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1. Introduction. Recently P. Shor [1] discovered an efficient quantum “polynomial-time algo-
rithm” (length (lg2N)k for some finite k) for factoring large numbers N in the form of a product of
prime factors. This event makes the implementation of more efficient quantum gates (see [2]) an actual
problem of quantum engineering.

The quality of the implementation of the gates is characterized by the energy E = 1
T0

of interaction
between pair of qubits and the damping rate Γ = 1

τ for the coherence of any one qubit. The ratio of
the single qubit coherence decay time τ (“coherence time”) and the time T0, required to perform the
coherent change of state of qbits due to the interaction (“switching time”) should be large for reversible
coherent computations:

τ

T0
>> 1.

The quantum coherence has been observed for tunnel-coupled systems of several quantum dots. The
dominant mechanism destroying coherence at low temperatures is the electron-electron scattering, which
is sensitive to the geometry of devices [3,4,5]. The above ratio for a single quantum dot is approximately
103 at Helium temperatures and could be improved if smaller quantum dots could be constructed.

The superconducting quantum interference devices, constructed as a system of superconducting rings
with Josephson contacts between them are dual to the quantum dots, trapping magnetic flux instead of
electrons, however the loss of coherence in those devices is not properly understood jet (see [6]).

Cirac and Zoller [7] proposed recently a laser-cooled array of Ions in the linear Pauly trap as a device
for quantum computations. The coherence time for this device could be several seconds or even longer,
and the switching time is defined by the optical transitions frequency.Thus the characteristic ratio of
“coherence time” to “switching time” should be large at Helium temperatures. For modern discussion
of other optical gates see [8].

It was shown (see for instance [9]), that only two types of operations -“gates”- are necessary to
perform any quantum computation: the single bit “Rotate Operator” and two-bits “Controlled-Not
Operator”. In this paper we discuss the implementation of quantum gates “Controlled-Not” in the form
of a quasi-molecular chain of atoms or clusters, controlled by some sort of optical excitation. Our analysis
shows, that for proper choice of materials the working temperatures of the proposed device might be
essentially higher, than the working temperatures of devices mentioned above.

The role of one of qubits in our device is played by the inner atomic electrons which are transferred
simultaneously by optical excitation in all atoms of the chain from the ground state into the excited
state, but still remain inside atoms; another qubit is represented by the asymptotic states (scattering
states) of the conductivity electrons in quantum wires attached to the chain. In dependence of the
occupation of inner orbitals the transmission coefficient might be (close to) zero or, to the transmission
coefficient through semiinfinite periodic lattice. These cases correspond to the case of zero conductance
of the device or, respectively, to the good conductance in accordance with Landauer formula [10,11].
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The corresponding ratio is formed by the life-time of the excited state and the inverse optical frequency,
and could vary in a wide range in dependence on the choice of materials.

Strictly speaking the scattering states of conductivity electrons are not representing qubits in proper
sense, since the transmission coefficient through the chain could not be precisely 0 or modulo 1. Nev-
ertheless we can show, that the proper choice of the materials and the parameters of the device makes
them reasonable close to 0 or to the transmission coefficient T∞ for semiinfinite lattice in dependence of
the occupation of atomic orbitals. Due to the unitarity of the complete scattering matrix, the difference
1−|T∞|2 is equal, to the square modulo of the reflection coefficient from the infinite halflattice. Formally
It plays the role of the relative measure of necessary “garbage” which should be stored and used when
performing invertible computations. But in our case the reflection coefficient is an analytic function of
energy, hence it can be restored from the orthogonality condition, in unique way, up to some unimodular
Blashke-factor, which is trivial, if the bound states with negative energies are absent. Thus the nonzero
transmission coefficient contains the complete information of the incoming signal, and nothing is lost in
form of reflected wave, hence the computation act is reversible, though some part of the signal disappears
forever.

The irreversible loss of information appeares when measuring the result of scattering by some classical
device or even by some quantum device on a stochastic background. Then the part of information
contained in the transmitted signal is destroyed and the computation becomes irreversible. More detailed
discussion of comparison of quantum computations and classical computations on stochastic (Markov)
background is contained in the last section 4.

We are discussing here one-electron approximation, assuming, that life-time of the inner cluster
electrons is large enough, hence the occupation of cluster orbitals is changing by resonance laser shining
only. But our model can be used beyond these limits as well, if we consider the corresponding two-
electrons problem, as in [12]. It will be done elsewhere.

2. One-electron scattering by single quantum dot: Soluble model and physical reality.
In this section we describe a soluble model of the simplest quantum “Controlled-not” quantum gate
represented in the form a quasi-molecular cluster attached to some quantum wire by tunnel contacts.
This model can be applied for theoretical analysis of constructions of nanoelectronic devices of narrow-
band semiconductors.

We represent the one-electron Hamiltonian of quantum dot attached to the quantum wire as a
result of perturbation of the orthogonal sum of “internal” and “external” Hamiltonians. The “internal”
Hamiltonian of the electron in a cluster is determined by the occupation of the molecular orbitals

Ag ∼ αe < α1 < α2 < . . . ; Agφ
g
s = αsφ

g
s

Ae ∼ αg < α1 < α2 < . . . ; Aeφ
e
s = αsφ

e
s.

Before the interaction is switched on, we represent the internal Hamiltonian by proper finite-dimensional
operators (diagonal matrices) in each ground and excited states. The “external” Hamiltonian - the free
Hamiltonian of an electron in a wire (“external channel”) - is defined by the Schrödinger-type differential
expression:

lU = − h̄2

2m
d2U0

d2x
,

where the effective electron mass m is determined both by the wire structure and the Fermi level λF
energy near the conductivity band edge.

The quasi-molecular cluster attached to the wire could be represented of course by the equivalent
potential well, separated from the outside of the wire by the potential barriers, simulating the Coulomb
blockade, see [5]. But the analysis of solutions of the corresponding Schrödinger equation is generally
possible either in the quasi-classical limit, which is rather far from realistic physical conditions, or for
properly choosen soluble models. This is a reason why we use here a soluble model based on Operators
Extensions Theory.

We use it here in form of so called zero-range potentials with the inner structure, proposed as an
universal model for certain class of Schrödinger-type spectral problems in [13]. These models supply
us with a wide range of spectrally interesting Hamiltonians and give us a realistic physical picture the
spectrum and dynamics of perturbed systems, when the perturbations satisfy the following condition:
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the de Broghlie wave-length in the nonperturbed system is greater, than typical dimensions δ
of the perturbation considered

δ << λ ≈ 2πh̄√
2mkT

,

where m is the effective mass of electrons at the Fermi level.
In a certain sense this condition is similar to the condition of the slow phase change, formulated for

mesoscopic processes by Altshuler (see [3]).
Our analysis shows, that the condition above holds for constructions of narrow-gap and zero-gap

semiconductors , since for narrow-gap semiconductors the de Broglie wave-length, being inversely pro-
portional to

√
m which is essentially smaller, than the conventional mass of electron.

For the semiconductors presented in the following Table, the electron wavelength is some hundreds of
Angstroms at the room temperatures and thousands of ones at the liquid nitrogen temperature. Creating
relatively “small” clusters, which fulfill the above condition and can be considered as perturbations for
quantum wires of these materials, is already possible using modern technical and technological tools:
electronic lithography, ionic implantation, and selected chemical etching [14].

This allows our device to work at essentially higher temperatures as known world samples of quantum
gates. Our calculations (see Section 3,[15]) are illustrated by the following Table.

Semiconductor
Eg (300 K)

eV
m∗e
m0

m∗p
m0

εsc
λ (300 K)

Å
λ (77 K)

Å
GaAs 1.430 0.070 0.40 12.5 290 580
InAs 0.360 0.022 0.40 15.0 515 1020
CdxHg1−xTe
x = 0.20 0.150 0.0130 0.45 17.0 670 1320
x = 0.25 0.220 0.0165 0.45 16.4 590 1160
x = 0.27 0.250 0.0180 0.45 16.2 570 1125
x = 0.28 0.260 0.0190 0.45 16.1 550 1085
x = 0.29 0.275 0.0200 0.45 16.0 540 1065
x = 0.30 0.290 0.0210 0.45 16.0 525 1035
x = 0.31 0.300 0.0220 0.45 15.9 515 1015
x = 0.32 0.315 0.0230 0.45 15.8 500 985
x = 0.44 0.510 0.0550 0.45 15.2 325 640
HgTe -0.117 0.012 0.50 21.0 700 1380
Zn0.15Hg0.85Te

1 0.190 0.015 0.45 17.0 620 1220

Thus the properties of the mentioned semiconductive materials allow to realize the low-dimensional
quantum system for temperatures higher than the nitrogen boiling temperature. The characteristic di-
mensions of such structures are available for the theoretical analysis of the construction of devices using
the developed zero-range potential techniques and their fabrication by modern technology methods.

At the actual moment the basic problem requiring the experimental solution remains the problem
of the influence of charge heterogeneities near the low-dimensional system. The possibility to achieve
low densities of the charge heterogeneity was shown in our experiments for the Ge surface at the room
temperature [18].

The proposed model can give us realistic spectral properties of objects under consideration, but
of course not the local differential properties of the solutions of the corresponding Schrödinger equation,
hence it is essentially “spectral modelling”. On the other hand, our models help producing a lot of explicit
formulas for spectral characteristics such as scattering matrices and resonances, both in asymptotically
homogeneous and periodic cases.

According to the general scheme of the zero-range potentials with the internal structure, developed
in [13], the connection of the model cluster determined by matrix A and the wire is described by the

1In series of triple compounds A2B6, this material is more prospective in technology, as its properties are considerably
more stable in comparison with CdxHg1−xTe.
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boundary conditions, which connect the value of the external component of the wave function and its
derivative jump [

dU0

dx

]
(0) =

dU0

dx
(+0)− dU0

dx
(−0)

at the point 0 of connection of both channels (the cluster and the wire):{
−U0(0),

[
dU0

dx

]
(0)

}
to the boundary values ξ± of the internal component U1 determined by the choice of the corresponding
deficiency vector h in the internal (cluster) “channel”:

U1 = U10 +
A

A− iI ξ+ · h+
1

A− iI ξ− · h

(A− iI)U10 ⊥ h.
This boundary condition is given by some Hermitian matrix {γik}, which is a parameter of the model
as well: (

−U0(0)
ξ−

)
=

(
γ00 γ01

γ10 γ11

) ( [
dU0

dx

]
(0)

ξ+

)
.

The above boundary condition describes the electron’s transition from the internal (cluster) channel to
the external one L2(R) (the wire) and backwards. The operator lA which is defined on the linear set of
elements (U0, U1), which satisfy the above boundary condition

lA

(
U0

U1

)
=

(
− h̄2

2m
d2
U0

dx2

AU10 − 1
A−iI ξ+h+ A

A−iI ξ−h

)

proves to be self-adjoint. It will serve as a Hamiltonian of a single electron in a wire with a cluster
attached to it. This Hamiltonian can be used to describe the electron dynamics defined by the solutions
of the corresponding nonstationary Schrödinger equation:

1
i

d
dt

(
U0

U1

)
= lA

(
U0

U1

)
.

The constructed model is obviously soluble: the eigenfunctions of the Hamiltonian can be given in an
explicit form

Ψλ =
(

Ψ0
λ

Ψ1
λ

)
.

In particular, for the scattered waves we have:

Ψ0
λ =

{
eikx +Re−ikx, x > 0,
T eikx, x < 0; λ = k2

R = T − 1,

T (λ) =
ikh̄2

m [γ00 − |γ01|2(γ11 −Q(λ))−1]
ikh̄2

m [γ00 − |γ01|2(γ11 −Q(λ))−1]− 1
,

Ψ1
λ =

A+ iI

A− λI h(Q(λ)− γ11)−1 γ10

m
h̄2(1− T ).

Here Q(λ) ≡ 〈 1+λAA−λI h, h〉 is the rational function which has a positive imaginary part in the upper half-

plane (and the negative one in the lower one). If the parameters of the model are connected by the
condition

γ11 + 〈Ah, h〉 = 0,
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then the transmission coefficient T has the physically correct high energy asymptotic which is typical
for the Schrödinger equation with smooth potentials:

T (k) = 1 + o(1/k).

The conductivity of the wire with the model cluster attached to it is given by the Landauer formula [10,
11]:

σ(λ) =
e2

h̄

|T |2
1− |T |2 .

Thus the conductivity vanishes when T (λ) = 0. In particular, neglecting the analog of “chemical shifts”
γ00, γ11 caused by the joining of the cluster to the quantum wire we get:

T (λ) =
ikh̄2

m |γ01|2
ikh̄2

m |γ01|2 +Q(λ)
, λ = k2.

We see that the conductivity of the device considered vanishes for electrons having the energies equal to
ones of the non-occupied orbitals corresponding energy levels αs of the attached cluster. In particular, if
the cluster is in the ground state, A = Ag, and the non-occupied energy levels are αe, α1, α2, . . . , then
the transmission coefficient vanishes for electrons with the corresponding energies. If it is in the excited
state A = Ae, then the nonoccupied levels are equal to . αg α1 α2, hence the transmission coefficient
vanishes for electrons having these energies.

If the Fermi level λF in the wire coincides with αe, then in the first case the device conductivity
vanishes at cryogen temperature, and it is positive in the second case:

σg = 0,

σe =
e2

h̄2

|Te(λF )|2
|Te(λF )|2 − 1

,

where Te is the transmission coefficient corresponding to the excited cluster.
The switching on and off of this device can be managed by any type of optical excitations. When

excited by the resonance light, the cluster electron is transferred from the level αg to the level αe and is
supposed to remain there until the next exposition with resonant light induces the inverse transition.

At higher temperature the considerable part of conductivity electrons has the energy λ that differs
from λF , so the real conductivity should be calculated as a mean value of conductivity σ(λ) with Fermi
distribution ρ(λ, t) as follows: ∫

σ(λ)dρ(λ, t) = σ̄(t).

Obviously the operating of the described gate is not efficient for higher temperatures, since the value of
the mean conductivity could be far from zero in ground state. But being joined in a chain, these gates
seem to be essentially more efficient even for higher temperatures.

3. Soluble model for optically simulated metal-dielectric transition in infinite quasioned-
imensional lattice. In this section we consider the infinite chain of model molecular clusters, similar
to one discussed above. We assume, that the clusters are chosen such that in the ground state all of
them have the same Hamiltonians

As = Asg = Ag

represented by the finite-dimensional operators (diagonal matrices) in the spaces Es = E. Further we
assume that the optical excitation with the frequency ν is in resonance with odd clusters only, hence
only clusters with the odd numbers s = 2l + 1 get excited,

α2l+1
e − α2l+1

g = 2πh̄ ν,

and all excited clusters are equivalent, A2l+1
e = A1

e. Thus, if in the ground state the chain of clusters
has the period L, then in the excited state it has the period 2L. At last we assume that the deficiency

5



       

elements h = hs and the self-adjoint boundary conditions describing the connection of neighboring
clusters are the same for all clusters of the chain:

ξs− = γξs−1
+ + γ̄ξs+1

+ .

We consider a selfadjoint operator Aγ defined in the space E = l2(E) of all infinite sequences Us of
E-vectors:

U = {Us}s=∞s=−∞ ⊂ E =
∑
⊕Es.

Writing down each component in a form parametrised by the boundary values, as it was done in the
previous section

Us = US0 +
As

As − iI ξ
s
+h+

1
As − iI ξ

s
−h

we define the operator by the formula

(AγU)(s) = AsUs0 −
1

As − iI ξ
s
+h+

As

As − iI ξ
s
−h

and the proper translation invariant self-adjoint boundary conditions imposed onto the boundary values
ξs±:

γξs−1
+ + γ̄ξs+1

+ = ξs−.

Then the operator Agγ is the one-particle lattice model with the period L, and the operator Aeγ is the
lattice model with the period 2L. In the generic case the spectrum of the operator Agγ consists of the
dimAg bands which are determined by the solutions of the algebraic equation:

Qg(λ) = 〈I + λAg
Ag − λI

h, h〉 = γθ−1 − γ̄θ,

with the uni-modular unknown function θ = eiκ, κ playing the role of quasimomentum exponential eiκ,
and

U = {Us} =
{
U0θs

}
generally playing the role of Bloch-type solutions of the corresponding homogeneous equation and the
role of eigenfunctions of Agγ on the corresponding spectral bands. The condition of existence of nontrivial
bounded solutions of the last algebraic equation takes the form

|Qg| ≡
∣∣∣∣〈I + λAg
Ag − λI

h, h〉
∣∣∣∣ ≤ 2|γ|.

The spectrum of the operator Agγ consists of spectral bands, constituted by the (real) values of the energy
λ, which satisfy the last condition. Two Bloch eigenfunctions correspond to each value λ from the band:

Ψs
± =

Ag + iI

Ag − λI Lθ
±s, s = 0, t, . . . .

According to the conventional quantum-mechanical interpretation the electrons in the Bloch states,
corresponding to spectral bands of nonexcited chain are not “localized” but are “moving” in the infinite
one-dimensional conductor formed by the periodic chain of clusters in the ground state. Under the
values λ, lying outside of the spectrum |θ(λ)| < 1 or |θ(λ)| > 1, the corresponding Bloch solutions Ψ±
are exponentially decreasing in one direction and exponentially growing in the opposite one so they
can’t be eigenfunctions of the continuous spectrum. In real lattices the electrons with the corresponding
energies are either absent or localized on impurities in the proper bound states,which are combined of
the decreasing branches of the corresponding Bloch solutions.

If each odd cluster is excited, and each even one is in the ground state

A2l = Ag,

A2l+1 = Ae,

then the corresponding Hamiltonian Aeγ is also self-adjoint one, and its spectrum also has a band struc-
ture. However, the condition of belonging λ to the spectrum of the 2L-periodic lattice is described
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technically in other form. Now the role of the period of the unperturbed lattice operator is played by
the orthogonal sum Ag ⊕Ae in E ⊕E, and the Bloch-vector of the perturbed lattice with the boundary
conditions switched on is represented as a sequence of two-component E-vectors

Ψ = {θn( v0
v1

)}.

Denoting by A∗e,g the formal expression for the operator’s action on elements of E, represented as in the
first section,

U1 = U10 +
A

A− iI ξ+ · h+
1

A− iI ξ− · h,

(A− iI)U10 ⊥ h,

we write down the corresponding homogeneous equation for the boundary values ξ+, ξ− = Q(λ)ξ+ of
Bloch vectors of the exited chain

Ψ± =

{
Ag+iI
Ag−λI ξ

g
+

Ae+iI
Ae−λI ξ

e
+

θ±l

}l=+∞

l=−∞

.

in the following form [
Qg(λ) −γ̄ − γθ̄
−γ − γ̄θ Qe(λ)

] (
ξg
ξe

)
+

= 0,[
Qg(λ) −γ̄ − γθ
−γ − γ̄θ̄ Qe(λ)

] (
ξg
ξe

)
−

= 0.

In particular, from the second equation we have the following condition for the corresponding quasi-
momentum exponential θ = eiκ

Qg(λ)Qe(λ) = 4|γ|2cos2(ϕ+
κ

2
).

Here ϕ = argγ. Thus cos2(ϕ+ κ
2 ) = ±

√
QgQe
2|γ| , and

ξ−g =
1√
|Qg|

, ξ−e =
eiκ√
|Qe|

.

It follows from here, that the spectral bands of the excited lattice coincide with the intervals of real axis,
where 0 ≤ Qg(λ)Qe(λ) ≤ 4|γ|2. Another important fact concerning the boundary values ξeg,e of Bloch
vectors will be used in the following section for estimates of the transmission coefficient:

The linear combination of the boundary values with pure imaginary coefficient k:

ξ−g + ikγθξ−e

does not have roots on the real axis λ.
Assuming that the spectral properties of clusters in the ground and excited states are the same as

in the previous section we see that the functions Qg, Qe are essentially distinguished by the position of
one pole only:

1 + α2
e

αe − λ
|〈h, φe〉|2 ←→

1 + α2
g

αg − λ
|〈h, φg〉|2.

This leads to the partition of the lower spectral band of the L-periodic chain of clusters Ag into two
subbands corresponding to the 2L-periodic chain of Ag, Ae-clusters. The arising lacuna (spectral gap) δ
is found from the condition:

Qe(λ)Qg(λ) < 0,

and shifts λ±e → λ± of the upper and lower bounds are determined from the equation:

Qe(λ)Qg(λ) = 4|γ|2.
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If the residues (1+α2)|〈h, φe〉|2 at the poles αe αg, which correspond to the ground and excited states of
the clusters, are approximately equal, then the dispersion curves λ = λ(κ) corresponding to the excited
and the nonexcited chain are approximately parallel and hence the lacuna (spectral gap) width |δ| proves
to be approximately equal to the distance between the ground and exited energy levels of odd clusters:

δ ∼ αe − αg.

The described chain exhibits a remarkable type of behavior under resonance optical excitations, which
can be interpreted as a “Simulated Mott-Pejerls transition”. If the Fermi level λF is situated at the center
of the gap δ (thus inside the conductivity band of the chain in ground state ), then the chain in the
ground state is equivalent to one-dimensional metallic conductor. On the other hand the Fermi level
is situated inside the gap δ of the exited chain, hence the exited chain is a dielectric one for electrons
on Fermi level λf . This is exactly Mott-Pejerls-type behavior, see [19]. It is important, that the chain
remains dielectric within some interval of energies near λf , defined by the width of the gap |δ|, hence
the described chain can plays the role of the gate in some interval of temperatures 0 ≤ T ≤ |δ|2k . Under
conditions above this interval is approximately determined by the distance between the levels αg − αe.
In section 2 the advantages of narrow-band semiconductors were discussed for creating quantum wires
with large values of de Broghlie wave length. Here we underline another essential advantage of the
the narrow-gap semiconductors with small values m : they manifest a high resolution of the levels in
quantum well which can exceed kT already in the range of room temperatures. It means, that the
distance between energy-levels of cluster orbitals is large , and thus, according to observation above, the
critical temperature |δ|2k may be significantly higher than the helium temperature or even higher, then
the nitrogen one.

4. Scattering by finite chain of clusters. The quantum gate can’t be technologically implemented
in the form of infinite cluster chain. We consider now the finite chain of clusters length N L = 2n L
inserted into a quantum wire. Assuming that the clusters of the chain possess properties described in the
previous section, we solve the scattering problem for exited chain and for the chain in ground state. The
corresponding transmission coefficient proves to be exponentially small for large N outside the spectral
bands of the exited infinite chain, but is close to the transmission coefficient “through the semi-infinite
chain” in the ground state. Practically it means that the finite chain inserted in the quantum wire can
serve as a quantum gate under certain conditions on the parameters of the clusters and the chain.

We construct the model Hamiltonian of a single electron on the quantum wire with the inserted finite
lattice by means of extension theory methods of two components: the free Hamiltonian on the wire
and lattice Hamiltonian on the inserted periodic chain with proper boundary conditions at the points of
contacts: 

0 γ̄ 0 0 ... ... ... 0 0 0
γ 0 γ̄ 0 0 ... ... ... 0 0
0 γ 0 γ̄ 0... ... ... ... 0 0
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... γ 0 γ̄ 0 0
... ... ... ... ... ... γ 0 γ̄ 0
... ... ... ... ... ... ... γ 0 γ̄
... ... ... ... ... ... ... ... γ 0





u′(0)
ξ0g
ξ0e
ξ1g
...
...
ξn−1
e

ξng
ξne

−u′(NL)


=



u(0)
Qgξ

0
g

Qeξ
0
e

Qgξ
1
g

...

...
Qeξ

n−1
e

Qgξ
n
g

Qeξ
n
e

u(NL)


.

The scattered waves are combined of the solutions of the stationary Schrödinger equation on the quantum
wire

Teikx, −∞ < x ≤ 0,
eikx +Re−ikx, N L ≤ x <∞,

and Bloch solutions on the inserted lattice 0 ≤ l ≤ N :

Ψ = αΨ+ + βΨ−.
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A straightforward calculation gives us the connection between α and β:

β

α
= −

θ−1ξ+e − ikγξ+g
θξ + g− − ikγξ−g

,

and the explicit expression for the transmission coefficient. Let us denote

∆+, ≡
θξ+g + ikγξ+e

θ−1ξ+e − ikγξ+g
, ∆− ≡

θ−1ξ−g + ikγξ−e

θξ−e − ikγξ−g
.

Then

T =
−2ikγeiLNk

θξ−e − ikγe−g
ξ+g ξ

−
e θ − ξ−g ξ+e θ−1

θn∆+ − θ−n∆−
.

Due to the statement from the previous section the coefficient in front of θn in the denominator does
not have real zeroes, hence the transmission coefficient has the following asymptotic on spectral gaps of
the exited chain for large N :

T ≈ 2ik
γ̄

γ

eikLNθn

θ−1ξ−g + ikγξ−g
,

so it is exponentially small inside the spectral gaps of the exited chain.
On the other hand, the similar calculation of the reflection coefficient RN of the chain in the ground

state gives

RNg = e2ikLN
θN∆1 − θ−N∆2

θN∆3 − θ−N∆4
,

where

∆1 ≡ Q+ik|γ|2−θ−1γ
Q−ik|γ|2−θγ̄ ,

∆2 ≡ Q+ik|γ|2−θγ
Q−ik|γ|2−θ−1γ̄ ,

∆3 ≡ Q−ik|γ|2−θ−1γ
Q−ik|γ|2−θγ̄ ,

∆4 ≡ Q−ik|γ|2−θγ
Q−ik|γ|2−θ−1γ̄ .

Note that |∆1,2| = 1, hence the reflection coefficient corresponding to the inserted into quantum
wire finite chain of N equivalent non-excited clusters has exactly N roots on each spectral band of the
corresponding infinite lattice. Due to the unitarity of the complete scattering matrix it means that the
corresponding transition coefficient Tg is modulo one at N spectral points on each spectral band of the
corresponding infinite lattice.

The Reflection Coefficient RNg (k) is a contracting analytic function on the lower halfplane of momen-
tum k. It can be shown, that on every compact domain of it it is converging uniformly to the reflection
coefficient R∞g , corresponding to the semi-infinite lattice. ¿From the observation above follows, that this
convergence does not take place on real axis of momentum,in particular on spectral bands in the com-
plex plane λ of energy. Nevertheless for any problem for the corresponding nonstationary Schrödinger
equation with smooth initial data given the in form of incoming waves in quantum wire one can use the
fact, that both reflection coefficients are close “in medium” for large N :

RNg (k) ≈ R∞g .

Thus the measure of “formal garbage” produced by any scattering act by finite chain is limited by
the corresponding reflection coefficient of the semi-infinite lattice. But similarly to the the situation
described in the section 2 we see that the information on the reflected waves is contained actually in the
transmitted waves, so it is never lost, it is “ potentially observable”.

The real garbage in a single act of computation is caused by the measurement of the scattering state,
i.e. by projection of the state onto the states of measuring device, or by averaging them over stochas-
tic states of the random background. The loss of this garbage is unrecoverable. The corresponding
information is irreversibly lost which makes the computation irreversible. In [18] efficient probabilistic
algorithms for classical computations are discussed. Similarly to the discussed quantum computations,
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these algorithms are “polynomial-time algorithms”. Professor C. Calude formulated the following ques-
tion: Are there any ‘typical features‘ of quantum computations which make them different, and more
efficient, than classical probabilistic computations? Our model permits to compare the work of the de-
scribed quantum gates with the corresponding classical gates as an element of classical circuit acting in
frames of a “random” algorithm. Really, the single act of quantum computation consists in opening or
closing the quantum gate. Assuming that the life-time of inner cluster electrons on the excited level is
much longer than typical time-intervals of the process under consideration, we see that the the quan-
tum evolution of the conductivity electron is unitary, and the computation is invertible, unless we do
not project the result onto the states of the measuring device. The inversibility of the computation is
produced by the act of measurement only.

If the constructed self-adjoint operator is positive, we can consider it as a generator of evolution of the
transition probabilities of some Markov process. Then the relevant parabolic equation is interpreted as a
Fokker-Plank equation for transition probabilities. The corresponding evolution is contracting, hence the
conservation law is absent, and the garbage, produced by the process, is killed each moment in the course
of evolution, resulting in the global irreversibility of the process. So the important difference between
the quantum computations and similar probabilistic algorithms is the moment when the unrecoverable
garbage is produced, which corresponds to the irreversible loss of information. For classical computations
it is produced in course of evolution, and for quantum ones it is produced just in the last moment. The
“potentially observable garbage”, caused by outgoing waves in quantum process does not destroy the
reversibility of the process of quantum computations, though these waves remove some part of wave-
packet to infinity. Possibly this difference can help defining the proper domain of applications of both
computational techniques.

The implementation of the construction of quantum gates described in section 4 and other construc-
tions based on simulated Mott-Pejerls transitions (see [20]) require solving numerous difficult physical
and technological problems such as the choice of proper quasi-molecular clusters and their location in-
side the isolating medium, the information output/input from the macroscopic level, the choice of the
proper optical window for each type of gates etc. Possibly, the most prospective constructions of such
kind may be created as polymers or biomolecules. The general advantage of the Mott-Pejerls gates is
higher stability of their characteristics and a relatively weak dependence of their working regimes on
temperature.
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