was not new. In the 30’s Kleene and Church considered effectiveness in well-
ordered sets and invented recursive ordinals. In the early 70’s Nerode and his collaborators in the U.
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S., as well as Ershov and his colleagues in Novosibirsk, developed the powerful idea of combining model-
theoretic and algebraic constructions with priority arguments from computability theory. This approach
embodies the technical core of many results in effective model theory.

More recently, there have been many papers devoted to investigating effectiveness in structures. For
example, Cenzer, Nerode and Remmel [1] have been developing the theory of p-time structures. Khous-
sainov and Nerode have begun the development of the theory of automatic structures [11]. These theories
are based, respectively, on computations which can be performed in p-time and by finite automata. We
will not discuss these topics but turn instead to structures in which the basic functions and relations can
be computed by Turing machines.

Definition 1.2 A structure A for a language L is computable if its domain A is a computable subset
of w and its functions and relations are uniformly computable. A structure isomorphic to a computable
structure is called computably presentable, and any such isomorphism is called a computable pre-
sentation.

The requirements of computability are significantly weaker than those for decidability. However, the
definition captures what one normally means by an effective structure or presentation in mathematical
discourse.

Identification of isomorphic structures is typical in model theory and universal algebra or, indeed,
generally in classical mathematics. A typical model-theoretic or algebraic problem about isomorphisms
can often be stated as follows: Find some invariants such that any two structures from the class are
isomorphic if only if they have the same invariants.

Introducing effectiveness considerations into the area, we would like to understand the relationship
between classical invariants and effective invariants; in particular, between isomorphism types and ef-
fective isomorphism types. Thus, while model theory identifies isomorphic structures, effective model
theory is concerned with computable isomorphisms and finding characterizations for structures which
have the same computable isomorphism type. A fundamental concept is therefore that of computable
isomorphism type.

Definition 1.3 Two computable structures A and B are of the same computable isomorphism type
if there is computable isomorphism taking A to B. The dimension of a computable structure A is
the number of its computable isomorphism types.

To what extent computable isomorphism types can differ from classical ones can be seen from the
following result of Goncharov:

Theorem 1.4 ([7]) For each n < w there is a computable structure with computable dimension n.

There has been significant interest in understanding the nature of the structures of dimension 1.
The basic model theoretic notion which motivated this interest is that of w—categoricity. A theory T is
w—categorical if all countable models of T" are isomorphic. A structure A is w—categorical if its theory is
w—categorical. The analogous concept for effective model theory deals only with computable structures
and isomorphisms:

Definition 1.5 A structure A is computably categorical if any two computable structures isomorphic
to A are computably isomorphic.

The result of Nurtazin [16] is one of the first about the nature of computably categorical structures.
His theorem characterizes structures whose decidable presentations form one computable isomorphism

type.

Theorem 1.6 ([16]) For a structure A the following two conditions are equivalent:

1. Any two decidable presentations of A are computably isomorphic.

2. There exists a finite sequence € of constants from A such that (A, ¢) is the prime model of the
theory Th(A,¢) and the set of atoms of this theory is computable.



In the late 70’s Goncharov [6] and Remmel [18] independently gave an algebraic characterization for
Boolean Algebras and Linear Orderings to be computably categorical.

Theorem 1.7 ([6] [18]) 1. A Boolean Algebra is computably categorical if and only if has finitely many
atoms.

2. A linear ordering is computably categorical if and only if the number of pairs of adjacent elements
is finite.

2 Scott Families

Interestingly, all the structures which have been shown to be computably categorical have one common
property. They all have Scott families.

Definition 2.1 A Scott family for a structure A s a
computable sequence ¢o(a@, T1,...,Tng), P1(@T1, ..., Tny),... of I-formulas satisfiable in A, where a
is a fized tuple of elements from A, such that every tuple in A satisfies one these formulas and any two
tuples satisfying the same formula from the sequence can be sent to each other via an automorphism of

A.

The basic idea behind this definition is the following. If a computable structure A has a Scott family
and B is a computable structure isomorphic to A, then we can effectively carry out a back and forth
argument to construct a computable isomorphism from A to 5.

Theorem 2.2 If a structure A has a Scott family, then the structure is computably categorical. More-
over, for any n-tuple (dy,...,d,) the expanded structure (A,dy,...,d,) also has a Scott Family.

Proof. Let ¢o(@,z1,...,%n),$1(a,1,...,Tn,),... be a Scott family for A, where a =
(agy...,am—1). Let A; and Ay be computable presentations of .A. We define a mapping f : A; — As
by stages. We can assume that for each j € {0,...,m — 1}, a; is the element in A; corresponding to the

constant a;. At even stages we define images of elements from A;, at odd stages we define preimages of
elements from As.

Stage 0. Set fl = {(a(1)7a(2))7 sy (a}n—la a?n,—l)}'

Stage 2k. We can suppose that the function for_1 has been defined. Assume that for_1 =
{(a§,ad),...,(al,_1,a%,_1),(b1,c1),...,(bs,cs)} and that fop_; can be extended to an isomorphism of
A to As. Let b be the first number not in the domain of fa,—1. Consider the tuple (by,...,bs,b). Find
an 4 such that ¢;(a,by,...,bs,b) holds in A;. Hence Jx¢;(a,cy,...,cs,z) holds in As. Find the first
¢ € Ay for which ¢;(a,cy,...,cs,c) holds. Extend for_1 by letting for = for—1 J{(b,c)}.

Stage 2k+1. We define for 1 similarly so as to put the least element of As not yet in the range of
fgk into that of f2k+1-

Finally, let f = J,c,, fi- Thus, f is a computable isomorphism.

For the second part of the theorem, we slightly change the original Scott family. Namely, set ¢; =
¢i(@,x1,...,xn,)&3y1 ... Jyn(&;(d; = y;). Then, one can easily check that the sequence g, %1, ... s a
Scott family for the expanded structure (A,ds,...,d,). The theorem is proved.

Corollary 2.3 If a structure A has a Scott family, then any expansion of A by finitely many constants
18 computably categorical. O

At this point we would like to make the following two observations about the effect of expanding
computably categorical structures by finitely many constants. First, as we have mentioned, all the
known examples of computably categorical structures have Scott families. Thus, it is natural to ask
whether there exists a computably categorical structure without a Scott family. By Corollary 2.3, one
possible way to build a such structure is to provide an example of a computably categorical structure
whose expansion by finitely many constants is not computably categorical. Second, as we mentioned,



the notion of w—categoricity is a basic model-theoretic motivation in the investigation of computably
categorical structures. It is an easy consequence of the Ryll-Nardzewski theorem that if a structure A is
w-categorical then so is (A, a), the structure expanded by finitely many constants. It is the analogous
situation in effective model theory that we wish to consider.

Millar [14] proved that a small amount of decidability is enough to guarantee that categoricity is
preserved under such expansions. Informally his theorem states that if a structure A is computably
categorical and we can effectively solve systems of algebraic equations and inequations over this structure,
then computable categoricity is preserved under expansions by a finite number of constants.

Theorem 2.4 ([14]) If a structure A is computably categorical and its existential theory is decidable,
then the expansion of A by finitely many constants is also computably categorical.

Without the assumption of the decidability of the existential diagram, the question (known as Ash-
Goncharov problem) has been open:

Does there exist a computably categorical structure whose expansion by a finite number of constants
is mot computably categorical?

An answer to this question has recently been found:

Theorem 2.5 ([2]) For each natural number n, there exists a computably categorical structure A such
that, for every a € A, the expanded structure (A, a) has dimension n.

An immediate consequence of Corollary 2.3 is now the following result:

Corollary 2.6 There exists a computably categorical structure without a Scott family.

However, based on Corollary 2.3, one could suggest that the reason the structure constructed in
Theorem 2.5 does not have a Scott family is that the structure has an expansion by a finite number of
constants which is not computably categorical. We construct a counterexample to this suggestion in the
next section.

3 Scott Sequences

Our basic result is the following theorem.

Theorem 3.1 There exists a structure without a Scott family such that every expansion of the structure
by a finite number of constants is computably categorical.

The structure required to establish the theorem is constructed by coding certain (uniformly) com-
putably enumerable families of sets of natural numbers.

Definition 3.2 A family S of sets of natural numbers has a one-to-one computable enumeration
if there is a bijection f :w — S such that {(i,x)|x € f(i)} is computably enumerable. We then call f a
(computable) one-to-one enumeration of S.

We wish to consider a preordering on the one-to-one computable enumerations of S that naturally
induces an equivalence relation corresponding to computable isomorphism:

Definition 3.3 A computable enumeration f of S is reducible to g, f < g, if there is a computable
D such that f=g®. If f < g and g < f, then we say that f and g are equivalent.



Note that if f is a one-to-one enumeration of S and f = g®, then ® is a permutation of w and so
f < g. Thus the equivalence classes of one-to-one enumerations are minimal elements in the induced
partial ordering. These are the enumerations that we need to consider to define the family that supplies
the structure required for Theorem 3.1. Informally, computable categoricity corresponds to there being
a single such equivalence class and dimension corresponds to the number of such classes.

Definition 3.4 A computable sequence Dg,D1,... of (canonical indices for) finite sets is a Scott
sequence for a family S if the following properties hold:

1. For each D; there exists exactly one M; € S such that D; C M,;.

2. The set S\ {My, My, ...} is finite.

The reader can easily prove the following:

Theorem 3.5 If S has a Scott sequence, then any two computable enumerations of S are equivalent. O

For any given family S, we want to construct a structure Ag such that Ag has a Scott family if and
only if S has a Scott sequence. Thus, let S be a family of sets and let f be a one-to-one computable
enumeration of S. We assume that each set in S has at least two elements. Based on f, we will construct
a computable structure, indeed a graph, Ay = (w, Py), where Py is a computable binary predicate on w.

Consider a uniformly effective, possibly finite, sequence a;0,a; 1,a;2,... without repetitions such
that, for each i € w, f(i) = {ai0,ai1,0:i2,...}.

For each i € w, we can consider a computable structure g{ = (G, Pl-f ) defined as follows. G; has
an element d; such that for each a; ; the predicate Pif defines a unique cycle C; ; of length a; ; for which
d; € C; ;. In addition, for all j, k the cycles C; ;, and C; ; have only one element in common which is d;.
Thus, we see that for all j # k we have d; € C; i, d; € C; j and (C;; \ {d;}) N(Cix \ {di}) = 0. We call
the element d; a cluster point. Informally, the structure G/ codes the set f(i). The structure (graph)
g{ is computable and satisfies the following properties:

1. For every number ¢, ¢t belongs to f(7) if and only if there exist distinct elements z, ..., z; of the
structure Qif such that the formula

Pl-f(;vo, 1) & ...Pif(a:t,l,xt) &Pif(a:t,xo)

holds in the structure g{ .
2. Any two cycles in g{ have only one element in common.

By the construction of g{ and the computability of f, we can conclude that there exists a computable
sequence A = (A{;, Py), A = (A{, Py), Al = (Ag, Py),... of computable structures such that:

1. For each 7 the structure A'Z is isomorphic to the structure g{ .

2. For each pair i # j, AZf ﬂAJf =0 and w= UzAf

3. The relation Py = |J, P; is computable.

Consider the computable structure A; defined in some canonical way so that A is isomorphic to
(w,Pf). Note that the set of all cluster points of Ay is recursive in every recursive presentation of
Ayg. (We are here using the assumption that every set in the family S has at least two elements.) The
following lemma describes the relationship between S and Ay.

Lemma 3.6 The structure Ay satisfies the following conditions.

1. If g is a one-to-one computable enumeration of S, then Ay is isomorphic to Ag.
2. The structure Ay is rigid, that is it does not have any nontrivial automorphisms.

3. If g is a one-to-one computable enumeration of S, then Ay is computably isomorphic to Ay if and
only if f and g are equivalent.



4. The dimension of the structure Ay is equal to the mazimal number of nonequivalent one-to-one
computable enumerations of S.

5. The structure Ay has a Scott family if and only if S has a Scott sequence.

Proof. To prove 1, first, note that for any pair i, j € w the graphs Qlf and g? are isomorphic if and
only if f(i) = g(j). Hence, since f and g are one-to-one enumerations of S, we can conclude that A; is
isomorphic to A,.

Any automorphism o of Ay must be the identity by the construction of Ay and the fact that f is a
one-to-one mapping. This proves 2.

Suppose that f and g are equivalent. There exists a recursive function ® such that f = g®. Hence
the structure g{ is isomorphic to the structure gg (i) Hence Ay and A, are computably isomorphic. Let
B be a computable presentation of A;. Consider an effective sequence ey, e, €2, ... without repetition
of all cluster points in B. We define a one-to-one computable enumeration fg of S as follows: fg(i) =
{n|e; belongs to a circle of length n}. It follows that B is computably isomorphic to A, if and only if g
is equivalent to fg. This proves 3.

Part 4 follows from the proof of Part 3.

We are left to prove the last part of the lemma. Suppose that S has a Scott sequence Dy, D1, Ds, . .. .
Without lost of generality we can suppose that D; C f(i). We have to prove that A; has a Scott family.
Take an x € Ay. Find a d; which is connected to = via P;. Suppose that the length of a path which
connects x with d; is n. Define the following formula: (x) = [there exists a path of length n which
connects = with a cluster point y such that for each m € D, the element y belongs to a cycle of length
m]. Now for every s-tuple (21,...,%,) let (4, .. »,) be Y(x1)& ... &y (zs). Tt is not hard to check that
the sequence {¢(s,,... 2.)} is a Scott family for Ay.

Now suppose for simplicity that A, has a Scott family

¢O(xla"'71'n0)7¢1(xla"'7xn1)7"'

without parameters. The proof below will show that we do not lose any generality by making this
assumption. Let do,d1,ds ... be an effective sequence of all cluster points from Ay. Let

¢i0(x0)7¢i1 (xl), .

be an effective subsequence of the original sequence such that ¢;, (di) holds for each k € w. Since the
formulas are all existential and the structure is computable, we can effectively find a finite substructure
B; of As such that d; € B; and ¢;, (di) holds in B;. Define

D, = {n|d; belongs to a cricle of length n in substructure 5;}.

Since we have a Scott family for Ay and since the structure Ay is rigid, we can see that the sequence
Dy, Dy, ... is a Scott sequence for family S. O

Corollary 3.7 Any two one-to-one computable enumerations of S are equivalent if and only if Ay
1s computably categorical. O

Now, to prove Theorem 3.1 it suffices, by lemma 3.6, to build a computably enumerable family S of
sets without a Scott sequence any two computable one-to-one enumerations of which are equivalent.

Lemma 3.8 There is a computably enumerable family S of sets with no Scott sequence any two com-
putable one-to-one enumerations of which are equivalent.

In order to build a such family S and its one-to-one enumeration f, we need to satisfy the following
requirements:

D.: F, is not a Scott sequence for .S,
R;: g; = f or g; is not a one-to-one enumeration of S,



where {g,}, is a computable sequence of all potential one-to-one enumerations of a family of sets, and
{F.}. is a computable sequence of all potential Scott sequences for S. These requirements are similar to
the requirements for constructing a computable structure as needed for Theorem 2.5 (see [2]). In fact, to
construct such a family S, we essentially use the ideas from the proof of Theorem 2.5. A detailed proof
of this lemma and similar results will appear in [12].
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