
CDMTCS

Research

Report

Series

Deriving

tidy drawings of trees

Jeremy Gibbons

Department of Computer Science

University of Auckland

CDMTCS-003

June 1995

Centre for Discrete Mathematics and

Theoretical Computer Science

Deriving tidy drawings of trees

Jeremy Gibbons

Abstract. The tree-drawing problem is to produce a `tidy' mapping of elements of a tree to

points in the plane. In this paper, we derive an e�cient algorithm for producing tidy drawings

of trees. The speci�cation, the starting point for the derivations, consists of a collection of

intuitively appealing criteria satis�ed by tidy drawings. The derivation shows constructively that

these criteria completely determine the drawing. Indeed, the criteria completely determine a

simple but ine�cient algorithm for drawing a tree, which can be transformed into an e�cient

algorithm using just standard techniques and a small number of inventive steps.

The algorithm consists of an upwards accumulation followed by a downwards accumulation on

the tree, and is further evidence of the utility of these two higher-order tree operations.

Keywords. Derivation, trees, upwards and downwards accumulations, drawing.

1 Introduction

The tree drawing problem is to produce a mapping from elements of a tree to points

in the plane. This mapping should correspond to a drawing that is in some sense

`tidy'. Our de�nition of tidiness consists of a collection of intuitively appealing

criteria `obviously' satis�ed by tidy drawings.

We derive from these criteria an e�cient algorithm for producing tidy drawings

of binary trees. The derivation process is a constructive proof that the tidiness

criteria completely determine the drawing. In other words, there is only one tidy

drawing of any given tree. In fact, the derivation of the algorithm is a completely

reasonable and almost routine calculation from the criteria: the algorithm itself,

like the drawing, is essentially unique.

The algorithm that we derive (which is due originally to Reingold and Til-

ford (1981)) consists of an upwards accumulation followed by a downwards accu-

mulation (Gibbons, 1991, 1993b) on the tree. Basically, an upwards accumulation

on a tree replaces every element of that tree with some function of that element's

descendents, while a downwards accumulation replaces every element with some

function of that element's ancestors. These two higher-order operations on trees

Copyright c1995 Jeremy Gibbons. Author's address: Department of Computer Science,

University of Auckland, Private Bag 92019, Auckland, New Zealand, email

jeremy@cs.auckland.ac.nz. Supported by University of Auckland Research Committee grant

number A18/XXXXX/62090/3414013. To appear in Journal Of Functional Programming 6(3),

1996. A shorter version of this paper appears as (Gibbons, 1994).

Deriving tidy drawings of trees 2

are fundamental components of many tree algorithms, such as tree traversals, the

parallel pre�x algorithm (Ladner and Fischer, 1980), evaluation of attributes in an

attribute grammar (Deransart et al., 1988), evaluation of structured queries on text

(Skillicorn, 1993), and so on. Their isolation is an important step in understanding

and modularizing a tree algorithm. Moreover, work is progressing (Gibbons, 1993a;

Gibbons et al., 1994) on the development of e�cient parallel algorithms for evalu-

ating upwards and downwards accumulations on a variety of parallel architectures.

Identifying the accumulations as components of a known algorithm shows how to

implement that algorithm e�ciently in parallel.

For the purposes of exposition, we make the simplifying assumption that tree

elements are unlabelled or, equivalently, that all labels are the same size. It is

easy to generalize the algorithm to cover trees in which the labels may have greatly

di�ering widths. A more interesting generalization covers the case in which tree

labels may also have di�erent heights. Bloesch (1993) gives two algorithms for this

case. It is slightly more di�cult to adapt the algorithm to cope with general trees,

in which parents may have arbitrarily but �nitely many children. Radack (1988)

and Walker (1990) present two di�erent approaches. Radack's algorithm is derived

by Gibbons (1991) and described by Kennedy (1995).

The rest of this paper is organized as follows. In Section 2, we briey describe our

notation. In Section 3, we summarize the ideas behind upwards and downwards

accumulations on trees. In Section 4, we present the tidiness criteria, and out-

line a simple but ine�cient tree-drawing algorithm. The derivation of an e�cient

algorithm, the main part of the paper, is in Section 5.

The diagrams in this paper were drawn `manually' using John Hobby'sMETAPOST,

rather than with the algorithms described here.

2 Notation

We will use the Bird-Meertens Formalism or `bmf' (Meertens, 1986; Bird, 1987,

1988; Backhouse, 1989), a calculus for the construction of programs from their

speci�cations by a process of equational reasoning. This calculus places great em-

phasis on notions and properties of data, as opposed to program, structure. The

programs we produce are in a functional style, and are readily translated into a

modern functional language such as Haskell or ML.

The bmf is known colloquially as `Squiggol', because its protagonists make heavy

use of unusual symbols and syntax. This approach is helpful to the cognoscenti,

but tends to make their work appear unnecessarily obscure to the uninitiated. For

this reason, we will use a more traditional notation here. We will use mostly

words rather than symbols, and mostly pre�x functions rather than in�x operators,

simply to make expressions easier to parse for those unfamiliar with the calculus.

We hasten to add two points. First, this translation leaves the bmf `philosophy'

intact. Second, the presentation here, although more accessible, will be marginally

Deriving tidy drawings of trees 3

less elegant than it might otherwise have been.

2.1 Basic combinators

Sectioning a binary operator involves providing it with one of its arguments, and

results in a function of the other argument. For example, (2+) and (+2) are two

ways of writing the function that adds two to its argument. The constant func-

tion const a returns a for every argument; for example, const 1 2 = 1 . (Function

application is left-associative, so that this parses as ` (const 1) 2 ', and tightest bind-

ing.) Function composition is written ` � '; for example, const 1 � const 2 = const 1 .

The identity function is written ` id '. The converse ~(of a binary operator (is

obtained by swapping its arguments; for example, x ~� y = y � x .

The product type A � B consists of pairs (a, b) of values, with a :: A and b :: B .

The projection functions fst and snd return the �rst and second elements of a pair.

The fork fork (f, g) of two functions f and g takes a single value and returns a

pair; thus, fork (f, g) a = (f a, g a) .

2.2 Promotion

The notion of promotion comes up repeatedly in the bmf. We say that function f

is `(to) promotable' if, for all a and b ,

f (a(b) = f a) f b

Promotion is a generalization of distributivity: f distributes through (i� f is (

to (promotable. We say that f `promotes through (' if there is a) such that

f is (to) promotable.

2.3 Lists

The type list A consists of lists of elements of type A . A list is either a singleton

[a] for some a , or the (associative) concatenation x ++ y of two lists x and y .

In this paper, all lists are non-empty. We write `wrapl ' for the function taking

a to [a] , and write longer lists in square brackets too|for example, ` [a, b, c] ' is

an abbreviation for [a] ++ [b] ++ [c] . For every initial datatype such as lists, there

is a higher-order function map , which applies a function to every element of a

member of that datatype; for example, map (+1) [1, 2, 3] = [2, 3, 4] . We will use

map for other datatypes such as trees later, and will trust to context to reveal

which particular map is meant.

2.4 Homomorphisms

An important class of functions on lists are those called homomorphisms. These

are the functions that promote through list concatenation. That is, h is a list

homomorphism i� there is an associative operator) such that, for all x and y ,

h (x ++ y) = h x) h y

The condition of associativity on) is no great restriction. If h is ++ to)

promotable then) is necessarily associative, at least on the range of h :

Deriving tidy drawings of trees 4

h x) (h y) h z)

=
n

h is ++ to) promotable
o

h x) h (y ++ z)

=
n
promotion again

o

h (x ++ (y ++ z))

=
n
++ is associative

o

h ((x ++ y) ++ z)

=
n
promotion, twice

o

(h x) h y)) h z

In fact, if h is ++ to) promotable, then it is completely determined by its action

on singleton lists; for example,

h [a, b, c] = h ([a] ++ [b] ++ [c]) = h [a]) h [b]) h [c]

If h is ++ to) promotable and h � wrapl = f , then we write h as lh (f,)) (` lh '

stands for `list homomorphism').

Stated another way, we have the Promotion Theorem on Lists, a special case of

the Promotion Theorem (Malcolm, 1990):

Theorem (1) If h is (to) promotable, then

h � lh (f,() = lh (h � f,))

}

Since lh (wrapl,++) = id , this gives us a vehicle for proving the equality of a function

h and a homomorphism lh (f,)) , in that we need only show that h is ++ to)

promotable, and that h � wrapl = f .

For each f , map f is a homomorphism, for

map f (x ++ y) = map f x++map f y

Indeed, map f = lh (wrapl � f,++) , because map f [a] = [f a] = (wrapl � f) a . Another

example of a homomorphism is the function len , which returns the length of a list:

len = lh (const 1,+)

The functions head and last , returning the �rst and last elements of a list, are also

homomorphisms. For example,

head (x ++ y) = head x = fst (head x, head y)

and so head = lh (id, fst) . Similarly, last = lh (id, snd) . Other examples that we

will encounter are the functions smallest and largest , which return the smallest and

largest elements of a list, respectively:

Deriving tidy drawings of trees 5

smallest = lh (id,min)

largest = lh (id,max)

and the function sum , which returns the sum of the elements of a list:

sum = lh (id,+)

2.5 Leftwards and rightwards functions

Two generalizations of the notion of list homomorphism are the leftwards and the

rightwards functions. If there exist f and (not necessarily associative) (such that,

for all a and x ,

h [a] = f a

h ([a] ++ y) = a(h y

then we say that h is leftwards, and write it lw (f,() . Similarly, if for all x and

a ,

h [a] = f a

h (x ++ [a]) = h x) a

then we say that h is rightwards, and write it rw (f,)) . Clearly, if h is a homo-

morphism then it is both leftwards and rightwards. What is not so obvious is that

the converse holds: Bird's Third Homomorphism Theorem (Gibbons, 1993a, 1996)

states that if h is both leftwards and rightwards, then it is a homomorphism.

Consider the function inits , which takes a list and returns the list of lists con-

sisting of its initial segments, in order of increasing length. For example,

inits [a, b, c] = [[a], [a, b], [a, b, c]]

Now, inits is leftwards, because

inits ([a] ++ x) = [[a]] ++map ([a]++) (inits x)

In fact,

inits = lw (wrapl � wrapl,() where a (v = [[a]] ++map ([a]++) v

It is also rightwards, because

inits (x++ [a]) = inits x++ [x++ [a]]

= inits x++ [last (inits x) ++ [a]]

since last (inits x) = x . In fact,

inits = rw (wrapl � wrapl,)) where w) a = w ++ [last w ++ [a]]

Thus, by the Third Homomorphism Theorem, inits is a list homomorphism.

2.6 Binary trees

Finally, we come to binary trees. The type btree A consists of binary trees labelled

with elements of type A . A binary tree is either a leaf lf a labelled with a single

Deriving tidy drawings of trees 6

a

b c

d e

Figure 1: The tree �ve

element a , or a branch br (t, a, u) consisting of two children t and u and a label

a . For example, the expression

br (lf b, a, br (lf d, c, lf e))

corresponds to the tree in Figure 1, which we will call �ve and use as an example

later.

Homomorphisms on binary trees bh (f,() (`binary tree homomorphism') pro-

mote through br . That is, they satisfy the equations:

bh (f,() (lf a) = f a

bh (f,() (br (t, a, u)) = bh (f,() t (a bh (f,() u

Note that, for binary trees, the second component of a homomorphism is a ternary

function. We write its middle argument as a subscript, for lack of anywhere better

to put it.

When instantiated to trees, Malcolm's Promotion Theorem states:

Theorem (2) If h satis�es

h (br (t, a, u)) = h t(a h u

then h = bh (h � lf,() . }

The function map on binary trees satis�es

map f (lf a) = lf (f a)

map f (br (t, a, u)) = br (map f t, f a,map f u)
| (1)

and so

map f = bh (lf � f,() where v (a w = br (v, f a, w)

The function root is a binary tree homomorphism:

root (lf a) = a

root (br (t, a, u)) = a = root t(a root u where v (a w = a

and so, with the same (,

root = bh (id,()

So are the functions size and depth :

Deriving tidy drawings of trees 7

size = bh (const 1,() where v (a w = v + 1 + w

depth = bh (const 1,() where v (a w = 1 +max (v, w)

and the function brev , which reverses a binary tree:

brev = bh (lf,() where v (a w = br (w, a, v)

2.7 Variable-naming conventions

To help the reader, we make a few conventions about the choice of names. For

alphabetic names, single-letter identi�ers are typically `local', their de�nitions per-

sisting only for a few lines, whereas multi-letter identi�ers are `global', having the

same de�nitions throughout the paper. Elements of lists and trees are denoted

a, b, c, : : : . Unary functions are denoted f, g, h . Lists and paths (introduced in Sec-

tion 3.2) are denoted w, x, y, z . Trees are denoted t, u . The letters v and w are

used as the `results' of functions, for example, in the de�nitions of homomorphisms

such as brev above.

We de�ne a few in�x binary operators such as (and Y , just as we might use

alphabetic names for variables and unary functions. Round binary operators such

as (and) are `local', and square binary operators such as X and Y are `global'.

3 Upwards and downwards accumulations on trees

The material in this section is adapted from (Gibbons, 1993b), which is in turn a

summary of (Gibbons, 1991).

3.1 Upwards accumulations

Upwards and downwards accumulations arise from considering the list function

inits . On trees, the obvious analogue of inits is the function subtrees , which takes

a tree and returns a tree of trees. The result is the same shape as the original

tree, but each element is replaced by its descendents, that is, by the subtree of the

original tree rooted at that element. For example:

subtrees �ve = br (lf (lf b),

br (lf b, a, br (lf d, c, lf e)),

br (lf (lf d),

br (lf d, c, lf e),

lf (lf e)))

which corresponds to the tree of trees in Figure 2. The function subtrees is a

homomorphism, because it satis�es

subtrees (lf a) = lf (lf a)

subtrees (br (t, a, u)) = br (subtrees t, br (t, a, u), subtrees u)
| (2)

Since root (subtrees t) = t , we have

subtrees (br (t, a, u)) = subtrees t(a subtrees u

Deriving tidy drawings of trees 8

a

b c

d e

b c

d e

d e

Figure 2: The subtrees of �ve

where

v (a w = br (v, br (root v, a, root w), w)

and so, with the same (,

subtrees = bh (lf � lf,()

The function subtrees replaces every element of a tree with its descendents. An

upwards accumulation replaces every elementwith some function of its descendents.

In other words, an upwards accumulation is of the form map h � subtrees for some

h . In fact, we do not allow h to be an arbitrary function of the descendents.

Rather, we insist that h is a tree homomorphism, to ensure that the accumulation

can be computed in linear time (assuming that the components of h take constant

time). Consider map h (subtrees (br (t, a, u))) :

map h (subtrees (br (t, a, u)))

=
n
(2)

o

map h (br (subtrees t, br (t, a, u), subtrees u))

=
n
(1)

o

br (map h (subtrees t), h (br (t, a, u)), map h (subtrees u))

If this is to be computed in linear time, computing h (br (t, a, u)) must take only

constant time. If h = bh (f,() where f and (take constant time, then

h (br (t, a, u)) = h t(a h u

and h t and h u are available in constant time as the roots of map h (subtrees t)

and map h (subtrees u) . Stated another way,

map (bh (f,()) � subtrees

Deriving tidy drawings of trees 9

a

c

d

Figure 3: The path in �ve to the element labelled d

= bh (lf � f,)) where v)a w = br (v, root v (a root u, u)

and is therefore both a homomorphism and computable in linear time.

We write `up (f,() ' for an upwards accumulation. This satis�es

up (f,() = map (bh (f,()) � subtrees | (3)

but, as described above, requires no longer to compute than bh (f,() does. The

function subtrees is itself an upwards accumulation, since subtrees = map id �

subtrees and id is a homomorphism; so is id , since id = map root � subtrees and

root is a homomorphism. A more interesting example is the function ndescs , which

replaces every element with the number of descendents it has. Letting (satisfy

v (a w = v + 1+ w , so that size = bh (const 1,() , we have

ndescs = map (bh (const 1,()) � subtrees

= up (const 1,()

Note that the expression involving the map takes quadratic time to compute,

whereas the accumulation takes linear time.

3.2 Downwards accumulations

Upwards accumulations replace every element of a tree with some function of that

element's descendents. For downwards accumulations, on the other hand, we con-

sider an element's ancestors. The ancestors of an element form a path. For example,

the ancestors of the element labelled d in �ve form the path in Figure 3, which

could be thought of as a list with two di�erent kinds of concatenation, `left' and

`right', or as a tree in which each parent has exactly one child. We choose the

former view. The type path A consists of paths of elements of type A . A path is

either a single element hai or two paths x and y joined with a `left turn', x ++ y ,

or a `right turn', x!++ y . The function taking a to hai is written `wrapp '. Just as

++ is associative, the operations ++ and !++ satisfy the four laws

x ++ (y ++ z) = (x ++ y) ++ z

x ++ (y!++ z) = (x ++ y)!++ z

x!++ (y ++ z) = (x!++ y) ++ z

x!++ (y!++ z) = (x!++ y)!++ z

Deriving tidy drawings of trees 10

We say that ` ++ cooperates with !++', or ` ++ and !++ cooperate with each other'.

Thus, the path in Figure 3 is represented by hai !++ hci ++ hdi . Because of the

cooperativity property, brackets are unnecessary.

Path homomorphisms promote through both ++ and !++; if, for all a , x and y ,

the function h satis�es

h hai = f a

h (x ++ y) = h x(h y

h (x!++ y) = h x) h y

and (cooperates with) , then we write ph (f,(,)) for h .

Just as for lists, we generalize path homomorphisms to upwards and downwards

functions on paths. If, for all a , x and y , the function h satis�es

h hai = f a

h (hai ++ y) = a(h y

h (hai !++ y) = a) h y

then we say that h is upwards, and write it uw (f,(,)) . The operators (and)

need not enjoy any cooperativity properties. Similarly, if, for all a , x and y ,

h hai = f a

h (x ++ hai) = h x(a

h (x!++ hai) = h x) a

then we say that h is downwards, and write it dw (f,(,)) . Path homomorphisms

are clearly both upwards and downwards; a generalization of Bird's Third Homo-

morphism Theorem states the converse.

Theorem (3) (Third Homomorphism Theorem for Paths (Gibbons, 1993a)) A

path function that is both upwards and downwards is necessarily a path homomor-

phism. }

The dual for downwards accumulations of the function subtrees is the function

paths , which replaces each element of a tree with that element's ancestors. For

example:

paths �ve = br (lf (hai ++ hbi),

hai,

br (lf (hai !++ hci ++ hdi),

hai !++ hci,

lf (hai !++ hci !++ hei)))

which corresponds to the tree of paths in Figure 4. The function paths is another

tree homomorphism; it satis�es

paths (lf a) = lf hai

Deriving tidy drawings of trees 11

a

a

b

a

c

a

c

d

a

c

e

Figure 4: The paths of �ve

paths (br (t, a, u)) = br (map (hai ++) (paths t),

hai,

map (hai!++) (paths u))

and so

paths = bh (lf � wrapp,()

where

v (a w = br (map (hai ++) v, hai, map (hai!++) w)

A downwards accumulation replaces every element of a tree with some function

of that element's ancestors. In other words, downwards accumulations are of the

form map h � paths for some h . Again, we make a restriction on the choice of h ,

but this time it is not so clear just what that restriction should be. On the one

hand, we would like h to be upwards, for

map (uw (f,(,))) (paths (br (t, a, u)))

= br (map (a() (map (uw (f,(,))) (paths t)),

f a,

map (a)) (map (uw (f,(,))) (paths u)))

and so map (uw (f,(,))) � paths is a homomorphism:

map (uw (f,(,))) � paths = bh (lf � f,P)

where

v Pa w = br (map (a() v, f a,map (a)) w)

In terms of the Promotion Theorem, this could be stated as follows:

Theorem (4) If

Deriving tidy drawings of trees 12

g (lf a) = lf (f a)

g (br (t, a, u)) = br (map (a() (g t), f a,map (a)) (g u))

then

g = map (uw (f,(,))) � paths

}

(We will use this theorem later.)

On the other hand, mapping an upwards function over the paths of a tree takes

quadratic time to compute, and so we would like h to be downwards, for

map (dw (f,(,))) (paths (br (t, a, u)))

= br (map (dw (((f a)(),(,))) (paths t),

f a,

map (dw (((f a))),(,))) (paths u))

which can be computed in linear time, at the cost of no longer being homomorphic

(since the result of applying map (dw (f,(,))) � paths to br (t, a, u) depends on

the results of applying di�erent functions, map (dw (((f a)(),(,))) � paths and

map (dw (((f a))),(,))) � paths to the children t and u). To satisfy both of

these requirements, we insist that h be both upwards and downwards. Theorem 3

concludes that h is therefore a path homomorphism. We write `down (f,(,)) ' for

a downwards accumulation; it satis�es

down (f,(,)) = map (ph (f,(,))) � paths | (4)

but again can be computed in linear time (if f , (and) each take constant time).

Note that (and) must cooperate with each other.

For example, consider the function plen , which returns the length of a path. The

function depths replaces every element of a tree with that element's depth in the

tree, that is, with the length of its path of ancestors:

depths = map plen � paths

As it stands, it is not obvious whether depths is a homomorphism, nor whether it

can be computed e�ciently. However, plen is upwards,

plen = uw (const 1,(,() where a(v = 1+ v

and so depths is a tree homomorphism. Moreover, plen is downwards,

plen = dw (const 1,),)) where v) a = v + 1

and so depths can also be computed in linear time. Writing

depths = down (const 1,+,+)

(since + is associative, it cooperates with itself) shows that depths is both homo-

morphic and e�ciently computable.

Deriving tidy drawings of trees 13

We might ask, when can we generalize an upwards function h so that it is also

downwards? This would give us an e�cient way of computing map h � paths .

Suppose h is upwards but not downwards|we cannot write h (x ++ hai) and

h (x !++ hai) in terms of h x and a . Suppose, however, that there is another

function g such that h (x ++ hai) and h (x!++ hai) can be computed from h x , g x

and a : for some * and + ,

h (x ++ hai) = (h x, g x)* a

h (x!++ hai) = (h x, g x)+ a

In a sense, g is the `extra information' needed to compute h (x ++ hai) and h (x!++

hai) from h x and a . Now h could be computed downwards, if only we could

somehow compute g . This, of course, begs the question, how do we compute g ?

Suppose further that g is `self-sustaining', in that no further information is required

in order to compute g : for some R and , ,

g (x ++ hai) = (h x, g x)R a

g (x!++ hai) = (h x, g x), a

Then fork (h, g) is downwards.

Theorem (5) If

h hai = f1 a g hai = f2 a

h (x ++ hai) = (h x, g x)* a g (x ++ hai) = (h x, g x)R a

h (x!++ hai) = (h x, g x)+ a g (x!++ hai) = (h x, g x), a

then

fork (h, g) = dw (f,(,)) where f a = (f1 a, f2 a)

(v, w)(a = (v * a, w R a)

(v, w)) a = (v + a, w , a)

}

Then we have h = fst � fork (h, g) , and so h is `almost' downwards|it is the

composition of the projection fst with the downwards function fork (h, g) . How-

ever, it is not obvious whether fork (h, g) is still upwards. Fortunately, if g is itself

upwards, then so is fork (h, g) , as shown by the following theorem.

Theorem (6)

fork (uw (f1,*,+), uw (f2,R,,))

= uw (f,(,)) where f a = (f1 a, f2 a)

a ((v, w) = (a * v, aR w)

a) (v, w) = (a + v, a, w)

}

Deriving tidy drawings of trees 14

In this case, fork (h, g) is both upwards and downwards, and hence a path ho-

momorphism. Then

map h � paths = map fst � map (fork (h, g)) � paths

which is a (cheap) map composed with a downwards accumulation, and is e�ciently

computable.

4 Drawing binary trees tidily

In this section, we de�ne `tidiness' and specify the function bdraw , which draws a

binary tree. We make the simplifying assumption that all tree labels are the same

size, because, for the purposes of positioning the elements of the tree, we can then

ignore the labels altogether.

The �rst property that we observe of tidy drawings is that all of the elements at

a given depth in a tree have the same y-coordinate in the drawing. That is, the

y-coordinate is determined completely by the depth of an element, and the problem

reduces to that of �nding the x-coordinates. This gives us the type of bdraw , the

function which draws a binary tree|its argument is of type btree A for some A ,

and its result is a binary tree labelled with x-coordinates:

bdraw :: btree A! btree D

where coordinates range over D , the type of distances. We require that D include

the number 1 , and be closed under subtraction (and hence also under addition)

and halving. Sets satisfying these conditions include the reals, the rationals, and

the rationals with �nite binary expansions, the last being the smallest such set.

We exclude discrete sets such as the integers, as Supowit and Reingold (1983) have

shown that the problem is NP-hard with such coordinates.

Tidy drawings are also regular, in the sense that the drawing of a subtree is

independent of the context in which it appears. Informally, this means that the

drawings of children can be committed to (separate pieces of) paper before consid-

ering their parent. The drawing of the parent is then constructed by translating

the drawings of the children. In symbols:

bdraw (br (t, a, u)) = br (map (+r) (bdraw t), b,map (+s) (bdraw u))

for some b , r and s .

Tidy drawings also exhibit no left-to-right bias. In particular, a parent should

be centred over its children. We also specify that the root of a tree should be given

x-coordinate 0 . Hence, r + s and b in the above equation should both be 0 , as

should the position given to the only element of a singleton tree:

bdraw (lf a) = lf 0

bdraw (br (t, a, u)) = br (map (�s) (bdraw t), 0,map (+s) (bdraw u))

for some s . Indeed, a tidy drawing will have the left child to the left of the right

Deriving tidy drawings of trees 15

0

-1⁄2 1⁄2

0 1

0

-1⁄2 1⁄2

-1 0

Figure 5: Drawings pic1 and pic2 , for which pic1 X pic2 = -2

child, and so s> 0 .

This lack-of-bias property implies that a tree and its mirror image produce draw-

ings which are reections of each other. That is, if we write ` - ' for unary negation1,

then we also require

bdraw � brev = map - � brev � bdraw

The fourth criterion is that, in a tidy drawing, elements do not collide, or even

get too close together. That is, pictures of children do not overlap, and no two

elements on the same level are less than one unit apart.

Finally, a tidy drawing should be as narrow as possible, given the above con-

straints. Supowit and Reingold (1983) show that narrowness and regularity cannot

be satis�ed together|there are trees whose narrowest drawings can only be pro-

duced by drawing identical subtrees with di�erent shapes|and so one of the two

criteria must be made subordinate to the other. We choose to retain the regularity

property, since it will lead us to a homomorphic solution.

These last two properties determine s , the distance through which children are

translated. That distance should be the smallest distance that does not cause

violation of the fourth criterion. Suppose the operator X , when given two drawings

of trees, returns the width of the narrowest part of the gap between the trees. (If

the drawings overlap, this distance will be negative.) For example, if pic1 and pic2
are as in Figure 5, then pic1 X pic2 = -2 , the minimum of 0 � 0 , -1=2 �

1=2 and

-1 � 1 . The drawings should be moved apart or together to make this distance 1 ,

that is,

s = (1 � (bdraw tX bdraw u))� 2

(In the example above, s will be 11=2 .)

All that remains to be done to complete the speci�cation is to formalize this

description of X .

1The presence of sectioning means that, strictly speaking, we should distinguish between the

number `minus one', written ` -1 ', and the function `minus one', written ` (�1) '.

Deriving tidy drawings of trees 16

4.1 Levelorder traversal

We de�ne two di�erent `zip' operators, each of which takes a pair of lists and

returns a single list by combining corresponding elements in some way. These two

operators are `short zip', which we write szip , and `long zip', written lzip . These

operators di�er in that the length of the result of a short zip is the length of its

shorter argument, whereas the length of the result of a long zip is the length of its

longer argument. For example:

szip (() ([a, b], [c, d, e]) = [a (c, b(d]

lzip (() ([a, b], [c, d, e]) = [a (c, b(d, e]

From the result of the long zip, we see that the (must have type A � A ! A .

This is not necessary for short zip, but we do not use the general case.

The two zips are given formally by the equations

szip (() ([a], [b]) = [a(b]

szip (() ([a], [b] ++ y) = [a(b]

szip (() ([a] ++ x, [b]) = [a(b]

szip (() ([a] ++ x, [b] ++ y) = [a(b] ++ szip (() (x, y)

lzip (() ([a], [b]) = [a(b]

lzip (() ([a], [b] ++ y) = [a(b] ++ y

lzip (() ([a] ++ x, [b]) = [a(b] ++ x

lzip (() ([a] ++ x, [b] ++ y) = [a(b] ++ lzip (() (x, y)

They share many properties, but we use two in particular.

Fact (7) Both szip (() (x, y) and lzip (() (x, y) can be evaluated using just

min (len x, len y) applications of (. }

Lemma (8) If f is (to) promotable, then map f is both szip (() to szip ())

and lzip (() to lzip ()) promotable. }

We use long zip to de�ne levelorder traversal of binary trees. This is given by

the function levels :: btree A! list (list A) :

levels = bh (wrapl � wrapl,() where x (a y = [[a]] ++ lzip (++) (x, y)

For example, the levelorder traversals of lf b and br (lf d, c, lf e) are [[b]] and

[[c], [d, e]] , respectively, and so

levels �ve

= [[a]] ++ lzip (++) ([[b]], [[c], [d, e]])

= [[a]] ++ [[b] ++ [c], [d, e]]

= [[a], [b, c], [d, e]]

We can at last de�ne the operator X on pictures, in terms of levelorder traversal.

It is given by

Deriving tidy drawings of trees 17

pX q = smallest (szip (~�) (map largest (levels p),

map smallest (levels q)))

If v and w are levels at the same depth in p and q , then largest v and smallest w

are the rightmost point of v and the leftmost point of w , respectively, and so

smallest w � largest v is the width of the gap at this level. Clearly, p X q is the

minimum over all levels of these gap widths. For example, with pic1 and pic2 as

in Figure 5, we have

map largest (levels pic1) = [0, 1=2, 1]

map smallest (levels pic2) = [0, -1=2, -1]

and so

pic1 X pic2 = smallest [0 � 0, -1=2 �
1=2, -1 � 1] = -2

This completes the speci�cation of X , and hence of bdraw :

bdraw = bh (const (lf 0),^) | (5)

where

p^a q = br (map (�s) p, 0,map (+s) q) where s = (1� (pX q))� 2

pX q = smallest (szip (~�) (map largest (levels p),

map smallest (levels q)))

This speci�cation is executable, but requires quadratic e�ort. We now derive a

linear algorithm to satisfy it.

5 Drawing binary trees e�ciently

A major source of ine�ciency in the program that we have just developed is the

occurrence of the two maps in the de�nition of ^ . Intuitively, we have to shift

the drawings of two children when assembling the drawing of their parent, and

then shift the whole lot once more when drawing the grandparent. This is be-

cause we are computing directly the absolute position of every element. If instead

we were to compute the relative position of each parent with respect to its chil-

dren, these repeated translations would not occur. A second pass|a downwards

accumulation|can �x the absolute positions by accumulating relative positions.

Suppose the function rootrel on drawings of trees satis�es

rootrel (lf a) = 0

rootrel (br (t, a, u)) = (a� root t)- (root u� a)

for some idempotent operator - . The idea here is that rootrel determines the

position of a parent relative to its children, given the drawing of the parent. For

example, with pic1 as in Figure 5, we have:

rootrel pic1 = (0 � -1=2)- (1=2 � 0) = 1=2

That is, if we de�ne the function sep by

Deriving tidy drawings of trees 18

sep = rootrel � bdraw | (6)

then

sep (lf a) = 0

sep (br (t, a, u)) = (1 � (bdraw tX bdraw u))� 2
| (7)

For example:

sep �ve = (1� (bdraw (lf b)X bdraw (br (lf d, c, lf e))))� 2

= (1� 0)� 2

= 1=2

Then

bdraw (br (t, a, u)) = br (map (�s) (bdraw t), 0,map (+s) (bdraw u))

where s = sep (br (t, a, u))

Now, applying sep to each subtree gives the relative (to its children) position of

every parent. De�ne the function rel by

rel = map sep � subtrees | (8)

From this, we calculate that

rel (lf a)

=
n
(8)

o

map sep (subtrees (lf a))

=
n
(2)

o

map sep (lf (lf a))

=
n
(1)

o

lf (sep (lf a))

=
n
(7)

o

lf 0

and

rel (br (t, a, u))

=
n
(8)

o

map sep (subtrees (br (t, a, u)))

=
n
(2)

o

map sep (br (subtrees t, br (t, a, u), subtrees u))

=
n
(1)

o

br (map sep (subtrees t), sep (br (t, a, u)), map sep (subtrees u)))

Deriving tidy drawings of trees 19

=
n
(8)

o

br (rel t, sep (br (t, a, u)), rel u)

That is,

rel (lf a) = lf 0

rel (br (t, a, u)) = br (rel t, sep (br (t, a, u)), rel u)
| (9)

This gives us the �rst `pass', computing the position of every parent relative to its

children. How can we get from this to the absolute position of every element? We

need a function abs satisfying the condition

abs � rel = bdraw | (10)

We can calculate from this requirement a de�nition of abs . On leaves, the condition

reduces to

abs (rel (lf a)) = bdraw (lf a)

,
n
(9), (5)

o

abs (lf 0) = lf 0

while on branches we require

abs (rel (br (t, a, u))) = bdraw (br (t, a, u))

,
n
(9), (5); let s = sep (br (t, a, u))

o

abs (br (rel t, s, rel u)) = br (map (�s) (bdraw t), 0,map (+s) (bdraw u))

,
n
assuming (10) holds on smaller trees

o

abs (br (rel t, s, rel u)) = br (map (�s) (abs (rel t)), 0,map (+s) (abs (rel u)))

These requirements are satis�ed if

abs (lf a) = lf 0

abs (br (t, a, u)) = br (map (�a) (abs t), 0,map (+a) (abs u))

By Theorem 4, this implies that

abs = map (uw (const 0, ~�,+)) � paths

We give the upwards function uw (const 0, ~�,+) a name, pabs (`the absolute po-

sition of the bottom of a path'), for brevity:

pabs = uw (const 0, ~�,+)

so that

abs = map pabs � paths | (11)

Thus, we have

bdraw = abs � rel | (12)

Deriving tidy drawings of trees 20

where

rel = map sep � subtrees

abs = map pabs � paths

This is still ine�cient, as computing rel takes quadratic time (because sep is not

a tree homomorphism) and computing abs takes quadratic time (because pabs is

not path homomorphism). We show next how to compute rel and abs quickly.

5.1 An upwards accumulation

We want to �nd an e�cient way of computing the function rel satisfying

rel = map sep � subtrees

where

sep (lf a) = 0

sep (br (t, a, u)) = (1 � (bdraw tX bdraw u))� 2

We have already observed that rel is not an upwards accumulation, because sep is

not a homomorphism|more information than the separations of the grandchildren

is needed in order to compute the separation of the children. How much more

information is needed? It is not hard to see that, in order to compute the separation

of the children, we need to know the `outlines' of their drawings.

Each level of a picture is sorted. Therefore,

map smallest � levels = map head � levels

map largest � levels = map last � levels

and so

pX q = right pY left q | (13)

where

left = map head � levels

right = map last � levels

and

v Y w = smallest (szip (~�) (v, w))

Intuitively, left and right return the `contours' of a drawing. For example, applying

the function fork (left, right) to the tree pic1 in Figure 5 produces the pair of lists

([0, -1=2, 0], [0,
1=2, 1]) . These contours are precisely the extra information needed to

make sep a homomorphism.

To show this, we need to show �rst that sep can be computed from the contours,

and second that computing the contours is a homomorphism. De�ne the function

contours by

contours = fork (left, right) � bdraw | (14)

Deriving tidy drawings of trees 21

How do we �nd sep t from contours t ? By de�nition, the head of each contour is

0 , and (if t is not just a leaf) the second elements in the contours are -(sep t) and

sep t . Thus,

sep = spread � contours | (15)

where, for some idempotent - ,

spread ([0], [0]) = 0

spread ([0] ++ x, [0] ++ y) = -(head x)- head y

on pairs of lists, each with head 0 .

Now we show that contours is a homomorphism. On leaves, we have

contours (lf a)

=
n
(14)

o

fork (left, right) (bdraw (lf a))

=
n
(5)

o

fork (left, right) (lf 0)

=
n

left, right
o

([0], [0])

For branches, we will consider just the left contour, as the right contour is sym-

metric. We have

left (bdraw (br (t, a, u)))

=
n
(5), setting s = (1� (bdraw tX bdraw u))� 2

o

left (br (map (�s) (bdraw t), 0,map (+s) (bdraw u)))

=
n

left
o

map head (levels (br (map (�s) (bdraw t), 0,map (+s) (bdraw u))))

=
n

levels
o

map head ([[0]] ++ lzip (++) (levels (map (�s) (bdraw t)),

levels (map (+s) (bdraw u))))

=
n

map, head
o

[0] ++map head (lzip (++) (levels (map (�s) (bdraw t)),

levels (map (+s) (bdraw u))))

=
n

head is ++ to fst promotable; Lemma 8
o

[0] ++ lzip fst (map head (levels (map (�s) (bdraw t))),

map head (levels (map (+s) (bdraw u))))

Deriving tidy drawings of trees 22

=
n

levels � map f = map map f � levels
o

[0] ++ lzip fst (map head (map (map (�s)) (levels (bdraw t))),

map head (map (map (+s)) (levels (bdraw u))))

=
n

head � map f = f � head
o

[0] ++ lzip fst (map (�s) (map head (levels (bdraw t))),

map (+s) (map head (levels (bdraw u))))

=
n

left
o

[0] ++ lzip fst (map (�s) (left (bdraw t)),

map (+s) (left (bdraw u)))

Similarly,

right (bdraw (br (t, a, u)))

= [0] ++ lzip snd (map (�s) (right (bdraw t)),

map (+s) (right (bdraw u)))

Now,

bdraw tX bdraw u

=
n
(13)

o

right (bdraw t)Y left (bdraw u)

=
n
(14)

o

snd (contours t)Y fst (contours u)

and so

contours (br (t, a, u)) = contours taa contours u

where

(w, x)aa (y, z)

= ([0] ++ lzip fst (map (�s) w,map (+s) y),

[0] ++ lzip snd (map (�s) x,map (+s) z))

where s = (1� (xY y))� 2

| (16)

Hence,

contours = bh (const ([0], [0]),a) | (17)

Thus,

rel

=
n
(8)

o

map sep � subtrees

Deriving tidy drawings of trees 23

=
n
(15)

o

map spread � map contours � subtrees

=
n
(17)

o

map spread � map (bh (const ([0], [0]),a)) � subtrees

=
n
(3)

o

map spread � up (const ([0], [0]),a)

That is,

rel = map spread � up (const ([0], [0]),a) | (18)

This is now an upwards accumulation, but it is still expensive to compute. The

operation a takes at least linear e�ort, resulting in quadratic e�ort for the upwards

accumulation. One further step is needed before we have an e�cient algorithm for

rel .

We have to �nd an e�cient way of evaluating the operator a from (16):

(w, x)aa (y, z) = ([0] ++ lzip fst (map (�s) w,map (+s) y),

[0] ++ lzip snd (map (�s) x,map (+s) z))

where s = (1 � (x Y y))� 2

One way of doing this is with a data re�nement whereby, instead of maintaining a

list of absolute distances, we maintain a list of relative distances. That is, we make

a data re�nement using the invertible abstraction function msi = map sum � inits ,

which computes absolute distances from relative ones. Under this re�nement, the

maps can be performed in constant time, since

map (+s) (msi x) = msi (mapplus (s, x)) | (19)

where mapplus (b, [a]) = [b+ a]

mapplus (b, [a] ++ x) = [b+ a] ++ x

Moreover, the zips can still be performed in time proportional to their shorter

argument, since if len x� len y then

lzip fst (msi x,msi y) = msi x

and if len x < len y then, letting (y1, y2) = split (len x, y) where

split (1, [a] ++ x) = ([a], x)

split (n+ 1, [a] ++ x) = ([a] ++ v, w) where (v, w) = split (n, x)

we have

lzip fst (msi x,msi y)

=
n

msi y = msi y1 ++map (+sum y1) (msi y2); len x = len y1
o

msi x++map (+sum y1) (msi y2)

Deriving tidy drawings of trees 24

=
n

map (+sum x) � map (�sum x) = id
o

msi x++map (+sum x) (map (�sum x+ sum y1) (msi y2))

=
n
(19)

o

msi x++map (+sum x) (msi (mapplus (sum y1 � sum x, y2)))

=
n

msi (x++ y) = msi x ++map (+sum x) (msi y)
o

msi (x++mapplus (sum y1 � sum x, y2))

By symmetry,

lzip snd (msi x,msi y) = lzip fst (msi y,msi x)

(Note that the guard len x � len y must also be evaluated in time proportional to

the lesser of len x and len y , and so cannot be done simply by computing the two

lengths. In Figure 6 we de�ne the predicate nst (for `no shorter than'), for which

nst (x, y) = (len x � len y) but which takes time proportional to the lesser of len x

and len y .)

The re�ned a still takes linear e�ort because of the zips, but the important

observation is that it now takes e�ort proportional to the length of its shorter

argument (that is, to the lesser of the common lengths of w and x and the common

lengths of y and z , when a is `called' with arguments (w, x) and (y, z)). Reingold

and Tilford (1981) show that, if evaluating h t (a h u from a , h t and h u takes

e�ort proportional to the lesser of the depths of the trees t and u , then the tree

homomorphism h = bh (f,() can be evaluated with linear e�ort. Actually, what

they show is that if g satis�es

g (lf a) = 0

g (br (t, a, u)) = g t+min (depth t, depth u) + g u

then

g x = size x� depth x

which can easily be proved by induction. Intuitively, g counts the number of pairs

of horizontally adjacent elements in a tree.

With this data re�nement, rel can be computed in linear time.

5.2 A downwards accumulation

We now have an e�cient algorithm for rel . All that remains to be done is to �nd

an e�cient algorithm for abs , where

abs = map pabs � paths

pabs = uw (const 0, ~�,+)

We note �rst that computing abs as it stands is ine�cient. No operator (can

satisfy a + const 0 b = const 0 a (b for all a and b , and so pabs cannot be

computed downwards, and abs is not a downwards accumulation. Intuitively, pabs

Deriving tidy drawings of trees 25

starts at the bottom of a path and discards the bottom element, but we cannot do

this when starting at the top of the path.

What extra information do we need in order to be able to compute pabs down-

wards? It turns out that

pabs (x ++ hai) = pabs x� bottom x

pabs (x!++ hai) = pabs x+ bottom x
| (20)

where bottom returns the bottom element of a path:

bottom = uw (id, snd, snd)

Now, pabs and bottom together can be computed downwards, because of (20) and

bottom (x ++ hai) = a

bottom (x!++ hai) = a

Let

pabsb = fork (pabs, bottom) | (21)

Then, by Theorem 6, pabsb is upwards:

pabsb = uw (f,(,)) where f a = (0, a)

a((v, w) = (v � a, w)

a) (v, w) = (v + a, w)

Moreover, by Theorem 5, pabsb is downwards:

pabsb = dw (f,(,)) where f a = (0, a)

(v, w)(a = (v � w, a)

(v, w)) a = (v + w, a)

Finally, by Theorem 3, pabsb is a path homomorphism:

pabsb = ph (f,(,)) | (22)

where f a = (0, a)

(v, w)((x, y) = (v � w + x, y)

(v, w)) (x, y) = (v + w+ x, y)

Putting all this together gives us

abs

=
n
(11)

o

map pabs � paths

=
n
(21)

o

map fst �map pabsb � paths

=
n
(22), with f, (and) as de�ned there

o

map fst �map (ph (f,(,))) � paths

Deriving tidy drawings of trees 26

=
n
(4)

o

map fst � down (f,(,))

That is,

abs = map fst � down (f,(,)) | (23)

which can be computed in linear time.

5.3 The program

To summarize, the program that we have derived is as in Figure 6.

6 Conclusion

6.1 Summary

We have presented a number of natural criteria satis�ed by tidy drawings of unla-

belled binary trees. From these criteria, we have derived an e�cient algorithm for

producing such drawings.

The steps in the derivation were as follows:

(i) we started with an executable speci�cation (5)|an `obviously correct' but

ine�cient program;

(ii) we eliminated one source of ine�ciency, by computing �rst the position of

every parent relative to its children, and then �xing the absolute positions in

a second pass (12);

(iii) we made a step towards making the �rst pass e�cient, by turning the function

computing relative positions into an upwards accumulation (18), computing

not just relative positions but also the outlines of the drawings;

(iv) we made a data re�nement on the outline of a drawing (19), allowing us to

shift it in constant time; and

(v) we made the second pass e�cient by turning the function computing absolute

positions into a downwards accumulation (23), computing not just the absolute

positions but also the bottom element of every path. (In fact, we could have

calculated, using the technique of strengthening invariants (Gries, 1982) and

no invention at all, that

fork (pabs, uw (id, ~�,+))

is downwards, and hence also a path homomorphism; this would have done

just as well.)

The derivation showed several things:

(i) the criteria uniquely determine the drawing of a tree;

(ii) the criteria also determine an ine�cient algorithm for drawing a tree (step (i)

in the derivation), and only three or four small inventive steps (steps (ii) to (v)

in the derivation) are needed to transform this into an e�cient algorithm;

Deriving tidy drawings of trees 27

bdraw = abs � rel

rel = map spread � up (const ([0], [0]),a)

(w, x)aa (y, z) = ([0] ++ lzipfst (mapplus (-s, w), mapplus (s, y)),

[0] ++ lzipsnd (mapplus (-s, x), mapplus (s, z)))

where s = (1 � (xY y))� 2

mapplus (b, [a]) = [a+ b]

mapplus (b, [a]++x) = [a+ b] ++ x

lzipfst (x, y) = x, if nst (x, y)

= x ++mapplus (sum v � sum x, w), otherwise

where (v, w) = split (len x, y)

lzipsnd (x, y) = lzipfst (y, x)

nst (x, [b]) = true

nst ([a], [b] ++ y) = false

nst ([a] ++ x, [b] ++ y) = nst (x, y)

split (1, [a] ++ x) = ([a], x)

split (n+ 1, [a] ++ x) = ([a] ++ v, w) where (v, w) = split (n, x)

spread ([0], [0]) = 0

spread ([0]++x, [0]++y) = -(head x) - head y where a - a = a

v Y w = lh (id,min) (szip (~�) (v, w))

abs = map fst � down (f,(,))

where f a = (0, a)

(v, w)((x, y) = (v � w + x, y)

(v, w)) (x, y) = (v + w + x, y)

Figure 6: The �nal program

Deriving tidy drawings of trees 28

(iii) the algorithm (due to Reingold and Tilford (1981)) is just an upwards accumu-

lation followed by a downwards accumulation, and is further evidence of the

utility of these higher-order operations;

(iv) identifying these accumulations as major components of the algorithm may

lead, using known techniques for computing accumulations in parallel, to an

optimal parallel algorithm for drawing unlabelled binary trees.

6.2 Related work

The problem of drawing trees has quite a long and interesting history. Knuth (1968,

1971) and Wirth (1976) both present simple algorithms in which the x-coordinate of

an element is determined purely by its position in inorder traversal. Wetherell and

Shannon (1979) �rst considered `aesthetic criteria', but their algorithms all produce

biased drawings. Independently of Wetherell and Shannon, Vaucher (1980) gives an

algorithm which produces drawings that are simultaneously biased, irregular, and

wider than necessary, despite his claims to have `overcome the problems' of Wirth's

simple algorithm. Reingold and Tilford (1981) tackle the problems in the algorithms

of Wetherell and Shannon and of Vaucher, by proposing the criteria concerning bias

and regularity. Their algorithm is the one derived for binary trees here. Supowit

and Reingold (1983) show that it is not possible to satisfy regularity and minimal

width simultaneously, and that the problem is NP-hard when restricted to discrete

(for example, integer) coordinates. Br�uggemann-Klein and Wood (1990) implement

Reingold and Tilford's algorithm as macros for the text formatting system TEX.

The problem of drawing general trees has had rather less coverage in the litera-

ture. General trees are harder to draw than binary trees, because it is not so clear

what is meant by `placing siblings as close as possible'. For example, consider a

general tree with three children, t , u and v , in which t and v are large but u

relatively small. It is not su�cient to consider just adjacent pairs of siblings when

spacing the siblings out, because t may collide with v . Spacing the siblings out so

that t and v do not collide allows some freedom in placing u , and care must be

taken not to introduce any bias. Reingold and Tilford (1981) mention general trees

in passing, but make no reference to the di�culty of producing unbiased drawings.

Bloesch (1993) (who adapts the algorithms of Vaucher and of Reingold and Til-

ford to cope with node labels of varying width and height) also does not attempt

to produce unbiased drawings, despite his claims to the contrary. Radack (1988)

e�ectively constructs two drawings, one packing siblings together from the left and

the other from the right, and then averages the results. That algorithm is de-

rived by Gibbons (1991) and described by Kennedy (1995). Walker (1990) uses a

slightly di�erent method; he positions children from left to right, but when a child

touches against a left sibling other than the nearest one, the extra displacement is

apportioned among the intervening siblings.

Deriving tidy drawings of trees 29

6.3 Further work

Gibbons (1991) extends this derivation to general trees. We have yet to apply the

methods used here to Bloesch's algorithm (Bloesch, 1993) for drawing trees in which

the labels may have di�erent heights, but do not expect it to yield any surprises.

It may also be possible to apply the techniques in (Gibbons et al., 1994) to yield

an optimal parallel algorithm to draw a binary tree of n elements in log n time on

n= log n processors, even when the tree is unbalanced|although this is complicated

by having to pass non-constant-size contours around in computing a .

We are currently exploring the application to graphs of some of the general

notions|homomorphisms and accumulations|used here on lists and trees. See

(Gibbons, 1995) for further details.

6.4 Acknowledgements

Thanks are due to Sue Gibbons and the anonymous referees, whose suggestions

improved the presentation of this paper considerably.

References

Roland Backhouse (1989). An exploration of the Bird-Meertens formalism. In

International Summer School on Constructive Algorithmics, Hollum, Ameland.

STOP project. Also available as Technical Report CS 8810, Department of

Computer Science, Groningen University, 1988.

Richard S. Bird (1987). An introduction to the theory of lists. In M. Broy, editor,

Logic of Programming and Calculi of Discrete Design, pages 3{42. Springer-

Verlag. Also available as Technical Monograph PRG-56, from the Programming

Research Group, Oxford University.

Richard S. Bird (1988). Lectures on constructive functional programming. In

Manfred Broy, editor, Constructive Methods in Computer Science, pages 151{

218. Springer-Verlag. Also available as Technical Monograph PRG-69, from

the Programming Research Group, Oxford University.

Anthony Bloesch (1993). Aesthetic layout of generalized trees. Software|Practice

and Experience, 23(8):817{827.

Anne Br�uggemann-Klein and Derick Wood (1990). Drawing trees nicely with TEX.

In Malcolm Clark, editor, TEX: Applications, Uses, Methods, pages 185{206.

Ellis Horwood.

Pierre Deransart, Martin Jourdan, and Bernard Lorho (1988). LNCS 323: Attribute

Grammars|De�nitions, Systems and Bibliography. Springer-Verlag.

Jeremy Gibbons, Wentong Cai, and David Skillicorn (1994). E�cient parallel al-

gorithms for tree accumulations. Science of Computer Programming, 23:1{18.

JeremyGibbons (1991). Algebras for Tree Algorithms. D. Phil. thesis, Programming

Research Group, Oxford University. Available as Technical Monograph PRG-

94.

Deriving tidy drawings of trees 30

Jeremy Gibbons (1993a). Computing downwards accumulations on trees quickly.

In Gopal Gupta, George Mohay, and Rodney Topor, editors, 16th Australian

Computer Science Conference, pages 685{691, Brisbane. Revised version sub-

mitted for publication.

Jeremy Gibbons (1993b). Upwards and downwards accumulations on trees. In R. S.

Bird, C. C. Morgan, and J. C. P. Woodcock, editors, LNCS 669: Mathematics

of Program Construction, pages 122{138. Springer-Verlag. A revised version

appears in the Proceedings of the Massey Functional Programming Workshop,

1992.

JeremyGibbons (1994). How to derive tidy drawings of trees. In C. Calude, M. J. J.

Lennon, and H. Maurer, editors, Proceedings of Salodays in Auckland, pages

53{73, Department of Computer Science, University of Auckland. Also in

Proceedings of First NZFPDC, p. 105{126.

Jeremy Gibbons (1995). An initial-algebra approach to directed acyclic graphs. In

Bernhard M�oller, editor, LNCS 947: Mathematics of Program Construction,

pages 282{303. Springer-Verlag.

JeremyGibbons (1996). The Third HomomorphismTheorem. Journal of Functional

Programming, 6(4). Earlier version appeared in C.B. Jay, editor, Computing:

The Australian Theory Seminar, Sydney, December 1994, p. 62{69.

David Gries (1982). A note on a standard strategy for developing loop invariants

and loops. Science of Computer Programming, 2:207{214.

Andrew Kennedy (1995). Drawing trees. Journal of Functional Programming, To

appear.

Donald E. Knuth (1968). The Art of Computer Programming, Volume 1: Funda-

mental Algorithms. Addison-Wesley.

Donald E. Knuth (1971). Optimum binary search trees. Acta Informatica, 1:14{25.

Richard E. Ladner and Michael J. Fischer (1980). Parallel pre�x computation.

Journal of the ACM, 27(4):831{838.

Grant Malcolm (1990). Algebraic Data Types and Program Transformation. PhD

thesis, Rijksuniversiteit Groningen.

Lambert Meertens (1986). Algorithmics: Towards programming as a mathematical

activity. In J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra, editors,

Proc. CWI Symposium on Mathematics and Computer Science, pages 289{

334. North-Holland.

G. M. Radack (1988). Tidy drawing of M-ary trees. Technical Report CES-88-

24, Department of Computer Engineering and Science, Case Western Reserve

University, Cleveland, Ohio.

Edward M. Reingold and John S. Tilford (1981). Tidier drawings of trees. IEEE

Transactions on Software Engineering, 7(2):223{228.

David B. Skillicorn (1993). Parallel evaluation of structured queries in text.

Draft, Department of Computing and Information Sciences, Queen's Univer-

Deriving tidy drawings of trees 31

sity, Kingston, Ontario.

Kenneth J. Supowit and Edward M. Reingold (1983). The complexity of drawing

trees nicely. Acta Informatica, 18(4):377{392.

Jean G. Vaucher (1980). Pretty-printing of trees. Software|Practice and Experi-

ence, 10:553{561.

John Q. Walker, ii (1990). A node-positioning algorithm for general trees.

Software|Practice and Experience, 20(7):685{705.

Charles Wetherell and Alfred Shannon (1979). Tidy drawings of trees. IEEE

Transactions on Software Engineering, 5(5):514{520.

Niklaus Wirth (1976). Algorithms + Data Structures = Programs. Prentice Hall.

