
CDMTCS

Research

Report

Series

Computing

downwards accumulations

on trees quickly

Jeremy Gibbons

Department of Computer Science

University of Auckland

CDMTCS-002

March 1995

Centre for Discrete Mathematics and

Theoretical Computer Science

Computing downwards accumulations on trees quickly

Jeremy Gibbons

Abstract. Downwards passes on binary trees are essentially functions which pass information
down a tree, from the root towards the leaves. Under certain conditions, a downwards pass is both
`e�cient' (computable in a functional style in parallel time proportional to the depth of the tree)
and `manipulable' (enjoying a number of distributivity properties useful in program construction);
we call a downwards pass satisfying these conditions a downwards accumulation. In this paper,
we show that these conditions do in fact yield a stronger conclusion: the accumulation can be
computed in parallel time proportional to the logarithm of the depth of the tree, on a Crew
Pram machine.

1 Introduction

The value of programming calculi for the development of correct programs is now

clear to the computer science community; their value is even greater for paral-

lel programming than it is for sequential programming, on account of the greater

complexity of parallel computations. One such programming calculus is the Bird-

Meertens formalism (Meertens, 1986; Bird, 1987, 1988; Backhouse, 1989), which

relies on the algebraic properties of data structures to provide a body of program

transformation rules. This emphasis on the properties of data leads to a `data par-

allel' programming style (Hillis and Steele, 1986), which appears to be a promising

vehicle for architecture-independent parallel computation (Skillicorn, 1990, 1994).

This paper is concerned with one particular data-parallel operation on one partic-

ular data structure, namely downwards passes on binary trees. Downwards passes

are essentially functions which `pass information down a tree', from the root to-

wards the leaves. A downwards pass replaces every element of a tree with some

function of that element's ancestors.

In general, downwards passes are neither `e�cient' (computable in a functional

style in parallel time proportional to the product of the depth of the tree and

the time taken by the individual operations) nor homomorphic (enjoying certain

desirable program transformation properties). However, under certain conditions

on the individual operations, downwards passes are both e�cient and homomorphic;

such downwards passes are called downwards accumulations.

Copyright c
1995 Jeremy Gibbons. Author's address: Dept of Computer Science, University of
Auckland, Private Bag 92019, Auckland, New Zealand. Email: jeremy@cs.auckland.ac.nz. An
earlier version of this paper appears in the Proceedings of the 16th Australian Computer Science
Conference, Brisbane, February 1993. This version to appear in Theoretical Computer Science

Volume 169, 1996.

2 Jeremy Gibbons

Downwards accumulations, together with their natural counterpart, upwards ac-

cumulations (Gibbons, 1991, 1993), form the basis of many tree algorithms. For

example:

� the parallel pre�x algorithm (Ladner and Fischer, 1980) is simply an upwards

accumulation followed by a downwards accumulation;

� attribute grammars (Knuth, 1968) can be completely evaluated in two passes

by performing an upwards followed by a downwards accumulation using `con-

tinuations' (Gibbons, 1991);

� the backwards analysis of a functional program to determine strictness infor-

mation (Hughes, 1990) is just a downwards accumulation on the parse tree of

that program.

The purpose of this paper is to show that the conditions under which downwards

passes are e�cient and homomorphic, and hence are downwards accumulations,

are in fact su�cient to allow them to be computed on a Crew Pram (but not

on a functional machine) in time proportional to the product of the logarithm of

the depth of the tree and the time taken by the individual operations|which is

signi�cantly faster than the obvious way of computing them. This resolves one of

the questions posed by Gibbons (1991).

The remainder of this paper is organized as follows. In Section 2, we present

our notation. In Sections 3 and 4, we summarize the de�nitions of homomorphic

and e�cient downwards passes. In Section 5, we prove a theorem, the Third Ho-

momorphism Theorem for Paths, concerning downwards accumulations. Finally,

in Section 6, we show that, under certain conditions, a downwards pass can be

computed on a Crew Pram in parallel time proportional to the product of the

logarithm of the depth of the tree and the time taken by the individual operations.

The Third Homomorphism Theorem tells us that, in fact, all homomorphic and

e�cient downwards passes satisfy these conditions.

2 Notation

We write function composition with an in�x ` � ':

(f � g)(a) = f(g(a))

We make much use of in�x binary operators. Such operators can be turned into

unary functions by sectioning or partial application:

ha(i(b) = a (b = h(bi(a)

Data types are constructed as the `least solutions' of recursive type equations.

The type tree(A) of homogeneous, regular, non-empty binary trees with labels of

type A is de�ned by

tree(A) = Lf(A) j Br(tree(A), A, tree(A))

Informally, this says that:

Computing downwards accumulations on trees quickly 3

� if a is of type A , then Lf(a) (a leaf labelled with a) is of type tree(A) ;

� if x and y are of type tree(A) and a is of type A then Br(x, a, y) (a branch

labelled with a , with children x and y) is of type tree(A) ;

� moreover, nothing else is of type tree(A) .

For example, the expression

Br(Lf(b), a, Br(Lf(d), c, Lf(e)))

corresponds to the tree

b

a

d

c

e�
which we call �ve , and use as an example later.

Homomorphisms form an important class of functions over a given data type.

They are the functions that `promote through' the type constructors. The tree

function h is a homomorphism if there is a function g such that

h(Br(x, a, y)) = g(h(x), a, h(y))

for all x , a and y . In fact, one consequence of the de�nition of a type as the

least solution of a type equation is that, for given f and g , there is a unique

homomorphism h such that, for all x , a and y , the equations

h(Lf(a)) = f(a)

h(Br(x, a, y)) = g(h(x), a, h(y))

hold. In essence, this solution is a `relabelling': it replaces every occurrence of Lf

in a tree with f , and every occurrence of Br with g .

Homomorphisms are well-behaved, in the sense that they obey a number of `pro-

motion' or distributivity laws useful for proving properties of programs (Malcolm,

1990). They can also be computed in parallel time proportional to the product of

the `depth' of the structure and the time taken by the individual operations.

One example of a tree homomorphism is the function map(f) , which applies f

to every element of a tree:

map(f)(Lf(a)) = Lf(f(a))

map(f)(Br(x, a, y)) = Br(map(f)(x), f(a), map(f)(y))

4 Jeremy Gibbons

3 Paths

The de�nitions and concepts in this section and the next are based, with mi-

nor changes, on those of Gibbons (1991). Another presentation is given by Gib-

bons (1993).

De�ne the type path(A) as the least solution of the equation

path(A) = Sp(A) j path(A) ++ path(A) j path(A)!++ path(A)

modulo some laws described below. That is, for every a of type A , there is a

singleton path Sp(a) labelled with a , and for paths x and y there are paths x ++ y

and x!++ y . The constructors ++ and !++ are pronounced `left turn' and `right turn'

respectively.

The laws obeyed by the path constructors are that ++ and !++ cooperate with

each other|the four equations

x ++ (y ++ z) = (x ++ y) ++ z

x ++ (y!++ z) = (x ++ y)!++ z

x!++ (y ++ z) = (x!++ y) ++ z

x!++ (y!++ z) = (x!++ y)!++ z

hold. This `cooperativity property' is a generalization of associativity. It means

that any path expression can be written as a sequence of singleton paths joined

with ++ and !++, and that parentheses are not needed for disambiguation. Paths

are a generalization of non-empty lists, which are de�ned as the least solution of

the equation

list(A) = Sl(A) j list(A) ++ list(A)

modulo the law that ++ is associative. Paths could be thought of as non-empty

lists, but with two `colours' (say, lemon and red) of concatenation constructor.

We use paths to represent the ancestors of an element in a tree. For example,

the ancestors of the element d in the tree �ve form the path

a

c

d�
which is represented by the expression Sp(a) !++ Sp(c) ++ Sp(d) . This correspon-

dence explains the pronunciations `left turn' and `right turn'. By the `top' of a

path, we mean the �rst element (a in this case), and by the `bottom', we mean the

last (d).

Computing downwards accumulations on trees quickly 5

Path homomorphisms promote through ++ and !++:

Definition (1) Function h on paths is (P,a)-homomorphic i� for all x and y ,

h(x ++ y) = h(x)P h(y)

h(x!++ y) = h(x)a h(y)

Function h is homomorphic i� there exist operators P and a such that h is

(P,a)-homomorphic. }

Definition (2) Write hom(f,P,a) for the (unique) (P,a)-homomorphic func-

tion h such that h(Sp(a)) = f(a) for all a . }

For example,

hom(f,P,a)(Sp(a)!++ Sp(c) ++ Sp(d)) = f(a) a f(c)P f(d)

One simple example of a path homomorphism is the function length returning

the length of a path:

length = hom(one,+,+)

where, for all a ,

one(a) = 1

For example,

length(Sp(a)!++ Sp(c) ++ Sp(d)) = one(a) + one(b) + one(c) = 3

More interesting examples can be constructed.

We note in passing that the components of a homomorphism necessarily respect

the cooperativity laws on paths:

Theorem (3) If h is (P,a)-homomorphic, then P and a necessarily cooperate

on the range of h|the four equations

h(x) P (h(y)P h(z)) = (h(x) P h(y)) P h(z)

h(x) P (h(y)a h(z)) = (h(x) P h(y)) a h(z)

h(x) a (h(y)P h(z)) = (h(x) a h(y)) P h(z)

h(x) a (h(y)a h(z)) = (h(x) a h(y)) a h(z)

hold. }

Proof The proof of the third equation is as follows:

h(x)a (h(y)P h(z))

=
n

h is (P,a)-homomorphic
o

h(x)a h(y ++ z)

=
n

h is (P,a)-homomorphic again
o

h(x!++ (y ++ z))

6 Jeremy Gibbons

=
n
 ++ and !++ cooperate

o

h((x!++ y) ++ z)

=
n

h is (P,a)-homomorphic, twice
o

(h(x)a h(y))P h(z)

The other three proofs are similar. ~

4 Downwards passes

Downwards passes are de�ned in terms of the ancestors of the elements in a tree.

The function paths replaces every element of a tree with that element's ancestors:

Definition (4) The function paths is de�ned by

paths(Lf(a)) = Lf(Sp(a))

paths(Br(x, a, y)) = Br(map(hSp(a) ++i)(paths(x)),
Sp(a),

map(hSp(a)!++i)(paths(y)))

}

For example, paths(�ve) represents the tree

Sp(a) ++ Sp(b)

Sp(a)

Sp(a)!++ Sp(c) ++ Sp(d)

Sp(a)!++ Sp(c)

Sp(a)!++ Sp(c)!++ Sp(e)�
Downwards passes are functions which `pass information down a tree'. In other

words, each element is replaced with some function of its ancestors. The `shape' of

the tree is unchanged; downwards passes are a shapely operation (Jay and Cockett,

1994).

Definition (5) Functions of the form map(h) � paths are called downwards passes.

}

Downwards passes are not necessarily easy to compute, since it is not necessarily

possible to `reuse' the value given to a parent in computing the value given to its

children. To address this problem, we isolate a particular kind of path function:

Definition (6) Downwards reduction on a path dr(f,(,X) satis�es

dr(f,(,X)(Sp(a)) = f(a)

dr(f,(,X)(x ++ y) = dr(hdr(f,(,X)(x)(i,(,X)(y)

dr(f,(,X)(x!++ y) = dr(hdr(f,(,X)(x)Xi,(,X)(y)

Computing downwards accumulations on trees quickly 7

}

In particular,

dr(f,(,X)(Sp(a) ++ y) = dr(hf(a)(i,(,X)(y)

dr(f,(,X)(Sp(a)!++ y) = dr(hf(a)Xi,(,X)(y)

and, for example,

dr(f,(,X)(Sp(a)!++ Sp(c) ++ Sp(d)) = (f(a)X c)(d

Thus,

length = dr(one,-,-)

where

x- a = x + 1

for all x and a ; in general,

hom(f,P,a) = dr(f,(,X)

where

x(a = x P f(a)

xX a = x a f(a)

and so all path homomorphisms are downwards reductions (but the converse does

not hold).

The downwards passes map(h) � paths in which h is a downwards reduction are

called e�cient downwards passes:

Definition (7) Functions of the form map(dr(f,(,X)) � paths are called e�cient

downwards passes. }

E�cient downwards passes are, as the name suggests, cheap to compute, since

map(dr(f,(,X))(paths(Br(x, a, y))) = Br(map(dr(hf(a)(i,(,X))(paths(x)),

f(a),

map(dr(hf(a)Xi,(,X))(paths(y)))

and so can be computed in parallel functional time proportional to the product of

the depth of the tree and the time taken by the individual operations.

For example, the function depths , which replaces every element of a tree with its

depth in the tree, is de�ned by

depths = map(length) � paths = map(dr(one,-,-)) � paths

where - is as de�ned above. The function depths can be computed in parallel

functional time proportional to the depth of the tree.

Unfortunately, e�cient downwards passes are not in general homomorphic, be-

cause the result of applying map(dr(f,(,X)) � paths to the tree Br(x, a, y) depends

8 Jeremy Gibbons

on the results of applying di�erent operations, map(dr(hf(a)(i,(,X)) � paths and

map(dr(hf(a)Xi,(,X)) � paths , to its children x and y . Therefore, e�cient down-

wards passes do not enjoy the promotion properties alluded to earlier. To remedy

this problem, we introduce another class of path function:

Definition (8) Upwards reduction on paths ur(f,),Y) satis�es

ur(f,),Y)(Sp(a)) = f(a)

ur(f,),Y)(x ++ y) = ur(h)ur(f,),Y)(y)i,),Y)(x)

ur(f,),Y)(x!++ y) = ur(hYur(f,),Y)(y)i,),Y)(x)

}

In particular,

ur(f,),Y)(Sp(a) ++ y) = a) ur(f,),Y)(y)

ur(f,),Y)(Sp(a)!++ y) = a Y ur(f,),Y)(y)

For example,

ur(f,),Y)(Sp(a)!++ Sp(c) ++ Sp(d)) = aY (c) f(d))

The function length on paths is also an upwards reduction and, in general, all

path homomorphisms are upwards reductions (but once more, the converse does

not hold).

Definition (9) Functions of the form map(ur(f,),Y)) � paths are called homo-

morphic downwards passes. }

Since depth is a path homomorphism, the function depths is a homomorphic down-

wards pass as well as an e�cient downwards pass.

Homomorphic downwards passes satisfy

map(ur(f,),Y))(paths(Br(x, a, y)))

= Br(map(ha)i)(map(ur(f,),Y))(paths(x))),

f(a),

map(haYi)(map(ur(f,),Y))(paths(y))))

and so, as the name suggests, are homomorphic. That is, the result of applying a

homomorphic downwards pass to a tree Br(x, a, y) can be computed from the results

of applying the same operation to x and to y . Unfortunately, these operations can

not in general be computed e�ciently|the maps map(ha)i) and map(haYi) are

expensive to compute. Under what conditions do homomorphic downwards passes

coincide with e�cient downwards passes?

Theorem (10) If

h = dr(f,(,X) = ur(f,),Y)

then map(h) � paths is both e�cient and homomorphic. }

Computing downwards accumulations on trees quickly 9

Theorem (11) If

f(a) (b = a) f(b)

f(a) X b = a Y f(b)

and) and Y cooperate with (and X , that is,

a) (b(c) = (a) b)(c

a) (bX c) = (a) b)X c

aY (b(c) = (a Y b)(c

aY (bX c) = (a Y b)X c

then

dr(f,(,X) = ur(f,),Y)

}

Proof The proof is by straightforward induction. ~

Corollary (12) Under the premises of Theorem 11 concerning f , (, X ,)

and Y , the e�cient downwards pass map(dr(f,(,X)) � paths is equal to the homo-

morphic downwards pass map(ur(f,),Y)) � paths . }

Thus, under the premises of Theorem 11, we have a downwards pass that is both

e�cient and homomorphic.

5 The Third Homomorphism Theorem for paths

Recall the data type of non-empty lists mentioned in Section 3. Homomorphisms

over such lists are functions h which satisfy

h(x++ y) = h(x)P h(y)

for some associative operator P . Leftwards reductions are functions h which satisfy

h(Sl(a) ++ y) = a(h(y)

for some (not necessarily associative) (, and rightwards reductions are functions

h which satisfy

h(x++ Sl(a)) = h(x)) a

for some (again, not necessarily associative)) . Bird's Third Homomorphism The-

orem on lists (Gibbons, 1996) states that any function which is both a leftwards and

a rightwards reduction is also a homomorphism. Thus, for example, any language

that is recognizable by both right-to-left and left-to-right sequential algorithms is

also recognizable by a `homomorphic' algorithm, which is much better suited to par-

allel implementation (Barnard et al., 1991). We show here that a similar theorem

holds for paths.

Lemma (13) For every computable total function h with enumerable domain,

there is a computable (but possibly partial) function g such that h � g � h = h . }

10 Jeremy Gibbons

Proof Here is one way of computing g(t) for given t : simply enumerate the

domain of h and return the �rst x such that h(x) = t . If t is in the range of h ,

then this process terminates. ~

Lemma (14) The path function h is a homomorphism i� the two implications

h(v) = h(x) ^ h(w) = h(y)) h(v ++ w) = h(x ++ y) | (i)

h(v) = h(x) ^ h(w) = h(y)) h(v!++ w) = h(x!++ y) | (ii)

hold for all lists v, w, x, y . }

Proof The `only if' part of the lemma is obvious: if h is a homomorphism, then

there are operators P and a such that h(x ++ y) = h(x) P h(y) and h(x!++ y) =

h(x) a h(y) for all x and y , and the implications trivially hold. Now consider the

`if' part.

Assume that h satis�es (i) and (ii); we must show that h is a homomorphism.

Choose a g such that h � g � h = h , and de�ne operators P and a by the equations

sP t = h(g(s) ++ g(t))

sa t = h(g(s)!++ g(t))

Because of the way that we chose g , h(x) = h(g(h(x))) and h(y) = h(g(h(y))) , and

so, by (i) (with v = g(h(x)) and w = g(h(y))), we have

h(x ++ y) = h(g(h(x)) ++ g(h(y))) = h(x)P h(y)

Similarly, by (ii) we have

h(x!++ y) = h(x)a h(y)

and hence h is (P,a)-homomorphic. ~

Theorem (15) (Third Homomorphism Theorem for Paths) If

h = dr(f,(,X) = ur(f,),Y)

then h is a path homomorphism. }

Proof Suppose h = dr(f,(,X) = ur(f,),Y) , h(v) = h(x) and h(w) = h(y) .

Then

h(v ++ w)

=
n
since h = dr(f,(,X)

o

dr(f,(,X)(v ++ w)

=
n
downwards reductions

o

dr(hdr(f,(,X)(v)(i,(,X)(w)

=
n
since h = dr(f,(,X)

o

dr(hh(v)(i,(,X)(w)

Computing downwards accumulations on trees quickly 11

=
n
given h(v) = h(x)

o

dr(hh(x)(i,(,X)(w)

=
n
reversing �rst three steps

o

h(x ++ w)

=
n
similarly, using h = ur(f,),Y)

o

h(x ++ y)

Similarly, we get

h(v!++ w) = h(x!++ y)

Hence, by Lemma 14, h is a homomorphism. ~

Thus, the conditions under which the downwards pass map(h) � paths is e�cient

and homomorphic|namely, that h is both a downwards and an upwards reduction

on paths|are su�cient to ensure that the downwards pass is in fact a path ho-

momorphism mapped over the paths of a tree. (Note, however, that the operators

involved in the path homomorphism do not necessarily take the same time to com-

pute as those involved in the downwards and upwards reductions.) We therefore

choose this as the de�nition of a downwards accumulation.

Definition (16) Downwards accumulation on trees da(f,P,a) satis�es

da(f,P,a) = map(hom(f,P,a)) � paths

}

We show next how to compute such an accumulation in time logarithmic in the

depth of the tree on a Crew Pram.

6 Computing downwards accumulations in logarithmic time

Suppose the binary tree has a processor at every node. The processor at node v

maintains a pointer v.p , initially to the parent of v . The pointer at the root of

the tree is initially nil . The processor at node v also maintains a value v.val ; on

completion of the algorithm, v.val will hold the result for node v .

We show �rst how to compute the accumulation da(f,P,P) which, for simplicity,

does not di�erentiate between left and right children. We then modify the algorithm

to compute the more general accumulation da(f,P,a) .

For a node with ancestors Sp(a)!++ Sp(c) ++ Sp(d) , we have to compute the value

f(a) P f(c) P f(d) . Every processor v initializes v.val to the result of applying f

to v.l , the label of node v . Then we proceed by `pointer doubling' (Wyllie, 1979):

every processor v for which v.p is not nil `adds' to v.val the val held by processor

v.p , then sets v.p to the p held by processor v.p . Initially, every processor holds

the `sum' of just one value, but each iteration doubles the number of values summed,

12 Jeremy Gibbons

so dlog de iterations su�ce to compute the accumulation, where d is the depth of

the tree.

The program is as follows:

for each node v in parallel do begin

v.val := f(v.l);

while v.p 6= nil do

v.val, v.p := v.p.val P v.val, v.p.p

end

The invariant for the inner loop is that, at the start of the ith iteration, v.val holds

the result of applying hom(f,P,P) to the bottom 2i�1 elements of the path from

the root to v (or to the whole path, if it has less than 2i�1 elements), and v.p

points to the lowest ancestor not included in this `sum' (or nil , if all ancestors are

included).

Clearly, the inner loop makes at most dlog de iterations, each of which performs

one application of P and a number of pointer manipulations. The whole program

takes time proportional to the product of dlog de and the time taken by P .

The inner loop in this program causes a read con
ict. On the �rst iteration, each

parent is asked for its value by both of its children at once; on the second, by each

of its (up to) four grandchildren at once; and so on. Hence, this algorithm is not

suitable for an Erew Pram.

We have shown how to compute the downwards accumulation da(f,P,P) , in

which left and right children are treated the same. It is straightforward to compute

the more general accumulation da(f,P,a) . The only di�erence is that each pro-

cessor v must record whether it is a left or right descendant of v.p , and perform

P or a accordingly. Each processor v maintains a variable v.s , the `side', which

is initially l for left children and r for right children (and not used for the root).

The program is as follows:

for each node v in parallel do begin

v.val := f(v.l);

while v.p 6= nil do

if v.s = l then

v.val, v.s, v.p := v.p.val P v.val, v.p.s, v.p.p

else

v.val, v.s, v.p := v.p.val a v.val, v.p.s, v.p.p

end

Thus, the accumulation da(f,P,a) can be computed on a Crew Pram in time

proportional to the product of the logarithm of the depth of the tree and the time

taken by the individual P and a operations.

Computing downwards accumulations on trees quickly 13

7 Conclusions

Gibbons (1991) showed that, if f , (and X permit operators) and Y satisfying

f(a) (b = a) f(b) and f(a) X b = a Y f(b) such that) and Y cooperate with

(and X , then the downwards accumulation da(f,(,X) is both manipulable and

e�ciently implementable|in time proportional to the product of the depth of the

tree and the time taken by the individual operations|in a functional language.

We have shown in Section 5 that these conditions are su�cient to ensure that the

function applied to every path in the argument is in fact a path homomorphism.

This conclusion led to the algorithm in Section 6, which computes the accumulation

on a Crew Pram in time proportional to the product of the logarithm of the depth

and the time taken by the individual operations, by a process of `pointer doubling'.

Gibbons et al. (1994) describe an entirely di�erent algorithm for the same prob-

lem, based on parallel tree contraction (Miller and Reif, 1985) rather than on pointer

doubling. Their algorithm takes time proportional to the logarithm of the size of

the tree, as opposed to its depth, and so it is slower in general, but it is suitable for

the more restrictive Erew Pram. Their approach can also be used for computing

upwards accumulations, whereas the one presented here can not.

The author is indebted to David Skillicorn for being a sounding board for ideas,

and to him and the anonymous referees for making many suggestions to improve the

presentation of this paper. Thanks are also due to Sue Gibbons, for her energetic

red pen.

References

Roland Backhouse (1989). An exploration of the Bird-Meertens formalism. In

International Summer School on Constructive Algorithmics, Hollum, Ameland.

STOP project. Also available as Technical Report CS 8810, Department of

Computer Science, Groningen University, 1988.

D. T. Barnard, J. P. Schmeiser, and D. B. Skillicorn (1991). Deriving associative

operators for language recognition. Bulletin of the European Association for

Theoretical Computer Science, 43:131{139.

Richard S. Bird (1987). An introduction to the theory of lists. In M. Broy, editor,

Logic of Programming and Calculi of Discrete Design, pages 3{42. Springer-

Verlag. Also available as TechnicalMonograph PRG-56, from the Programming

Research Group, Oxford University.

Richard S. Bird (1988). Lectures on constructive functional programming. In

Manfred Broy, editor, Constructive Methods in Computer Science, pages 151{

218. Springer-Verlag. Also available as Technical Monograph PRG-69, from

the Programming Research Group, Oxford University.

Jeremy Gibbons, Wentong Cai, and David Skillicorn (1994). E�cient parallel al-

gorithms for tree accumulations. Science of Computer Programming, 23:1{18.

JeremyGibbons (1991). Algebras for Tree Algorithms. D. Phil. thesis, Programming

14 Jeremy Gibbons

Research Group, Oxford University. Available as Technical Monograph PRG-

94.

Jeremy Gibbons (1993). Upwards and downwards accumulations on trees. In R. S.

Bird, C. C. Morgan, and J. C. P. Woodcock, editors, LNCS 669: Mathematics

of Program Construction, pages 122{138. Springer-Verlag. A revised version

appears in the Proceedings of the Massey Functional Programming Workshop,

1992.

JeremyGibbons (1996). The Third HomomorphismTheorem. Journal of Functional

Programming, 6(4). Earlier version appeared in C.B. Jay, editor, Computing:

The Australian Theory Seminar, Sydney, December 1994, p. 62{69.

W. Daniel Hillis and Guy L. Steele (1986). Data parallel algorithms. Communica-

tions of the ACM, 29(12):1170{1183.

John Hughes (1990). Compile-time analysis of functional programs. In David A.

Turner, editor, Research Topics in Functional Programming, pages 117{153.

Addison-Wesley.

C. Barry Jay and J. R. B. Cockett (1994). Shapely types and shape polymor-

phism. In Donald Sannella, editor, LNCS 788: Programming Languages and

Systems|ESOP '94, pages 302{316. Springer-Verlag.

Donald E. Knuth (1968). Semantics of context-free languages. Mathematical Sys-

tems Theory, 2(2):127{145.

Richard E. Ladner and Michael J. Fischer (1980). Parallel pre�x computation.

Journal of the ACM, 27(4):831{838.

Grant Malcolm (1990). Algebraic Data Types and Program Transformation. PhD

thesis, Rijksuniversiteit Groningen.

Lambert Meertens (1986). Algorithmics: Towards programming as a mathematical

activity. In J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra, editors,

Proc. CWI Symposium on Mathematics and Computer Science, pages 289{

334. North-Holland.

Gary L. Miller and John H. Reif (1985). Parallel tree contraction and its application.

In 26th IEEE Symposium on the Foundations of Computer Science, pages 478{

489.

David B. Skillicorn (1990). Architecture independent parallel computation. IEEE

Computer, 23(12):38{51.

David B. Skillicorn (1994). Foundations of Parallel Programming. Cambridge

University Press.

J. C. Wyllie (1979). The Complexity of Parallel Computations. PhD thesis, Cornell

University.

