

CDMTCS
Research
Report
Series

Program-Size Complexity
Computes the Halting
Problem

G. J. Chaitin, A. Arslanov,
C. Calude
IBM Research Division, New York, USA,
University of Auckland, New Zealand

CDMTCS-008
September 1995

Centre for Discrete Mathematics and
Theoretical Computer Science

PROGRAM-SIZE COMPLEXITY

COMPUTES THE HALTING PROBLEM

Solutions by G. J. Chaitin1, A. Arslanov2 and C. Calude3

Can the halting problem be solved if one could compute program-size complexity?4 5

The answer is yes and here are two different proofs.

1. Solution by G. J. Chaitin (26 July 1995)6

LEMMA.7 If an n-bit program p halts, then the time t it takes to halt satisfies H(t) ≤ n + c. So if
p has run for time T without halting, and T has the property that t ≥ T =⇒ H(t) > n+ c, then p will
never halt.

Consider the r.e. set of all true upper bounds on H: the set of all true upper bounds {H(x) ≤ k}
is recursively enumerable. Imagine enumerating this set, and keep track of the time. Assuming that H
is computable, compute H(x) for each n-bit string x. Then enumerate {H(x) ≤ k} until we get the
best possible upper bound on H(x) for all n-bit strings x. Let β(n) be defined to be the time it takes
to enumerate enough of the set of all true upper bounds on program-size complexity until one obtains
the correct value of H(x) for all n-bit strings x. If one is given n and β(n) or any number greater
than β(n), one can use this to determine an n-bit bit string xmax with maximum possible complexity
H(xmax) = n+H(n) +O(1). Thus any number k ≥ β(n) has

n+H(n)− c′ < H(xmax) ≤ H(k) +H(n) + c′′

and
H(k) > n− c′ − c′′.

Thus we can use β(n), which is computable from H, with the LEMMA to solve the halting problem as
follows: an n-bit program p halts iff it halts before time β(n+ c+ c′ + c′′).

2. Solution by Asat Arslanov and Cristian Calude (27 July 1995)8

Let A∗ be the set of strings over the alphabet A, and let p(x) be the place of x in A∗ ordered quasi-
lexicographically. Fix an acceptable gödelization (ϕx)x∈A∗ of all partial recursive functions from strings
to strings, and let Wx be the domain of (ϕx). Let (Cx)x∈A∗ be an enumeration of all Chaitin computers
(partial recursive string functions with prefix-free domains), U(0p(x)1y) = Cx(y) be a fixed universal
Chaitin computer, and H its complexity.

We shall use the following completeness criterion (due to M. Arslanov):9

an recursively enumerable set X is Turing equivalent to the halting problem iff there is a
Turing computable in X function f without fixed-points, i.e. Wx 6= Wf(x), for all x,

1IBM Research Division, P. O. Box 704, Yorktown Heights, NY 10598, USA, chaitin @ watson.ibm.com.
2Computer Science Department, The University of Auckland, Private Bag 92019, Auckland, New Zealand,

asat@cs.auckland.ac.nz.
3Computer Science Department, The University of Auckland, Private Bag 92019, Auckland, New Zealand,

cristian@cs.auckland.ac.nz.
4The problem was discussed during the Summer School Chaitin Complexity and Applications held in the Romanian

city Mangalia, at the Black Sea, in the period 26 June – 7 July 1995.
5For basic algorithmic information theory see G. J. Chaitin, Algorithmic Information Theory, Cambridge University

Press, 1987 or C. Calude, Information and Randomness—An Algorithmic Perspective, Springer-Verlag, 1994.
6With thanks for stimulating discussions to Cris Calude and George Markowsky.
7Cf. G. J. Chaitin, Computing the Busy Beaver function, in T. M. Cover and B. Gopinath (eds.), Open Problems in

Communication and Computation, Springer-Verlag, 1987, 108-112.
8With thanks for stimulating discussions to Greg Chaitin, Cristian Grozea and George Markowsky.
9Cf. R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, 1987, p. 88.

for the set X = {H(x) ≤ k}.

FACT 1. There is a Chaitin computer C = Cw acting as a choice function for non-empty r.e. sets,
i.e. if Wx is non-empty, then C(0p(x)1) is defined and belongs to Wx.

FACT 2. There is a recursive function g such that ϕg(x)(y) = C(0p(x)1), for all strings x, y.

FACT 3. The function F (y) defined to be the minimum (in quasi-lexicographical order) string x such
that H(x) > |0p(w)10p(y)1| is computable in H, total (as H is unbounded), and for every y,

F (y) 6= C(0p(y)1).

Otherwise, the equalities

F (y) = C(0p(y)1) = Cw(0p(y)1) = U(0p(w)10p(y)1),

justify the inequality
H(F (y)) ≤ |0p(w)10p(y)1|,

which contradicts the construction of F .

FACT 4. The function f defined by Wf(x) = {F (x)} is computable in H, or, equivalently, computable
in X = {H(x) ≤ k}, and has no fixed-points.

Indeed, if Wx = Wf(x), then Wx is not empty, so by FACT 1 and FACT 4, we deduce the equality
C(0p(x)1) = F (x), which contradicts FACT 3.

3. COMMENT. Combining LEMMA with the information-theoretic Busy Beaver function10

Σ(n) = max{x | H(x) ≤ n}

one gets a constant c > 0 such that if an n-bit program p halts, then p halts in time less than Σ(n+ c).11

However, the function Σ cannot be bounded by any recursive function! The difficulty might be also
explained by the fact that Σ grows as fast as the least time necessary for all programs of length less
than n that halt on U to stop.12 The above solutions show that the non-recursive bound can in fact be
replaced by a bound recursive in H.

Furthermore, Σ is computable in H. Indeed, the formula

Σ(n) = max{U(p) | |p| ≤ n},

proves that Σ is computable relative to the halting problem which, in turn, is computable from H.

4. COMMENT. After finishing this note it has come to our attention the paper On the Complexity
of Random Strings, Extended Abstract 13 by M. Kummer in which problems related to those discussed
here are studied.

10See note 5.
11This idea was discussed in Mangalia by Greg Chaitin, George Markowsky and Cris Calude.
12Cf. G. J. Chaitin, Information-theoretic limitations of formal systems, J. Assoc. Comput. Mach. 21(1974), 403-424.
13Manuscript, August 1995, 11 pp.

2

