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1 Motivation

Random finite objects have been defined and investigated by means of tools borrowed from computability
theory, so we have a fairly good picture of the interplay between randomness and computability [5] [7] [15].
In contrast, almost nothing has been known about the algebraic nature of random objects. Therefore
the basic question investigated in this paper is the following:

Is it possible to develop an algebraic and computable theoretic approach to investigate randomness in
strings/terms?

Of course, we need to explain what we mean by the algebraic–computable approach. We can attempt
to explain our question in the following informal way:

Is it possible to use the methods, notions, and results of universal algebra and computability theory
to understand the nature of random strings/terms?

In this paper we show that one can employ algebraic and computable theoretic methods and notions,
such as for example congruence relations, free algebra, initial algebra, generators, computably enumerable
sets, immune sets, equations, etc. to understand the nature of randomness in strings/terms. While
Chaitin and Kolmogorov complexities are the notions by means of which randomness and computability
interact with each other, it has not been clear how randomness can be related to (universal) algebra.
The goal of this paper is to show how these three notions – randomness, computability, and (universal)
algebra, can naturally interplay with each other.

We mention that Calude and Chatin have asked questions which are related to understanding alge-
braic nature of randomness [5] [6]. For example, Calude has been interested in introducing and investi-
gating the notion of symmetry and transformations of random objects. Chaitin has been interested in
finding instances of randomness in algebra and geometry.

The organization of the paper is as follows. In the first part of the paper we briefly discuss a few
basic notions and results from universal algebra, theory of abstract data types, computability theory,
complexity theory, and explain the question of Bergstra and Tucker from [2] [3] about specifiability of
algebras.

In the second part, using a fixed point theorem from computability theory, we prove that the set of
random strings (terms) is immune. Though this fact has been known, our proof gives a new and a simple
way of showing noncomputability of random strings (terms). Based on this result, we provide simple,
but interesting algebraic facts about (random) terms. For example, we show that any universal algebra
effectively defined on the set of random terms is locally finite.

In the third and central part of the paper we show that the notion of randomness naturally defines
an infinite algebra. We call this algebra the Algebra of Random Terms (ART). It turns out
that the algebra is finitely generated. Moreover, the word problem for this algebra is computably



         

enumerable. Therefore one can investigate this algebra using methods and notions from universal algebra
and computability theory. We show, for example, that this algebra can not be equationally specified
in the sense of Bergstra-Tucker [1] [2] [3]. To the best of our knowledge, it is the first natural example
which gives a negative answer to the problem of Bergstra-Tucker from [2] [3] on equational specifiability
of abstract date types.

Finally, in the last part of the paper we formulate an open question concerning the ART.
We adopt a commonly used terminology from computability theory [14], universal algebra [8], theory

of abstract data types [1] [2], and algorithmic information theory [5] [6] [7] [15].

2 Basic Notions

Universal Algebra. A functional signature, or equivalently a functional language, is a finite
sequence

Σ = (φl11 , . . . , φ
lm
m , c1, . . . , ck),

where k ≥ 1, and m, k, l1, . . . , lm ∈ ω, and ω is the set of natural numbers. Each ci is called a constant
symbol and each φlii a functional symbol of arity li. We fix this signature till the end of this paper.
A universal algebra, or briefly algebra, of this language is a system

(A, φl11 , . . . , φ
lm
m , c1, . . . , ck),

where A is a nonempty set called the domain of A, each φlii is an operation on domain A of arity li, and
each ci is an element from domain A. Sometimes the operations φlii are called atomic, or equivalently
basic operations, of the algebra A. A subalgebra of A is a subset C ⊂ A together with the basic
operations restricted to C such that C is closed under the operations. If A is an algebra and B is a
subset of the domain of A, then we can consider the smallest subalgebra < B > of A containing B. The
domain of < B > is the intersection of all the domains of subalgebras containing B. The set B is called a
generator of < B >. Note that < B > contains all the constants. We say that A is finitely generated
if it has a finite generator. An important example of a finitely generated algebra is the algebra defined
as follows. The domain of the algebra is GT (Σ) the set of all variable free terms, called ground terms,
of the signature Σ. Each n-ary functional symbol φ ∈ σ naturally defines the n-ary operation, which is
also denoted by φ, on GT (σ) by

the value of φ on (t1, . . . , tn) is φ(t1, . . . , tn).

Thus, we have the algebra
(GT (Σ), φ1, φ2, . . . , φn, c1, . . . , ck).

called the absolutely free algebra. It is clear that this algebra is finitely generated whose generators
are c1, . . . , ck.

A congruence relation on an algebra A is an equivalence relation η on the domain such that any
n-ary basic operation φ of the signature respects η, that is, for all (x1, y1), . . . , (xn, yn) ∈ η we have

(f(x1, . . . , xn), f(y1, . . . , yn)) ∈ η.

This definition allows one to form a new algebra, called the factor algebra of A by η. The elements of
the factor algebra are the equivalence classes under η; the atomic operations of the factor algebra are
naturally induced by the corresponding operations of the underlying algebra A.

Algebraic Specifications. In theoretical computer science a common way of viewing a data type
is that of identifying the data type with a universal algebra [1] [2] [3]. The basic idea in this approach is
to describe a data type by giving names to basic functions determined on the objects of the data type,
and thus form an algebra. In this approach an abstract data type (ADT) is defined as being the
isomorphism class of the data type, in other words, the isomorphism type of the algebra. Informally,
an algebraic specification is a way to describe the abstract data type, or equivalently the algebra,
using formal logical languages. The main idea is to specify the algebra by using its signature and some
of special properties of the algebra. A very natural way to do this is to use different fragments of logical
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formalisms such as for example, equations, conditional equations, existential formulas, etc. We give the
following definition for algebraic specifications.

Definition 2.1 An equation is an expression of the form t1 = t2, where t1, t2 are terms of the func-
tional signature. An algebraic (equational) specification E is a finite set of universally quantified
equations.

An algebra A is specified by E if A is isomorphic to the initial system defined by E. The initial
system can be obtained as follows. Consider the absolutely free algebra of the signature Σ with
generators c1, . . . , ck. Consider the equational theory of E which is

Eq(E) = {t1 = t2|t1, t2 ∈ GT (Σ) and t1 = t2 can be proved from E}.

Thus on the set of all ground terms we have an equivalence relation ηE defined by the equational theory
Eq(E):

ηE = {(t1, t2)|t1 = t2 ∈ Eq(E)}.

One can check that this equivalence relation is a congruence on the absolutely free algebra. Therefore
we can define the factor algebra

A = (T (σ)/ηE , φl11 , . . . , φ
lm
m , c1, . . . , ck)

called the initial system, or equivalently the initial algebra, defined by E. Thus, two elements t1 and
t2 of this algebra are equal if and only if their equality, that is expression t1 = t2, can be proved from E.
This algebra satisfies the following fundamental properties. It is finitely generated by the elements
c1, . . ., ck. Every algebra satisfying the specification E and generated by c1, . . . , ck is a homomorphic
image of A. Thus, one can say that the initial algebra is, in some sense, a universal implementation of
the specification E.

Note that the equality relation on every initial algebra A defined by a specification E is computably
enumerable. Algebras with computably enumerable (computable) equality relations and computable
operations are called computably enumerable (computable) algebras.

It turns out that not every computable algebra can be specified in its own language. For example, in
[3] Bergstra and Tucker proved that the computable algebra (ω, 0, x+ 1, x2) does not have an algebraic
specification in its own langauge, that is, in the language (φ1, φ2, c), where each φi is a unary functional
symbol. However, they provided an algebraic specification for the expanded algebra (ω, 0, x+1, x2, x+
y, x × y). As a more general result, Bergstra and Tucker proved that any computable algebra has a
functional expansion which possesses a finite equational algebraic specification [1]. Therefore Bergstra
and Tucker [2] [3], and independently Goncharov [11] suggested the idea to specify a given algebra by
allowing finite expansions of the initial signature. In other words, they ask the following question:

Can every computably enumerable finitely generated algebra be specified using finite functional expan-
sions of the language Σ?

In this paper we give a natural example of a finitely generated computably enumerable algebra, called
the Algebra of Random Terms, which can not be specified in all possible finite functional expansions.
This answers the above question of Bergstra and Tucker negatively. Kassimov in [10] has already given
a negative answer to the above question using a specific coding of a particular computably enumerable
set. However, to the best of our knowledge, the Algebra of Random Terms is the first natural and simple
example of unspecified algebra.

Notions from Computability Theory. We fix a Gödel enumeration Φ0,Φ1, . . . of all Turing
Machines which define mappings from the set of natural numbers ω into the set GT (Σ) of all ground
terms. We assume that this list of Turing Machines contains also programs of the following two types,

t and t′(t1, . . . , tj−1,Φj , tj+1, . . . , tn),

where t, t1, . . ., tn are ground terms, and t′ is a term containing t1, . . . , tn as subterms. In other words,
we assume that for each ground term t ∈ GT (Σ) there is an i such that the program of Turing machine
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Φi is t and Φi(x) = t for all x ∈ ω. Similarly, we assume that for any term t′(t1, . . . , tj−1, tj , tj+1, . . . , tn)
and any k there is an i such that the program of Turing machine Φi is t′(t1, . . . , tj−1,Φk, tj+1, . . . , tn)
and for any x ∈ ω,

Φi(x) = t′(t1, . . . , ti−1,Φj(0), tj+1, . . . , tn).

In the paper we use the notion of immune set and a fixed point theorem from computability theory. A
set S of ground terms is called immune if S is infinite and does not have infinite computably enumerable
subsets. We will use the following version of the fixed point theorem: For any total computable function
ψ : ω → ω there is an x (fixed point) such that Φx = Φψ(x).

3 Complexity, Randomness, and Immune Sets

Suppose that our finite signature Σ = (φl11 , . . . , φ
lm
m , c1, . . . , ck) contains either two functional unary

symbols or one binary functional symbol and nonempty set of constants. We define the set of ground
terms by induction.

Definition 3.1 The set GT (Σ) of ground terms of the signature Σ is defined as follows:

1. Every constant of Σ is a ground term.

2. If t1, . . . tn are ground terms and φ is a functional symbol of arity n, then φ(t1, . . . , tn) is also a
ground term.

3. These are all ground terms.

To define the notion of random term, we first need the following notion of height for terms.

Definition 3.2 The height h(t) of a ground term t is defined to be the number of functional and
constant symbols appearing in t.

For example, supposing that c is a constant symbol, f and g are functional symbols of arity 2 and 1,
respectively, it is easy to see that the heights of c, f(c, c), g(c), and f(g(c), f(c, c)) are 1, 3, 2, and 6,
respectively1. Note that if Σ contains symbols for only unary functions and only one constant symbol
c, then we can identify each term t = f1(. . . fn(c) . . .) with the string w(t) = f1 . . . fnc. Therefore the
height of t is the length of the corresponding string w(t).

Consider the i-th Turing Machine Φi which defines a partial mapping from ω into the set GT (Σ) of
all ground terms. Each Φi can be thought as a string over a finite alphabet. Therefore one could say
that the size of Φi is its length. However, for technical reasons we would like to be careful and give the
following definition for the size of Φi. If Φi is neither a program of the first type nor the second type,
then the size of Φi is the length of Φi. If Φi is a program of type t , then the size of Φi is the height
h(t) of t. If Φi is

t′(t1, . . . , ti−1,Φj , tj+1, . . . , tn)

then the size of Φi is size(Φj) + h(t′(t1, . . . , ti−1, c, tj+1, . . . , tn))− 1, where c is a constant.

Definition 3.3 If Φi(0) = t, then we say that Φi is a description of t.

Thus, each term t has infinitely many descriptions. Note that by our convention about the list
Φ0,Φ1, . . . of Turing machines, every term t has a description of size h(t) since the program t computes
term t.

Definition 3.4 The Kolmogorov–Chaitin Complexity of t is the size of a minimal description of
t, that is min{size(Φi)|Φi(0) = t}. We denote the Kolmogorov–Chaitin complexity of t by K(t).

1The definition of the height for terms is not a traditional one. It will be clear why we need this type of definition when
we construct the Algebra of Random Terms
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Let f be function from the set GT (Σ) into ω such that for each t ∈ GT (Σ), f(t) = h(t)−m, where
m ∈ ω is a fixed number.

Definition 3.5 We say that a term t is f–random if the Kolmogorov complexity K(t) of t is greater or
equal than f(t), that is K(t) ≥ f(t). When f(t) = h(t) for each t, then f -random term is called simply
a random term.

We denote the set of all f–random terms by RANDf (Σ). If f(t) = h(t), then we simply omit the
index f and write RAND. Now we first show that the set RAND of random terms is an immune set.
Then using immunity of RAND, we derive several algebraic facts about the set of random terms.

Theorem 3.1 The set RAND of all random terms is immune.

Proof. To prove the immunity of the set of random terms, we use the fixed point theorem from
computability theory. Suppose that the set RAND is not immune. Hence there exists an infinite
effective sequence

t0, t1, t2 . . .

of random terms. Thus one can construct an effective sequence

Φi0 ,Φi1 ,Φi2 , . . .

of computable partial functions such that for each m ∈ ω, the Turing Machine Φim is of size h(tm) and
gives a definition to the term tm. Because tm is a random term, note that any Φi of size less than h(tm)
is not a description of tm. Let sm be the size of Φim . Without lost of generality we also can assume that
the effective sequence

s0, s1, s2 . . .

is in strictly increasing order. We define the following function ψ. For any x ∈ ω find the natural
numbers st and st+1 such that the size of Φx is among integers of the half open interval [st, st+1). Define
ψ(x) to be st+1. Clearly ψ is a computable function defined on every x ∈ ω. Thus, by definition of ψ,
we see that Φx 6= Φψ(x) for every x. In other words, the total computable function ψ does not have a
fixed point. This contradicts the fixed point theorem. 2

A very similar but more careful construction can be applied to prove the following slightly more
general result:

Theorem 3.2 The set RANDf of all f–random terms is immune.2

Now our goal is to obtain from this theorem several consequences of algebraic nature. We first are
interested in the question as whether it is possible to find a method of generating random terms. We
give a definition.

Definition 3.6 A generator is a system G = (t1, . . . , tn, F1, . . . Fm), where n,m ∈ ω, t1, . . . , tn are
terms called generating elements, and F1, . . . , Fm are computable functions defined on the set of all
ground terms called generating rules.

Any generator G determines a method of generating terms. We describe the method in the following
stagewise procedure:

Stage 0. At this stage generate the set S0
G which is the set of generating elements {t1, . . . , tn}.

Stage t+1. Suppose that we have defined the set StG. Then

St+1
G = StG

⋃
{Fi(s1, . . . , sm)|i = 1, . . . n, s1, . . . , sm ∈ StG}.

Informally St+1
G is obtained by applying the generating rules to the set StG defined at the previous stage.

Now we can define the set SG to be
⋃
i S

i
g. We say that the generator G generates SG.
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Definition 3.7 The growth function of generator G, denoted by grG, is the function grG : ω → ω such
that grG(i) = card(SiG) for all i ∈ ω.

Proposition 3.1 The growth function of any generator G can be majorized by a primitive recursive
function.

Proof. Indeed, suppose that F1, . . . Fm are all generating rules of G = (t1, . . . , tn, F1, . . . Fm) such
that arity of Fi is qi. Define the following function g: g(0) = n, g(i+ 1) = g(i) + g(i)q1 + . . .+ g(i)qm .
Clearly g is a primitive recursive function majorazing the growth function grG. 2

Definition 3.8 A set S ⊂ GT (Σ) has a generator if for some generator G we have S = SG.

Example. Every infinite computable, or equivalently decidable, subset S ⊂ GT (Σ) has a generator.
Indeed, let t0, t1, . . . be an effective sequence of all terms from S such that h(ti) ≤ h(ti+1), for all i ∈ ω.
Define the following function g: if t 6∈ S, then g(t) = t0; if t = ti, then g(ti) = ti+1.

The next proposition generalizes the above example by showing that computably enumerable subsets
of GT (Σ) are the only ones which have generators.

Proposition 3.2 An infinite subset S of the set GT (Σ) has a generator if and only if S is computably
enumerable.

Proof. First, note that SG is computably enumerable for every generator G. Hence, if S is not
computably enumerable, then S does not have a generator.

Suppose that S is infinite and computably enumerable. There exists an infinite computable subset S′

of S. Let s0, s1, . . . be an effective sequence of all terms from S′ such that h(si) ≤ h(si+1) for all i ∈ ω.
Define the following functions F1 and F2: F1(x) = x if x 6∈ S′; F1(x) = si+1 of x = si. F2(x) = x if

x 6∈ S′; F2(x) = ti of x = si, where t0, t1, . . . is an effective sequence of all elements from S. Therefore,
(s0, F1, F2) is a generator which generates S. 2

Corollary 3.1 RAND (RANDf ) does not have a generator. 2

In fact, a stronger result can be stated about RAND (RANDf ). We need a definition.

Definition 3.9 A set S ⊂ GT (Σ) is locally finite if any subset of S which has a generator is finite.

Thus from the proof of the previous proposition we get the following corollary.

Corollary 3.2 S ⊂ GT (σ) is locally finite if and only if S is immune. Hence RAND (RANDf ) is
locally finite. 2

Thus, the immunity of the set of random terms does not allow one to find a method of generating
random terms. The reader familiar with the basics of universal algebra can easily notice that in order
to develop an algebraic theory for random terms we have tried to use the notions and ideas from the
theory of finitely generated algebras (generator, finitely generated algebra, locally finite algebra, etc.
[8]). However, the last corollary can be interpreted that one can not develop a rich algebraic theory
on the set RANDf unless one is interested in locally finite algebras over random terms or finds some
new ideas for investigating randomness by means of (possibly) infinite algebras. In the next section we
propose another view on the random universe and define an infinite algebra which we call the Algebra
of Random Terms.
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4 Algebra of Random Terms

Consider the set of all ground terms GT (Σ). Since our basic interest is in random terms, we can think
of each random term as an individual unique object while we can think of the set of nonrandom terms
U as an object representing nonrandomness. In other words, we can look at the set of all ground terms
as a domain every object of which is either a random term or the object U obtained by identifying all
nonrandom terms. Now we explain this formally. Consider the following equivalence relation eq(RAND)
on the set of all ground terms:

(t, s) ∈ eq(RAND) iff (t ∈ RAND → t = s)
∨

(t 6∈ RAND → s 6∈ RAND).

It follows we can consider the set whose elements are the equivalence classes of eq(RAND). We call this
set the pseudo-random domain and denote this domain by P -RAND. Thus, we have defined P -RAND
to be the set

{t|t ∈ RAND}
⋃
{U}, where U = {t| t is not random }.

Lemma 4.1 If t is not random, then any term containing t is also not random.

Proof. Since t is not random, there is a description P of t such that the size of P is strictly less than
h(t). Let t′ = t′′(t1, . . . , t, . . . , tn) be a term containg t as a subterm. Consider the following program P ′:

t′′(t1, . . . , P, . . . , tn).

The meaning of this program is as follows: [Begin by constructing the term t′. As soon as the occurrence
of t in t′ is reached apply the description P for the term t]. Thus, since size(P ) < h(t), we have that
the size of the program P ′ is size(P ) + ht′′(t1, . . . , c, . . . , tn) − 1 and less than the height of term t′.
Hence t′ is not random. 2

Definition 4.1 We say that a function φ : GT (Σ)m → GT (Σ) respects the pseudo-
random domain P -RAND if for any pair of m–tuples (t1, . . . , tm), (s1, . . . , sm) the condition
(t1, s1), . . . , (tm, sm) ∈ eq(RANDf ) implies that (φ(t1, . . . , tm), φ(s1, . . . , sm) ∈ eq(RANDf ).

The next lemma shows that any function symbol φ ∈ Σ respects the pseudo-random domain P -
RAND. In terms of universal algebra this means that eq(RAND) is a congruence relation on the
absolutely free algebra

(GT (Σ), φl11 , . . . , φ
lm
m , c1, . . . , ck).

Lemma 4.2 Every functional symbol φ ∈ Σ respects the pseudo-random domain P -RAND.

Proof. Let φ be in Σ of arity m. Let (t1, . . . , tm), (s1, . . . , sm) ∈ GT (Σ)m be such that
(t1, s1), . . . , (tm, sm) ∈ eq(RAND). If each ti is random, then by the definition of eq(RAND), we
have ti = si, and hence (φ(t1, . . . , tm), φ(s1, . . . , sm)) ∈ eq(RAND). Suppose ti is not random. Then
si is also not random. Hence by Lemma 4.1 the terms φ(t1, . . . , tm) and φ(s1, . . . , sm) do not belong to
RAND. It follows that φ respects the pseudo-random domain P -RAND. 2

Definition 4.2 The Algebra of Random Terms (ART ) is the pseudorandom domain together with
all functional and constant symbols from Σ, that is

ART = (P -RAND,φ1, . . . , φm, c1, . . . , ck).

Note that this ART is a correctly defined algebra due to Lemma 4.2. In algebraic terms ART is the
homomorphic image of the free algebra GT (Σ) under homomorphism t→ {s|(t, s) ∈ eq(RAND)}. Now
we can easily prove the following theorem.

Theorem 4.1 The algebra of random terms ART is finitely generated infinite algebra with computably
enumerable equality relation.
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Proof. Indeed, the generators of ART are the equivalence classes containing the constant symbols
c1, . . . ck. The algebra is infinite since the set of random terms is infinite and each eq(RAND)–class
containing a random term is singleton. The equality relation in ART is computably enumerable since
the set of nonrandom terms is computably enumerable. 2

Corollary 4.1 The pseudorandom domain has a generator.

Proof. Indeed, the generator of the domain is

G = (eq(c1), . . . , eq(ck), φ1, . . . , φm),

where eq(x) is the equivalence class containing x under eq(RAND). 2

Thus, we can “generate” the set of random terms. A “procedure of generating” the set of random
terms can be described as follows. Take the generator G = (eq(c1), . . . , eq(ck);φl11 , . . . , φ

lk
k ). Begin by

generating the sets S0
G, S

1
G, S

2
G, . . . not applying the generating rules to nonrandom terms. This procedure

is effective provided that there is an oracle which decides the set of nonrandom terms. Thus informally
one can say that modulo nonrandom universe the set of random terms has a generator.

Now we are ready to prove the theorem about impossibility of specifying the Algebra of Random
Terms. In our proof we use three lemmas. Our first lemma is a known lemma, probably first proved
by Malcev [12], which states a condition sufficient for the decidability of the word problem for initial
algebras. The second lemma is a technical lemma which reduces our study of algebras of finite signature
to algebras with infinitely many unary functions. The proof of the third lemma extends a proof from
[10] of a similar lemma applied to Algebra of Random Terms.

Theorem 4.2 The Algebra of Random Terms ART can not be algebraically specified.

Proof. We need the notion of residually finite algebra for the first lemma. We say that an algebra
A is residually finite if for any two distinct elements a and b of A there is a finite homomorphic image
of A in which the images of a and b are distinct.

Lemma 4.3 If a A is the initial algebra for a finite set of equations E and is residually finite, then the
word problem for A is decidable.

Proof of the Lemma. Let a1, . . . , an be generators of A. Consider an effective sequence A0,A1, . . .
of all finite algebras generated by a1, . . . , an which satisfy E. Since A is an initial algebra each Ai is a
homomorphic image of A. Let x, y ∈ A. Consider the following two procedures.

Procedure 1. Compute all elements in A equal to x.

Procedure 2. For each i check whether the image of x in Ai does not equal to the image of y in Ai.

If x = y in A, then Procedure 1 halts. If x 6= y in A, then there exists an i such that the image of x
will be distinct from the image of y in Ai. Thus, we can check whether x equals to y in A or not. Hence
the word problem in A is decidable. 2

The next rather technical lemma is of a general character. Let f be an atomic operation on A of
arity n. A transition of A is any of the mappings f(a1, . . . , an−1, x), . . ., f(x, a1, . . . , an−1), where
a1, . . . , an−1 are elements of the algebra A.

Lemma 4.4 Let A be an algebra and let η be an equivalence relation on A. The relation η is a congruence
relation of A if and only if any transition of A respects η.
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Proof. It is clear that if η is a congruence relation, then any transition of A respects η. Now suppose
that every transition respects η. Consider any n–tuple of pairs (a1, b1), . . ., (an, bn) from η. Then

(f(a1, a2, . . . , an), f(b1, a2, . . . , an)) ∈ η

and
(f(b1, a2, a3, . . . , an), f(b1, b2, a3, . . . , an)) ∈ η.

Hence (f(a1, a2, . . . , an), f(b1, b2, a3, . . . , an)) ∈ η, etc. It follows by induction and transitivity that
(f(a1, a2, . . . , an), f(b1, b2, . . . , bn)) ∈ η. 2

Our third lemma shows that any expansion of the Algebra of Random Terms is a residually finite
algebra.

Lemma 4.5 Let f1, . . . , fn be functions which respect the pseudorandom domain. Then the expanded
algebra (ART, f1, . . . , fn) is residually finite.

Proof of the Lemma. Consider the expanded algebra

A′ = (ART, f1, . . . , fn).

We can effectively list all the transitions of this expanded algebra. Let F0, F1, . . . be an effective list of
the transitions. Define a new universal algebra called the transition algebra of A′:

Tr(A′) = (P -RAND : F0, F1, F2, . . .).

By the above lemma it suffices to prove that the transition algebra Tr(A′) is residually finite.
Let t1, t2 be two distinct random terms. We will show that there exists a set S with the following

three properties:

1. The set S is finite and contains only random terms.

2. The terms t1 and t2 belong to S.

3. Every transition Fi respects the equivalence relation:

eq(S) = {(x, y)|x, y ∈ GT (Σ) \ S}
⋃
{(x, y)|x = y}.

If a such S exists, then the mapping h : t → {s|(t, s) ∈ eq(S)} will be a homomorphism from ART
to a finite algebra in which h(t1) 6= h(t2).

In order to prove that there exists a set S with the above three properties we need to make several
notes. Take a nonrandom term u ∈ U and any transition Fi. Let S′ be any finite subset of RAND.
If Fi(u) 6∈ S′, then since Fi respects the pseudodomain of random terms the set {t|Fi(t) ∈ S′} is a
subset of RAND. This set is computable, and hence finite since RAND is immune. If Fi(u) ∈ S′,
then Fi(s) = Fi(u) for all s ∈ U (Fi respects the pseudodomain of random terms), and so the set
{t|Fi(t) 6= Fi(u)} is a computable subset of RAND, and hence finite. We also note the following fact:
A transition Fi respects the equivalence relation

eq(S) = {(x, y)|x, y ∈ GT (Σ) \ S}
⋃
{(x, y)|x = y}.

if and only if the following conditions are satisfied:

1. Fi(u) ∈ S if and only if Fi(t′) = Fi(u), for any term t′ 6∈ S.

2. Fi(u) 6∈ S if and only if Fi(t′) 6∈ S for any term t′ 6∈ S.
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Now we show how to construct S in such a way that the mapping

h : t→ {s|(t, s) ∈ eq(S)}

is a homomorphism from ART to a finite algebra in which h(t1) 6= h(t2). Our construction of S is a
stagewise construction, that is at stage j we have a finite set Sj of random terms. We will put S to the
union of all Sjs.

Stage 0. Put S0 = {t1, t2}. Clearly S0 ⊂ RAND.
Stage j+1. Suppose that Sj has been constructed and Sj ⊂ RAND. Consider the transitions

F0, . . . , Fj+1. For each i ≤ j + 1, consider Fi(u).
Case 1. Suppose that Fi(u) 6∈ Sj . In this case set

Sj+1,i = Sj
⋃
{t|Fi(t) ∈ Sj}.

Case 2. Suppose that Fi(u) ∈ Sj . In this case set

Sj+1,i = Sj
⋃
{t|Fi(t) 6= Fi(u)}.

Define Sj+1 to be Sj+1,0

⋃
. . .
⋃
Sj+1,j+1.

Now we can define the set S to be the union of all sets Sj , that is S =
⋃
j Sj .

Now by the previous remarks we see that S is a finite set whose elements are random terms. Therefore
there exists a stage j0 such that S = Sj0 . It is clear that the terms t1 and t2 belong to S. We have to
show that every transition Fi respects the equivalence relation:

eq(S) = {(x, y)|x, y ∈ GT (Σ) \ S}
⋃
{(x, y)|x = y}.

It suffices to prove that if s does not belong to S, then (Fi(u), Fi(s)) ∈ eq(S). Consider any stage
j ≥ j0. Suppose that Fi(u) 6∈ Sj . Then Fi(s) 6∈ Sj , otherwise s ∈ Sj and hence Sj0 6= Sj . Similarly,
if Fj(u) ∈ Sj , then Fj(s) = Fj(u), otherwise s ∈ Sj and hence Sj0 6= Sj . Thus, the homomorphism h
defined by h : t→ {s|(t, s) ∈ eq(S)} maps ART onto a finite algebra. In this finite algebra h(t1) 6= h(t2).
The lemma is proved.

Now it is clear the above three lemmas that the algebra of random terms ART can not be specified.
The theorem is proved.

Finally, we would like to add that similar as to ART one can define the Algebra of f–Random Terms.
This will slightly generalize Theorem 4.1:

Theorem 4.3 The Algebra of f–Random Terms can not be algebraically specified. 2

Open Question and Acknowledgement. We would like to end this paper with the following
question. Instead of considering initial algebras defined by equations, one can consider initial algebras
defined by conditional equations, that is by finite set of formulas of the form

∀x̄(t1(x̄) = s1(x̄)& . . .&tn(x̄) = sn(x̄)→ t(x̄) = s(x̄).

These are logic programs of a functional language. Thus one can define that an algebra A is specified
if the algebra possesses an expansion which is the initial algebra defined by a finite set of conditional
equations. Thus, our question is: Can the Algebra of Random Terms be specified by conditional equa-
tions?. If an answer were positive, then this example would be the first example of an algebra which is
specified by conditional eqations but not specified by equations. On the other hand, if an answer were
negative, then ART would be the first example which could not be specified by conditional equations.
This would give a negative answer to the question of Bergstra and Tucker about specifying any finitely
generated computably enumerable algebra by conditional equations [3].

Finally the author would like to thank Cristian Calude for his interest in this research, careful
reading and helpful suggestions on improvements of the paper. The author also thanks Azat Arslanov
for discussions of the initial parts of this research.
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