
CDMTCS

Research

Report

Series

The

Third

Homomorphism

Theorem

Jeremy Gibbons

Department of Computer Science

University of Auckland

CDMTCS-005

July 1995

Centre for Discrete Mathematics and

Theoretical Computer Science

J. Functional Programming 6 (4): 1{000, 1996 c 1996 Jeremy Gibbons 1

FUNCTIONAL PEARLS

The Third Homomorphism Theorem

Jeremy Gibbons

Department of Computer Science

University of Auckland

Private Bag 92019, Auckland, New Zealand.

Email: jeremy@cs.auckland.ac.nz

Abstract

The Third Homomorphism Theorem is a folk theorem of the constructive algorithmics
community. It states that a function on lists that can be computed both from left to right

and from right to left is necessarily a list homomorphism|it can be computed according

to any parenthesization of the list.

We formalize and prove the theorem, and use it to improve an O(n2) sorting algorithm

to O(n log n).

1 Introduction

List homomorphisms are those functions on �nite lists that promote through list

concatenation|that is, functions h for which there exists a binary operator � such

that, for all �nite lists x and y ,

h (x ++ y) = h x � h y

where `++' denotes list concatenation. Such functions are ubiquitous in functional

programming. Some examples of list homomorphisms are:

� the identity function id ;

� the map function map f , which applies a given function f to every element of

a list;

� the function concat , which concatenates a list of lists into a single long list;

� the function head , which returns the �rst element of a list;

� the function length , which returns the length of a list;

� the functions sum , min and all , which return the sum, the smallest and the

boolean conjunction of the elements of a list, respectively.

However, there are also many useful list functions that are not list homomor-

phisms. One example is the function lsp, which returns the longest sorted pre�x of

2 Jeremy Gibbons

a list. Knowing lsp x and lsp y is not enough to allow computation of lsp (x ++ y).

This function is a typical example of a leftwards function|one which can be com-

puted from right to left. Dually, the rightwards functions can be computed from

left to right.

One obvious relationship between homomorphisms and leftwards and rightwards

functions is known as the Specialization Theorem (Bird, 1987): all homomorphisms

are also leftwards and rightwards functions. In the Constructive Algorithmics com-

munity, this has become known as the `Second Homomorphism Theorem'. (The

`First Homomorphism Theorem' states that a homomorphism can be factored into

the composition of reduction|a homomorphism whose value on a singleton list is

the sole element of that list|with a map, and conversely that any such composition

is a homomorphism.)

The subject of this paper is another relationship between homomorphisms and

leftwards and rightwards functions. This relationship is much less obvious, but is

equally useful. It is the converse of the Specialization Theorem, and states that

any function that is both leftwards and rightwards is also a homomorphism. This

theorem is fairly well-known in the Constructive Algorithmics community, bearing

the name `The Third Homomorphism Theorem'. However, it has somewhat the

status of a `folk theorem' (Harel, 1980). It was conjectured by Richard Bird and

proved by Lambert Meertens during a train journey across the Netherlands in 1989

(Meertens, 1995); the theorem has been published only in non-archival sources

(Barnard et al., 1991; Gibbons, 1993), and we feel that it deserves wider recognition.

In this paper we formalize and prove this theorem, and use it to derive `mergesort'

from `insertsort'. The remainder of this paper is structured as follows. In Section 2,

we introduce the necessary notation. In Section 3, we state the First and Second

Homomorphism Theorems, for completeness' sake. Section 4 contains the main

result of the paper, the Third Homomorphism Theorem. In Section 5, we use the

theorem to derive mergesort from insertsort.

An earlier version of this paper appeared as (Gibbons, 1994).

2 Notation

In this section, we introduce the notation used in the rest of the paper.

Functions: Function application is denoted by juxtaposition, is tightest binding,

and associates to the left. Function composition is written `�'.

Lists: For the purposes of this paper, lists are �nite sequences of elements, all of

the same type. A list is either empty, a singleton, or the concatenation of two

other lists. We write `[]' for the empty list, `[a]' for the singleton list with

element a (and `[�]' for the function taking a to [a]), and `x ++ y ' for the

concatenation of x and y . Concatenation is associative, and [] is its unit. For

example, the term [a1] ++ [a2] ++ [a3] denotes a list with three elements, often

written in the abbreviated form [a1; a2; a3]. We also write `a : x ' for [a] ++ x ;

the operator `:' associates to the right.

Functional pearls 3

Homomorphisms: For a binary operator �, the list function h is �-homomorphic

i�, for all lists x and y ,

h (x ++ y) = h x � h y

For example, the functions length and sum are both +-homomorphic, since

sum (x ++ y) = sum x + sum y

length (x ++ y) = length x + length y

Note that � is necessarily associative on the range of h, because ++ is asso-

ciative. Moreover, h [] is necessarily the unit of � on the range of h (if it

exists), because [] is the unit of ++. If � has no unit, then h [] is not de�ned.

For example, head is �-homomorphic where a � b = a, but because � has

no unit, head [] is unde�ned.

For associative operator � with unit e, we write `hom (�) f e' for the (unique)

�-homomorphic function h for which h � [�] = f . For example,

sum = hom (+) id 0

length = length = hom (+) one 0

where one a = 1 for all a.

Leftwards and rightwards functions: The list function h is �-leftwards for bi-

nary operator � i�, for all elements a and lists y ,

h ([a] ++ y) = a � h y

Here, � need not be associative. The (unique) �-leftwards function h for

which h [] = e is written `foldr (�) e'. For example, the function lsp referred

to earlier is �-leftwards where

a � [] = [a]

a � (b : x) =

�
a : b : x ; if a � b

[a]; otherwise

Since lsp [] = [], we have lsp = foldr (�) [] with the above de�nition of �.

Expanding the de�nition of a leftwards function reveals the signi�cance of the

name. For example:

foldr (�) e [a1; a2; a3] = a1 � (a2 � (a3 � e))

and so its computation proceeds from right to left. In general:

foldr (�) e (x ++ y) = foldr (�) (foldr (�) e y) x (1)

(The name `foldr' is unfortunate for a right-to-left computation, but it is well

established.)

Symmetrically, the list function h is
-rightwards for binary operator
 i�,

for all lists x and elements a,

h (x ++ [a]) = h x
 a

Again, the operator
 need not be associative. We write `foldl (
) e' for the

4 Jeremy Gibbons

unique
-rightwards function h for which h [] = e. Expanding the de�nition

reveals a left-to-right pattern of computation. For example:

foldl (
) e [a1; a2; a3] = ((e
 a1)
 a2)
 a3

and in general:

foldl (
) e (x ++ y) = foldl (
) (foldl (
) e x) y (2)

3 The First and Second Homomorphism Theorems

For the sake of completeness, we state without proof the First and Second Homo-

morphism Theorems.

De�nition 3.1

A function of the form hom (�) id e for some � is called a reduction.

De�nition 3.2

For given f , the function hom (++) ([�] � f) [] is written `map f ' and called a map.

Theorem 3.3 (First Homomorphism Theorem)

Every homomorphism can be written as the composition of a reduction and a map:

hom (�) f e = hom (�) id e � map f

Conversely, every such composition is a homomorphism.

Theorem 3.4 (Second Homomorphism Theorem, or Specialization Theorem)

Every homomorphism is both a leftwards and a rightwards function. That is, if �

is associative, then

hom (�) f e = foldr (�) e where a � s = f a � s

= foldl (
) e where r
 a = r � f a

4 The Third Homomorphism Theorem

This section contains the main result of the paper, the statement and proof of the

Third Homomorphism Theorem.

Theorem 4.1 (Third Homomorphism Theorem)

If h is leftwards and rightwards, then h is a homomorphism.

Functional pearls 5

In fact, we will show that h is �-homomorphic where

t � u = h (g t ++ g u)

for some g such that h � g � h = h. Such a g exists, as the following lemma shows.

Lemma 4.2

For every computable total function h with enumerable domain, there is a com-

putable (but possibly partial) function g such that h � g � h = h.

Proof

Here is one suitable de�nition of g . To compute g t for some t , simply enumerate

the domain of h and return the �rst x such that h x = t . If t is in the range of h,

then this process terminates.

The proof of the Third Homomorphism Theorem relies on the following lemma:

Lemma 4.3

The list function h is a homomorphism i� the implication

h v = h x ^ h w = h y) h (v ++ w) = h (x ++ y) (3)

holds for all lists v ;w ; x ; y .

(We note in passing an interesting corollary to Lemma 4.3: any injective function

is homomorphic.)

Proof

The `only if' is obvious: if h is a homomorphism, then there is a � such that

h (x ++ y) = h x � h y for all lists x and y . Now consider the `if' part.

Assume that h satis�es (3). Choose a g such that h �g �h = h, and de�ne operator

� by the equation

t � u = h (g t ++ g u)

(as in the statement of the Third Homomorphism Theorem). We show that h is

�-homomorphic.

Because of the way we chose g , h x = h (g (h x)) and h y = h (g (h y)), and so,

by (3) (with v = g (h x) and w = g (h y)), we have

h (x ++ y) = h (g (h x) ++ g (h y))

= h x � h y

We now prove the Third Homomorphism Theorem.

Proof

We show that, if h is leftwards and rightwards, then h satis�es (3).

6 Jeremy Gibbons

Suppose that h = foldr (�) e = foldl (
) e, and that h v = h x and h w = h y .

Then:

h (v ++ w)

= f treating h as a leftwards function g

foldr (�) e (v ++ w)

= f (1) g

foldr (�) (foldr (�) e w) v

= f since h w = h y g

foldr (�) (foldr (�) e y) v

= f (1) g

foldr (�) e (v ++ y)

= f treating h as a leftwards function g

h (v ++ y)

= f symmetrically, treating h as a rightwards function g

h (x ++ y)

Hence, by Lemma 4.3, h is a homomorphism.

5 Application: sorting

We now use the Third Homomorphism Theorem to derive the O(n logn) sorting

algorithm `mergesort' from the O(n2) `insertsort'. (In fact, the Third Homomor-

phism Theorem yields only an ine�cient homomorphic sorting algorithm; we have

to do a little more work to derive mergesort itself.)

The function sort, which sorts a list, is leftwards, since it can be written

sort = foldr ins []

where

ins a [] = [a]

ins a (b : x) =

�
a : b : x ; if a � b

b : (ins a x); otherwise

This is just traditional `insertsort', and takes O(n2) time to sort n elements.

The same function is also rightwards, since it can be written as a `backwards

insertsort':

sort = foldl ins0 [] (4)

where

ins0 x a = ins a x

Functional pearls 7

The Third HomomorphismTheorem concludes that sort is therefore homomorphic.

The homomorphism constructed by the proof is hom (�) [�] [] where

u � v = sort (unsort u ++ unsort v)

for some function unsort such that sort�unsort �sort = sort, that is, which permutes

the elements of a list.

We pick unsort = id for simplicity, giving

u � v = sort (u ++ v) (5)

This gives us a homomorphic method of sorting, but clearly it is very ine�cient.

To sort x ++ y , we sort x and y (yielding u and v), concatenate u and v , and then

(presumably using some other sorting method, such as insertsort) sort the result

u++v . However, we can improve this algorithm, by capitalizing on the fact that|in

the context of evaluating hom (�) [�] []|the arguments u and v to � will be sorted.

This improvement takes us directly to the traditional `mergesort' algorithm, which

is O(n logn).

Suppose �rst that u is sorted, that is, that u = sort u. Then

u � v

= f (5) g

sort (u ++ v)

= f (4) g

foldl ins 0 [] (u ++ v)

= f (2) g

foldl ins 0 (foldl ins0 [] u) v

= f (4) g

foldl ins 0 (sort u) v

= f u is sorted g

foldl ins 0 u v

= f let merge = foldl ins0 g

merge u v

We have picked a suggestive name in the last step, but it is justi�ed by the

observation that

merge u [] = foldl ins0 u []

= u

and

merge u (b : v) = foldl ins0 u (b : v)

= foldl ins0 (ins 0 u b) v

= merge (ins 0 u b) v

This is a straightforward method of merging two lists, the �rst one already sorted, to

8 Jeremy Gibbons

produce a sorted list. Note, however, that it takes quadratic time, and so computing

hom merge [�] [] also takes quadratic timey. We can make a further improvement

by assuming that the second argument to merge is also sorted.

We use the following lemma,which is easily proved by induction. We write `a � v '

to denote that a � b for every element b of list v .

Lemma 5.1

If a � x and a � y , then

foldl ins 0 (a : x) y = a : foldl ins0 x y

Suppose that v is sorted. Then

merge [] v

= f de�nition of merge g

foldl ins 0 [] v

= f (4) g

sort v

= f v is sorted g

v

Now suppose that a : u and b : v are sorted. Then

merge (a : u) (b : v)

= f de�nition of merge g

foldl ins 0 (a : u) (b : v)

= f de�ning property of foldl g

foldl ins 0 (ins 0 (a : u) b) v

We now consider the cases a < b and a � b separately.

Case a < b: Since a : u and b : v are sorted, we have a � u and a � v ; hence

a � ins0 u b also. Then

foldl ins 0 (ins 0 (a : u) b) v

= f ins 0; a < b g

foldl ins 0 (a : ins 0 u b) v

= f Lemma 5.1 g

a : foldl ins 0 (ins 0 u b) v

= f de�ning property of foldl g

a : foldl ins0 u (b : v)

= f de�nition of merge g

a : merge u (b : v)

y because
Plog n

i=0
2i(n

2i
)2 ' 2n2

Functional pearls 9

Case a � b: Since a : u and b : v are sorted, we have b � a : u and b � v . Then

foldl ins0 (ins 0 (a : u) b) v

= f ins 0; a � b g

foldl ins0 (b : a : u) v

= f Lemma 5.1 g

b : foldl ins0 (a : u) v

= f de�nition of merge g

b : merge (a : u) v

We have just derived the following characterization of merge, when both of its

arguments are sorted:

merge [] v = v

merge u [] = u

merge (a : u) (b : v) =

�
a : merge u (b : v); if a < b

b : merge (a : u) v ; otherwise

which is the standard way of merging two sorted lists (except that the comparison

is usually `a � b' rather than `a < b'). This version of merge takes linear time,

and yields the well-known mergesort algorithm, which is O(n logn) when the list

is decomposed in a balanced fashion. Green and Barstow (1978) describe a similar

derivation of merge and mergesort.

6 Conclusion

To summarize, we have presented and proved Bird and Meertens' Third Homomor-

phism Theorem, stating that any function on lists that can be computed both from

left to right and from right to left is necessarily a list homomorphism. We gave

an example of its use|deriving `mergesort' from `insertsort'|illustrating that the

theorem does not usually give an e�cient characterization of the homomorphism;

further development must be done to produce this.

Further applications of the Third HomomorphismTheorem are given by Barnard

et al. (1991), Gibbons (1993), and Gorlatch (1995).

Acknowledgements

Murray Cole, Rod Downey, Sergei Gorlatch, Lindsay Groves, Lambert Meertens,

the participants of the Computing|the Australian Theory Seminar in Sydney in

December 1994, and especially Richard Bird have all made comments to improve

the presentation and content of this paper. Thanks are also due to Sue Gibbons,

for her energetic red pen. The research reported here has been partially supported

by University of Auckland Research Committee grant number 3414013.

10 Jeremy Gibbons

References

Barnard, D. T., Schmeiser, J. P. and Skillicorn, D. B. 1991. Deriving associative
operators for language recognition. Bulletin of the European Association for

Theoretical Computer Science, 43: pp. 131{139.

Bird, R. S. 1987. An introduction to the theory of lists. In M. Broy (editor), Logic of
Programming and Calculi of Discrete Design, pp. 3{42. Springer-Verlag. Also available

as Technical Monograph PRG-56, from the Programming Research Group, Oxford

University.
Gibbons, J. 1993. Computing downwards accumulations on trees quickly. In G. Gupta,

G. Mohay, and R. Topor (editors), 16th Australian Computer Science Conference,

pp. 685{691, Brisbane. Available by anonymous ftp as
out/jeremy/papers/quickly.ps.Z on ftp.cs.auckland.ac.nz.

Gibbons, J. 1994. The Third Homomorphism Theorem. In C. Barry Jay (editor),

Computing: The Australian Theory Seminar. University of Technology, Sydney.
Gorlatch, S. 1995. Constructing List Homomorphisms. Technical Report MIP-9512,

Fakult�at f�ur Mathematik und Informatik, Universit�at Passau.

Green, C. and Barstow, B. 1978. On program synthesis knowledge. Arti�cial
Intelligence, 10: pp. 241{279.

Harel, D. 1980. On folk theorems. Communications of the ACM, 23(7): pp. 379{389.

Meertens, L. G. L. T. 1995. Personal communication.

