
CDMTCS

Research

Report

Series

An initial-algebra approach

to directed acyclic graphs

Jeremy Gibbons

Department of Computer Science

University of Auckland

CDMTCS-001

April 1995

Centre for Discrete Mathematics and

Theoretical Computer Science

An initial-algebra approach to directed acyclic

graphs

Jeremy Gibbons

Department of Computer Science

University of Auckland

Private Bag 92019, Auckland, New Zealand.

Email: jeremy@cs.auckland.ac.nz

Abstract. The initial-algebra approach to modelling datatypes consists of giving constructors

for building larger objects of that type from smaller ones, and laws identifying di�erent ways

of constructing the same object. The recursive decomposition of objects of the datatype leads

directly to a recursive pattern of computation on those objects, which is very helpful for both

functional and parallel programming.

We show how to model a particular kind of directed acyclic graph using this initial-algebra

approach.

Keywords. Graphs, data types, catamorphisms, initial algebras, Bird-Meertens Formalism,

program derivation.

1 Introduction

It is now widely recognized that the traditional ad-hoc approaches to program
construction do not yield reliable software; a more systematic and formal approach
is required. One such approach consists of program veri�cation|proving after the
fact that a given program satis�es its formal speci�cation. This approach turns out
to be di�cult to implement, not least because the vast majority of programs would

not satisfy their speci�cation, even if they had one, but more importantly, because
program veri�cation gives no direct help in actually constructing the program in
the �rst place.

An alternative approach is provided by program derivation, whereby a program is
calculated from its formal speci�cation by the application of a series of correctness-

preserving transformations. The resulting program is guaranteed to satisfy its spec-
i�cation (assuming that the calculation is carried out correctly), but now its con-

struction and veri�cation are performed together, allowing insights from each to

Copyright c1994 Jeremy Gibbons. In LNCS 947, Mathematics of Program Construction, ed.

B.M�oller, p. 282{303, 1995. This work has been partially supported by University of Auckland

Research Committee grant numbers A18/XXXXX/62090/3414013, /3414019 and /3414024.

An initial-algebra approach to directed acyclic graphs 2

help with the other.

Such a calculational approach necessitates having a body of notations for writing

programs and theorems for proving equalities between them|that is, a calculus of

programs. The Bird-Meertens Formalism (Meertens, 1986; Bird, 1987; Backhouse,

1989) is one such calculus; it relies on tightly-coupled notions of data and program

structure to yield its notations and theorems. In particular, datatypes are de�ned as

extreme (initial or terminal) objects in categories of algebras|equivalently, extreme

solutions of recursive systems of equations|and various morphisms representing

common patterns of computation on those datatypes de�ned as the corresponding

unique arrows from or to those objects. In this paper, we consider only initial

algebras and catamorphisms, the corresponding morphisms; how well the ideas

translate to �nal algebras and other morphisms remains to be seen.

De�ning a datatype as an initial algebra essentially consists of giving two kinds

of object:

� constructors for building larger elements of that type from smaller elements,

and

� laws identifying syntactically di�erent but semantically equivalent ways of con-
structing an element of that type.

Studying the initial algebra corresponding to a datatype gives new ways of im-

plementing that datatype, and new insight into old algorithms|and sometimes
even new algorithms|on that datatype. Moreover, the initial-algebra approach
to datatypes appears to be particularly suitable for implementation in functional
languages and in languages for parallel execution (Skillicorn, 1994).
We have a good understanding of initial algebras corresponding to many common

datatypes, such as lists (Bird, 1987), sets and bags (Backhouse, 1989; Hoogendijk,
1993; Bunkenburg, 1993), trees (Meertens, 1988; Jeuring, 1989; Gibbons, 1991),
and arrays (Wright, 1988; Bird, 1988; Jeuring, 1991). One datatype ubiquitous in
computing but conspicuous by its absence from this collection is that of graphs. The
reason for this absence is that in order to model graphs, it appears that some means

of `naming' subcomponents is required. In contrast, the initial-algebra approach
permits only `structural' references to subcomponents.
In this paper we take steps towards remedying this absence, by de�ning and

exploring an initial algebra corresponding to directed acyclic graphs. We show

that naming is not necessary for modelling directed acyclic graphs. However, these

are only the �rst steps; for one thing, the algebra does not correspond exactly
to directed acyclic graphs, and for another, there are other kinds of graphs (for

example, undirected graphs and directed cyclic graphs) to consider. These are
topics for further study.

The rest of this paper is organized as follows. In Section 2, we review the initial-
algebra approach to modelling datatypes. In Section 3, we present an initial-algebra

An initial-algebra approach to directed acyclic graphs 3

Figure 1: An unlabelled join list

de�nition of unlabelled directed acyclic graphs. In Section 4, we discuss catamor-

phisms on graphs. In Section 5, we generalize the construction of Section 3 to

labelled directed acyclic graphs. In Section 6, we discuss other approaches to rep-

resenting graphs in a style suitable for functional programming. Finally, Section 7

summarizes and presents directions for further work.

Throughout this paper, we write ` . ' for function application, which associates to

the right, and ` � ' for function composition, which is associative:

(g � f).a = g.(f.a) = g.f.a

We write ` a : A ' for ` a has type A ', and `N ' for the type of natural numbers in-
cluding zero. For associative operator (, we write copy(n,(, x) as an abbreviation
for x (x (� � � (x with n occurrences of x . For any x , copy(0,(, x) is the unit
of (if it exists.

2 Initial Algebras and Catamorphisms

We introduce the initial-algebra approach to datatypes by way of a simple familiar
example, the algebra of join lists. We use what may seem like unnecessarily heavy
machinery for this simple example; the reason is that the machinery is necessary
for the more complex algebra of directed acyclic graphs that is the subject of this
paper.

2.1 Unlabelled Join Lists

We start by considering `unlabelled join lists' (ujls), which are �nite possibly-
empty chains of unlabelled nodes. For example, the ujl with three nodes might
be drawn as in Figure 1. Ujls are built using three constructors: the constants
null and node , respectively representing the empty list and the list with one node,

and the binary operator ++ (pronounced `join') which joins two lists to make a

(usually) longer list.
These constructors obey some laws, identifying di�erent ways of building the

same list. These laws are that ++ is associative and has unit null . (In other words,

the constructors form a monoid.) For example, the list in Figure 1 is represented

by (among others) the expression

node ++ node++ node

Because of associativity, no parentheses are needed.

Ujls can be modelled as a category. Recall that a category consists of a collection

of objects and a collection of arrows between objects. We write ` x : m ! n ' to

An initial-algebra approach to directed acyclic graphs 4

3 1 6

Figure 2: A labelled join list

indicate that arrow x goes from object m to object n . Compatible arrows can

be composed; if x : m ! n and y : n ! p then x ; y : m ! p . Composition is

associative, and for every object m there is an identity arrow idm : m! m which

is the unit of composition to or from that object.

In the case of ujls, the category has a single object, corresponding to the type of

all ujls, and arrows corresponding to the lists themselves. Composition of arrows

corresponds to joining lists; since there is but a single object, all pairs of arrows are

composable. The identity arrow corresponds to the empty list. We require an arrow

corresponding to the list node with a single element; since the collection of arrows

is closed under composition, there is then necessarily an arrow corresponding to
every ujl.
If we now consider those categories with a single object, they in turn form a

category L , with objects the categories in question and arrows the functors between

these categories. (A functor F from category B to category C is a morphism on
categories taking objects of B to objects of C and arrows of B to arrows of C such
that, if x : m ! n in B then F.x : F.m ! F.n in C , and moreover F.idm = idF.m

and F.(x ; y) = F.x ; F.y .) We de�ne the algebra of ujls to be the initial object
in L , that is, the object in L from which there is a unique arrow to any other
object in L . (The initial object is unique up to isomorphism, and can be shown to

exist.) Informally, this states that ujls form the smallest algebra closed under the
constructors in which the given laws hold, and no other laws do.

2.2 Labelled Join Lists

Of course, the type of ujls is not very interesting; it is isomorphic to the natural
numbers. We presented it simply because it happens to be the list-like algebra

closest to the unlabelled directed acyclic graphs that we introduce later.
We can generalize ujls to labelled join lists (ljls) with nodes labelled by elements

of some type A . The node constructor changes, so that now node.a is a ljl for

every a : A , but the two constructors null and ++ and the laws do not change. For
example, the ljl in Figure 2 is represented by the expression

node.3 ++ node.1++ node.6

where the label type is N .

Ljls with labels of type A are by de�nition the initial object in the category
consisting of categories with just one object and an arrow corresponding to every

element of type A .

An initial-algebra approach to directed acyclic graphs 5

Ujls are isomorphic to ljls with labels drawn from the unit type (the type with

exactly one element), so from now on we will use the term `join lists' to refer to

ljls.

2.3 Catamorphisms on Join Lists

Since the algebra of join lists was de�ned to be the initial object in the appropriate

category, there is by de�nition a unique morphism from that algebra to any target

algebra in the category. Such a morphism is called a join list catamorphism, and is

uniquely determined by that target algebra.

Put another way, a function h from join lists with labels of type A to another

type B is a join list catamorphism i� there exist a constant b : B , a function

f : A! B and a binary operator (: B� B! B such that

h.null = b

h.node.a = f.a

h.(x++ y) = h.x(h.y

and such that (is associative and has unit b . (The target category in this case
has a single object B and arrows corresponding to elements of B ; composition of
arrows corresponds to (, and the identity arrow is b .) We write `hb, f,(i ' for
such an h .
There are many examples of interesting join list catamorphisms. A few simple

ones are as follows. The identity function on join lists is hnull, node,++i . The
function length , returning the number of nodes in a list, is h0, f,+i where f.a = 1

for each a . The function reversel , which reverses a join list, is hnull, node,(i where
t(u = u++ t .

3 Unlabelled Directed Acyclic Graphs

In this section, the main part of the paper, we present an initial-algebra de�nition
of a particular kind of directed acyclic graph.

3.1 Directed Acyclic Multigraphs

The particular kind of graph we will model is that of directed acyclic graphs, but
with a few unconventional aspects:

� there may be more than one edge between a given pair of vertices (thus, these
are multigraphs rather than simply graphs)

� the incoming and outgoing edges of a vertex are ordered (that is, they form a

sequence, rather than a bag or set)

� the graph as a whole has a sequence of incoming edges (`entries') with targets

but no sources, and a sequence of outgoing edges (`exits') with sources but no
targets; entries and exits are collectively called `connections'

We call such a graph a directed acyclic multigraph, or damg (pronounced `damage')

for short.

An initial-algebra approach to directed acyclic graphs 6

Figure 3: The form of a graph of type G3,4

Figure 4: The vertex vert3,2

For m, n : N , the type Gm,n consists of damgs with m entries and n exits. Thus,
a graph of type G3,4 has the form pictured in Figure 3. We write G for the type
of all damgs.

3.2 Constructors

Damgs are built from six constructors, as explained below.

Vertices

Vertices are represented by a set vert indexed by pairs of natural numbers, such
that vertm,n : Gm,n for m, n : N . The intention is that vertm,n represents a single
vertex with m entries and n exits. For example, vert3,2 might be drawn as in
Figure 4.

Edges

The constant edge : G1,1 is simply an edge, with a single entry and a single exit. It
would be drawn as in Figure 5.

Beside

If x : Gm,n and y : Gp,q then x | y (pronounced ` x beside y ') is of type Gm+p,n+q .

Informally, x | y consists of x `in parallel with' y ; for example, vert1,2 | vert2,1
(of type G3,3) might be drawn as in Figure 6. (In drawings of graphs, we order
connections from top to bottom, and direct them from left to right.)
The constructor | is associative, so x | (y | z) = (x | y) | z . We write `m� x ' as

Figure 5: An edge

An initial-algebra approach to directed acyclic graphs 7

Figure 6: vert1,2 | vert2,1

Figure 7: vert0,1 ; vert1,0

an abbreviation for copy(m, |, x) ; we see later that | has a unit, so 0 � x is de�ned.

Before

If x : Gm,n and y : Gn,p , then x ; y (pronounced ` x before y ') has type Gm,p , and is

formed by connecting the exits of x to the entries of y . For example, vert0,1 ; vert1,0
might be drawn as in Figure 7.
The constructor ; is associative; that is, x ; (y ; z) = (x ; y) ; z if both expressions

are correctly typed. (Note that if either expression is incorrectly typed, then both
are.)

We write ` ;m ' for the restriction of ; to pairs of damgs with exactly m interme-
diate connections. Note that ;m has unit m� edge .
A further property enjoyed by | and ; is the so-called abiding law. If w : Gm,n ,

x : Gn,p , y : Gq,r and z : Gr,s , then

(w ;n x) | (y ;r z) = (w | y) ;n+r (x | z)

For example,

(vert2,1 ; vert1,1) | (vert1,1 ; vert1,2) = (vert2,1 | vert1,1) ; (vert1,1 | vert1,2)

|in pictures, both sides might be drawn as in Figure 8. Notice that the type

information is important here; without it, (w | y) ; (x | z) may be well-typed when
(w ; x) | (y ; z) is not.

The name `abiding' is due to Bird (1988). He coined it as a contraction of

`above' and `beside', operators which he used for building a larger array by putting
one smaller array above or beside another.

Empty

We introduce a constructor empty for the empty graph, largely because of the
elegant properties that it enjoys. It would be drawn as a blank picture. The empty

graph satis�es the following two laws.

An initial-algebra approach to directed acyclic graphs 8

Figure 8: An instance of the abiding law

Figure 9: An instance of the dislocation law

� empty is the unit of | (and so, for any x , 0� x = empty)

� empty (being 0 � edge) is also the unit of ;0

From these we can conclude that, if x : Gm,0 and y : G0,n , then x ;0 y = x | y , since

x ;0 y

=
n

empty is the unit of |
o

(x | empty) ;0 (empty | y)

=
n
abiding

o

(x ;0 empty) | (empty ;0 y)

=
n

empty is the unit of ;0
o

x | y

For example, both vert2,0 ;0 vert0,1 and vert2,0 | vert0,1 could be drawn as in Figure 9.
We call this the dislocation law. Symmetrically, x ;0 y = y | x .

Swap

The �ve constructors we have seen so far can construct only planar graphs. The con-
structor swap escapes from planarity. For m, n 2 N , swapm,n has type Gm+n,n+m ,
and consists of m edges connecting the �rst m entries to the last m exits, and n

edges connecting the last n entries to the �rst n exits. For example, swap3,2 has

type G5,5 , and might be drawn as in Figure 10.
Swaps satisfy a number of laws. The �rst of these laws states that swapping zero

connections makes no di�erence:

swapm,0 = m� edge

An initial-algebra approach to directed acyclic graphs 9

Figure 10: swap3,2

Figure 11: Breaking down a larger swap

The second law shows that swapping n + p connections can be done by swapping

n connections and then swapping p connections:

swapm,n+p = (swapm,n | (p� edge)) ; ((n� edge) | swapm,p)

The right-hand side of this equation is illustrated in Figure 11, in the case when
m = 1 , n = 2 and p = 3 . We call these last two laws the swap simpli�cation laws.

The third law relates swaps to other constructs. If x : Gn,p and y : Gm,q then

swapm,n ; (x | y) ; swapp,q = y | x

We call this the swap law. The left-hand side of this equation is illustrated in
Figure 12, in the case when x = vert2,1 and y = vert1,2 ; then the right-hand side is

as in Figure 6.
In the special case when n = p , x = n � edge , m = q and y = m � edge , the

swap law simpli�es to

swapm,n ; swapn,m = (m+ n)� edge

From this law and the earlier simpli�cation laws we can deduce simpli�cation laws
for the �rst index too:

swap0,n = n� edge

Figure 12: An instance of the swap law

An initial-algebra approach to directed acyclic graphs 10

Figure 13: An example graph

Figure 14: An `exploded view' of the graph in Figure 13

and

swapm+n,p = ((m� edge) | swapn,p) ; (swapm,p | (n� edge))

Note that, in view of the swap simpli�cation laws, any swap can be built from
swap1,1 and edges using | and ; , so in that sense we could replace the family of
swap constructors with just swap1,1 . However, it appears that the general form of
the swap law is then di�cult to express.

3.3 An Example Graph

As an example, we show how to construct the graph in Figure 13.
`Teasing' apart the edges, we see that this graph is equivalent to the exploded

graph in Figure 14. Hence the graph is represented by the expression

(3 � vert0,2) ; (edge | ((2� swap1,1) ; (edge | swap1,1 | edge)) | edge) ; (2 � vert3,0)

3.4 Damgs As Symmetric Strict Monoidal Categories

It turns out that the algebra of damgs is essentially a symmetric strict monoidal

category (Mac Lane, 1971) enriched with objects representing vertices. We expand

here on this observation.
A strict monoidal category (smc) (B,+, e) is a category B in which:

� the objects of B form a monoid with respect to + (as a binary operation on

objects of B) and e (as an object of B)

An initial-algebra approach to directed acyclic graphs 11

� the operator + also acts on arrows of B ; if x : m ! n and y : p ! q then

x+ y : m+ p! n+ q ; moreover, + satis�es the laws

(x+ y) + z = x+ (y + z)

ide + x = x

x+ ide = x

idm + idn = idm+n

(w+ x) ; (y + z) = (w ; y) + (x ; z)

provided in the last case that all the compositions are de�ned.

A symmetric strict monoidal category (ssmc) (B,+, e,) is a smc (B,+, e) with

a family of arrows m,n : m + n ! n + m for all objects m and n of B , for which

the following laws hold:

m,0 = idm

m,n+p = (m,n + idp) ; (idn + m,p)

m,n ; (x+ y) ; p,q = y + x

provided in the last case that x : n! p and y : m! q .
Clearly, the algebra of damgs forms a ssmc (B, |, empty, swap) in which the cat-

egory B has as objects the natural numbers, and arrows x : m! n corresponding
to damgs x in Gm,n . Composition of arrows is ; , and the identity object on m is

m� edge .
Now consider ssmcs in which the objects of the base category B are the natural

numbers, and the collection of arrows of B also contains arrows vm,n : m ! n for
each pair of naturals m, n . We call such a ssmc an enriched ssmc, and write G for
the category of all enriched ssmcs (with functors between ssmcs as arrows). We

de�ne the algebra of damgs to be the initial ssmc in the category G . Informally,
this says that damgs form the smallest algebra closed under the constructors in
which all and only the damg laws hold.

3.5 Soundness and Completeness of the Laws

When axiomatizing a datatype, it is usually obvious whether su�cient constructors

have been chosen to represent all elements of the intended model. If there are not
enough constructors, extra ones can be added as necessary, and the worst that can
happen is some redundancy in the resulting datatype.

It is more di�cult to tell whether the right collection of laws has been chosen,
since this collection must be neither too strong nor too weak. The collection must
satisfy the following two properties.

Soundness: The given collection of laws must certainly be true of the intended

model. That is, the laws must not be too strong, identifying distinct elements
of the intended model.

Completeness: Soundness can be attained simply by having no laws at all. The
competing requirement is that the collection of laws must be complete. That

An initial-algebra approach to directed acyclic graphs 12

is, the laws must be su�cient to identify any two representations of the same

element in the intended model. In other words, the collection of laws must also

not be too weak.

We have just seen that the �ve constructors edge , ; , | , empty and swap , to-

gether with all the laws (that is, the whole algebra except the vertices), form

exactly a ssmc in which the objects are the natural numbers. C�az�anescu and

S�tef�anescu (1991) show that such a category axiomatizes bijective relations; bijec-

tive relations are the initial algebra with those �ve constructors and those laws.

Since none of the laws involve the vertices, the whole algebra (all six constructors

together with the laws) axiomatizes vertices with bijections for `plumbing' between

them. This is clearly exactly the datatype of directed acyclic multigraphs; the laws

we have de�ned are indeed sound and complete.

4 Damg Catamorphisms

We de�ned the algebra of damgs to be the initial object in the category G of

enriched ssmcs. By de�nition, therefore, there is a unique morphism from the
algebra of damgs to any other enriched ssmc. Such a morphism is called a damg
catamorphism, and is uniquely determined by that other enriched ssmc.
Put another way, a function h : G ! B is a damg catamorphism i� there exist

constants a, b : B , families of constants vm,n : B and sm,n : B indexed by pairs of

naturals m, n , and binary operators (: B � B ! B and) : B� B ! B such that

h.empty = a

h.edge = b

h.vertm,n = vm,n

h.swapm,n = sm,n

h.(x | y) = h.x(h.y

h.(x ; y) = h.x) h.y

(in fact, h.x) h.y need only be de�ned when x and y are compatible) and such
that these constants and functions form an enriched ssmc in the obvious way. We
write `ha, b, v, s,(,)i ' for such an h ; these six items uniquely determine h .

4.1 Examples of Damg Catamorphisms

Some simple examples of damg catamorphisms are as follows. The identity function

on G is hempty, edge, vert, swap, |, ;i . The function nvertices , which returns the
number of vertices, is h0, 0, 1, 0,+,+i . (We write simply `1 ' for the family of
constants indexed by pairs of naturals, each member of which is 1 .) The function

reverseg , which reverses a damg, is hempty, edge, vert, s, |,)i where sm,n = swapn,m

and t) u = u ; t .
A more interesting example is the function sp , which returns the length of the

shortest path from each entry to each exit; sp takes a damg of type Gm,n and
returns an m� n matrix of values in N [f1g . We have

An initial-algebra approach to directed acyclic graphs 13

Figure 15: Another example graph

sp = ha, b, v, s,(,)i

where

� a is the 0� 0 matrix

� b is the 1 � 1 matrix containing a 0

� vm,n is the m� n matrix consisting entirely of 1 s

� sm,n is the (m + n) � (n + m) matrix of the form
�
A B

C D

�
in which A and

D are m� n and n�m submatrices consisting entirely of 1 s, and B and C

are m � m and n � n submatrices with zeroes on the leading diagonals and
1 s elsewhere

� if t and u are m � n and p � q matrices, respectively, then t (u is the

(m+ p)� (n+ q) matrix
�

t 1

1 u

�
|that is, with elements from t and u in

the top left and bottom right quadrants, and 1 �lling the other two quadrants

� if t and u are m � n and n � p matrices, respectively, then t) u is the
matrix product of t and u in the closed semiring (min,+)|that is,

(t) u)i,j = min
1�k�n

(ti,k + uk,j) for 1� i�m, 1� j� p

where 1 is the zero of addition and the unit of min .

For example, the damg in Figure 15 is represented by the expression:

vert1,2 ; ((vert1,1 ; vert1,1) | vert1,1) ; vert2,1

and one way of computing its single shortest path could be as illustrated in Fig-
ure 16. Thus, the shortest path between the connections of vert1,1 has just one

vertex, and that between the connections of vert1,1 ; vert1,1 has two; the shortest

paths between the four possible pairs of connections of (vert1,1 ; vert1,1) | vert1,1 have

lengths 2 , 1 , 1 and 1 . The shortest path from the only entry to the only exit
of the whole graph has three vertices.

We should check that sp really is a damg catamorphism, that is, that the six
components really do form an enriched ssmc. We leave it to the reader to verify

(writing im for copy(m,(, b) , the m�m matrix with 0 s on the leading diagonal
and 1 s elsewhere) that:

An initial-algebra approach to directed acyclic graphs 14

vert1,2| {z }�
1 1

�
; ((vert1,1| {z }�

1
�
; vert1,1| {z }�

1
�

| {z }�
2
�

) | vert1,1| {z }�
1
�

| {z }�
2 1

1 1

�

)

| {z }�
3 2

�

; vert2,1| {z }�
1

1

�

| {z }�
3
�

Figure 16: The shortest path between connections of the graph in Figure 15

� (is associative, and has unit a

�) is associative, and has unit im (for suitable value of m)

� (w) x)((y) z) = (w (y)) (x (z) for compatible matrices w, x and y, z

� sm,0 = im

� sm,n+p = (sm,n (ip)) (in (sm,p)

� sm,n) (x(y)) sp,q = y (x for n� p matrix x and m� q matrix y

If still keen after doing so, the reader may also wish to verify that the function that
computes the longest path between any pair of connections is also a catamorphism.

5 Labelled Damgs

In this section we discuss labelling the vertices and edges of a damg.

5.1 Vertex-Labelled Damgs

We can generalize to vertex-labelled damgs easily. We write Gm,n.A for the type of
damgs with m entries and n exits and vertices labelled with elements of A , and
G.A for the type of vertex-labelled damgs with any number of connections. Then,

for a of type A , vertm,n.a is of type Gm,n.A , and consists of a single vertex with
m entries and n exits and label a . The other �ve constructors and all the laws
remain unchanged.

Thus, the expression

vert1,2.3 ; ((vert1,1.2 ; vert1,1.5) | vert1,1.9) ; vert2,1.7

represents the vertex-labelled damg of type G1,1.N in Figure 17.

5.2 Edge-Labelled Damgs

It is more di�cult to model edge-labelled damgs satisfactorily. For example, should
we label all connections? If so, what happens when connections matched by ; do not

have the same label? Should ; be a partial operator, unde�ned in such cases? Or

An initial-algebra approach to directed acyclic graphs 15

3

2 5

9

7

Figure 17: A vertex-labelled damg

should it be asymmetric, taking (say) the labels from its �rst argument? Alterna-

tively, we could label only `complete edges'|edges with a vertex at each end|and

leave `dangling' connections unlabelled; then ; could take also a list of of the ap-

propriate number of labels with which to label connections. Another alternative

would be to label the connections with elements of a monoid (for example, lists),

and combine the labels on matched connections using the binary operation of the

monoid.

It is not at all clear which is the best approach to take.

5.3 Topological Sort

One operation suitable for vertex-labelled damgs is topological sort; given a damg,
return the vertex labels as a list whose ordering respects the edge ordering of the
graph. Is topological sort a catamorphism?
It would appear so. Topological sort ts satis�es the following properties.

� ts.empty , ts.edge and ts.swapm,n are all just null , since these graphs have no
vertices

� ts.vertm,n.a is node.a

� ts.(x ; y) is ts.x++ ts.y

� ts.(x | y) is any interleaving of ts.x and ts.y|for example, ts.x++ ts.y

In other words, we can topologically sort a damg by deleting from the expression
by which it was constructed everything except the labels; this necessarily gives the
correct labels in a correct order.
Unfortunately, things are not so straightforward. In general, a damg has many

topological sorts, but the function ts can return only one of them. Moreover, with

the way we have de�ned ts above, the particular topological sort returned will
depend on the way that the graph was constructed. For example, suppose that we

take ts.(x | y) = ts.x++ ts.y , as suggested above. Then the two graphs

(vert1,1.1 ; vert1,1.2) | (vert1,1.3 ; vert1,1.4)

and

(vert1,1.1 | vert1,1.3) ; (vert1,1.2 | vert1,1.4)

(which by the abiding law are equal) will have di�erent images, [1, 2, 3, 4] and

An initial-algebra approach to directed acyclic graphs 16

[1, 3, 2, 4] , under ts . Both images are valid topological sorts of the graph, but if ts

is to be well-de�ned it must return exactly the same topological sort as result given

the same graph as argument.

Put another way, the sextuple of components (null, null, node, null,++,++) does

not form an enriched ssmc, since it does not satisfy all the damg laws. Neither

does (null, null, node, null,(,++) for any (such that x (y is an interleaving of x

and y ; in particular, ++ does not abide with any deterministic interleave operator.

The problem is that a single topological sort of each of x and y is su�cient infor-

mation to compute one topological sort of x ; y , but not in general to compute all

topological sorts. Topological sort is not a damg catamorphism.

(The problem appears to do with the deterministic interleaving for ts.(x | y) ,

which suggests that although topological sort is not a functional catamorphism, it

might be a relational catamorphism (Backhouse et al., 1991). The topological sorts

of x | y would be any interleaving of the topological sorts of x and of y . Unfor-

tunately, given topological sorts s and t of x and y , still the only list guaranteed

to be a topological sort of x ; y is s ++ t|although other interleavings of s and t

may also be. The two di�erent representations of the same graph above will still
have di�erent topological sort relations|the �rst representation allows [1, 2, 3, 4]
whereas the second does not. Intuitively, the non-determinism is `too local'; it

turns out that `more global' non-determinism is needed. In fact, the function that
returns the set of all topological sorts of a damg is a functional catamorphism
(Paige, 1994).)

6 Other Approaches to Modelling Graphs

In this section we discuss a number of other approaches to modelling graphs, and
compare them to the initial-algebra approach presented here.

6.1 Traditional Representations

Graphs are traditionally represented in one of three ways:

� a set of vertices and a set of edges

� a collection of adjacency lists

� an adjacency matrix

None of these representations are particularly suitable for implementing graph algo-
rithms in a functional language. More to the point, however, none of these represen-
tations recursively composes larger graphs out of smaller ones, and so none of them

provides for free a pattern of computation on graphs that recursively decomposes

its argument into smaller graphs. Such patterns of computation|catamorphisms|

seem very useful for functional and parallel programming.

6.2 Graphs in Functional Languages

Directed graphs can be represented in a lazy functional language using cyclic data

structures (Bird, 1984). For example, the Gofer de�nition

An initial-algebra approach to directed acyclic graphs 17

1 2

3

Figure 18: A cyclic graph

[node1,node2,node3] where node1 = (1, [node2,node3])

node2 = (2, [node1])

node3 = (3, [])

represents the cyclic graph in Figure 18 as a list of vertices where each vertex is a pair

consisting of a label and an adjacency list. The disadvantage of this approach is that

a cyclic graph is operationally indistinguishable from an in�nite tree. Kashiwagi

and Wise (1991) use this approach to implement some graph algorithms (strong
components, connected components, acyclicity) by having a stream of `updateable'
values at each node and a problem-speci�c method of �nding �xed points on those

streams. This produces a graph labelled with results, which, if cyclic, is again
indistinguishable from an in�nite tree.
A related approach (Paterson, 1994) is to represent the graph as a function of

type N! F.N , where N is the type of node identi�ers and F is some functor.
King and Launchbury (1993) implement some graph algorithms (topological sort,

connected components, strong components, reachability) by imperatively perform-
ing a depth-�rst search on the graph, and declaratively manipulating the resulting
depth-�rst-search forest.
Burton and Yang (1990) implement graphs in a pure functional language e�ec-

tively by implementing an imperative store and threading this through the program.

6.3 Formal Languages and Relations

M�oller (M�oller, 1993a, 1993b; M�oller and Russling, 1993) uses formal languages,
and in particular multiary relations, to model graphs. He derives a number of
graph algorithms, such as reachability, topological sort and cycle detection.

This approach gives concise speci�cations and calculations. However, graphs are
still modelled monolithically|there is no recursive decomposition, and so no direct

help in that way in constructing programs. (Help does come from another direction,
though: from familiar properties of relations and formal languages.)

6.4 Graph Grammars

There is a large body of work in the �eld of graph grammars. Courcelle (1990)

gives de�nitions in terms of directed hypergraphs, in which edges may have arbi-

trarily many endpoints; to avoid too much extra notation, we discuss here just the
specialization to edges with exactly two endpoints.

An initial-algebra approach to directed acyclic graphs 18

A graph has a source, a sequence consisting of some of the vertices of the graph

(perhaps with omissions and duplication). Vertices in the source are `external' and

are available for connection to other graphs; other vertices are `internal' and are

hidden.

There are �ve constructors:

vertex: a single vertex, which is the sole element of the source

edge: a single edge, with two vertices that form the source

disjoint union: combines two graphs into a larger graph, concatenating the sources

source fusion: takes a graph and an equivalence relation � on its sources, and

identi�es the vertices equivalent under �

source rede�nition: rearranges the source of a graph (perhaps omitting some ver-

tices and duplicating others) according to a given mapping

There are eleven laws; these are su�cient to transform any term built from the

above constructors into a (non-unique) normal form consisting of the disjoint union
of some vertices and edges, submitted to a single source fusion and then a single
source rede�nition.
Graph grammars are appropriate as a basis for describing graph rewriting sys-

tems, but they seem less so for more general graph algorithms.

6.5 Skillicorn's De�nition

Skillicorn (1994) de�nes an algebra of connected undirected vertex-labelled graphs,
using three constructors:

� an injection, mapping labels to vertices,

� a binary operator `connect', connecting two disjoint graphs with a single edge,
and

� a unary operator `close', adding an edge to a graph, thereby creating a cycle.

In order to indicate which two vertices are connected by the `connect' or `close'
operators, Skillicorn says that the two constructors `are drawn as simple straight
lines connecting the two vertices', which seems to imply that his graphs can be
represented faithfully only by two-dimensional pictures, and not by one-dimensional

terms in an algebra.

Moreover, Skillicorn does not state the laws needed to distinguish this algebra
from an algebra of trees in which each node can have zero, one or two children. He
is therefore forced to decompose a graph in exactly the same way as it was built,

precluding any attempt at load-balancing for parallel execution.

6.6 Free Net Algebras

Molitor (1988) de�nes an algebra of `nets', modellingvlsi circuits. The constructors

of this algebra are:

� a collection of basic `cells',

An initial-algebra approach to directed acyclic graphs 19

� some wiring components (straight wires, corners, t-junctions and a `crossover'),

and

� two partial binary operators `above' and `beside' which compose circuit dia-

grams vertically and horizontally, provided that the edges to be matched have

the same number of connections.

He gives a collection of fourteen rather complex laws, and claims that they are

sound and complete. (The proof is omitted from Molitor's paper, and the reader

referred to his thesis.)

This work may lead to an algebra of undirected hypergraphs, in which an `edge'

connects arbitrarily many vertices.

7 Conclusions

7.1 Summary

We have presented an initial algebra modelling a particular (and rather unconven-

tional) kind of directed acyclic graph. We have shown that quite a few natural

functions on these graphs are catamorphisms on the algebra we have de�ned; we
have also seen one natural function (topological sort) that appears not to be a
catamorphism. (We believe that this is no fault of the particular algebra presented
here, but is inherent in any initial-algebra model of directed acyclic graphs.) We

have also discussed a number of other approaches to representing graphs.

7.2 Further Work

There are several directions for further work that appear quite promising. A few of
these are outlined below.

� One question that remains to be answered is whether the algebra presented

here is practically useful. Many natural simple problems on damgs turn out
to be damg catamorphisms, but we have not yet seen any more complicated
problems whose solution was simpli�ed by this algebra of damgs.

� A problem with the algebra we have de�ned here is that it does not model
directed acyclic graphs particularly closely. We have had to introduce `connec-
tions' (incoming edges with targets but no sources, and outgoing edges with

sources but no targets) for the whole graph, allow multiple edges between a

pair of vertices, and consider the ordering of the incoming and outgoing edges
of a vertex to be signi�cant, all in order to come up with an algebra at all. Is
it possible to adapt this approach to yield an algebra that more closely models

directed acyclic graphs?

� The `symmetric strict monoidal category' approach we have used here is based

heavily on the work of C�az�anescu and S�tef�anescu. They use it to obtain
initial-algebra models of sixteen classes of �nite relations, corresponding to

all sixteen combinations of totality, surjectivity, univocality (that is, being
single-valued or functional) and injectivity (C�az�anescu and S�tef�anescu, 1991).

An initial-algebra approach to directed acyclic graphs 20

They go on (C�az�anescu and S�tef�anescu, 1990) to present an algebraic theory

of `ownomials'|owcharts abstracted on both the individual statements and

the interconnection pattern; the algebra of cyclic ownomials consists of the

algebra of acyclic ownomials (similar to our damgs) endowed with `feedback'

operator that cyclically connects the �rst few exits to the corresponding num-

ber of entries. This may present a way to adapt our approach to model also

possibly cyclic graphs.

� Modelling undirected graphs appears to be more di�cult, because vertex con-

nections are not partitioned into two groups according to direction, and it is

therefore less obvious how to connect subgraphs together.

� With all the other initial-algebra de�nitions of datatypes that have been ex-

plored to date, the concept of an accumulation has proved to be very powerful

(Gibbons, 1993). Essentially, an accumulation records all the partial results

from the computation of a catamorphism. One application of `forwards and

backwards accumulations' on directed acyclic graphs might be to compute `ear-
liest and latest possible �nishing times' for tasks in a project, in which the tasks
are represented by the vertices of a graph (labelled with task duration) and
their dependencies by the edges. However, all these other initial algebras have
been `free', that is, with no laws. It is not immediately obvious how to de�ne

accumulations on types with laws, since for these there may be di�erent ways
of representing the same object, and hence di�erent ways of computing the
same catamorphism on that object. These di�erent computations necessarily
return the same results, but may well do so with di�erent collections of partial
results; which computation should the accumulation record?

7.3 Acknowledgements

The author wishes to thank Bob Paige for pointing out the dislocation law, and
other members of ifip wg2.1 and the anonymous referees for many helpful com-
ments. Also, this presentation would have been a lot less elegant without the help
of Virgil C�az�anescu and Gheorghe S�tef�anescu's work on ssmcs.

References

Roland Backhouse, Peter de Bruin, Grant Malcolm, Ed Voermans, and Jaap van der

Woude (1991). Relational catamorphisms. In M�oller (1991), pages 287{318.

Roland Backhouse (1989). An exploration of the Bird-Meertens formalism. In
International Summer School on Constructive Algorithmics, Hollum, Ameland.

STOP project. Also available as Technical Report CS 8810, Department of
Computer Science, Groningen University, 1988.

R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors (1993). LNCS 669:

Mathematics of Program Construction. Springer-Verlag.

An initial-algebra approach to directed acyclic graphs 21

Richard S. Bird (1984). Using circular programs to eliminate multiple traversals of

data. Acta Informatica, 21:239{250.

Richard S. Bird (1987). An introduction to the theory of lists. In M. Broy, editor,

Logic of Programming and Calculi of Discrete Design, pages 3{42. Springer-

Verlag. Also available as Technical Monograph PRG-56, from the Programming

Research Group, Oxford University.

Richard S. Bird (1988). Lectures on constructive functional programming. In

Manfred Broy, editor, Constructive Methods in Computer Science. Springer-

Verlag. Also available as Technical Monograph PRG-69, from the Programming

Research Group, Oxford University.

Alex Bunkenburg (1993). The Boom hierarchy. In Kevin Hammond and John T.

O'Donnell, editors, 1993 Glasgow Workshop on Functional Programming.

Springer.

F. Warren Burton and Hsi-Kai Yang (1990). Manipulating multilinked data struc-

tures in a pure functional language. Software|Practice and Experience,
20(11):1167{1185.

Virgil Emil C�az�anescu and Gheorghe S�tef�anescu (1990). Towards a new algebraic

foundation of owchart scheme theory. Fundamenta Informaticae, XIII:171{

210.

Virgil-Emil C�az�anescu and Gheorghe S�tef�anescu (1991). Classes of �nite relations
as initial abstract data types I. Discrete Mathematics, 90:233{265.

Bruno Courcelle (1990). Graph rewriting: An algebraic and logic approach. In Jan
van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,
chapter 5. Elsevier.

JeremyGibbons (1991). Algebras for Tree Algorithms. D. Phil. thesis, Programming
Research Group, Oxford University. Available as Technical Monograph PRG-

94.

Jeremy Gibbons (1993). Upwards and downwards accumulations on trees. In Bird
et al. (1993), pages 122{138. A revised version appears in the Proceedings of
the Massey Functional Programming Workshop, 1992.

Paul Hoogendijk (1993). Relational programming laws in the Boom hierarchy of

types. In Bird et al. (1993), pages 163{190.

Johan Jeuring (1989). Deriving algorithms on binary labelled trees. CWI, Amster-

dam.

Johan Jeuring (1991). The derivation of hierarchies of algorithms on matrices. In

M�oller (1991), pages 9{32.

Yugo Kashiwagi and David S. Wise (1991). Graph algorithms in a lazy functional

programming language. Technical Report 330, Department of Computer Sci-
ence, Indiana University.

An initial-algebra approach to directed acyclic graphs 22

David J. King and John Launchbury (1993). Lazy depth-�rst search and linear

graph algorithms in Haskell. Department of Computer Science, University of

Glasgow.

Saunders Mac Lane (1971). Categories for the Working Mathematician. Springer-

Verlag.

Lambert Meertens (1986). Algorithmics: Towards programming as a mathematical

activity. In J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra, editors,

Proc. CWI Symposium on Mathematics and Computer Science, pages 289{

334. North-Holland.

Lambert Meertens (1988). First steps towards the theory of rose trees. CWI,

Amsterdam; IFIP Working Group 2.1 working paper 592 ROM-25.

Paul Molitor (1988). Free net algebras in VLSI-theory. Fundamenta Informaticae,

XI:117{142.

Bernhard M�oller and Martin Russling (1993). Shorter paths to graph algorithms.

In Bird et al. (1993), pages 250{268.

B. M�oller, editor (1991). IFIP TC2/WG2.1 Working Conference on Constructing

Programs from Speci�cations. North-Holland.

Bernard M�oller (1993a). Derivation of graph and pointer algorithms. In Bern-

hard M�oller, Helmut Partsch, and Steve Schumann, editors, LNCS 755: IFIP

TC2/WG2.1 State-of-the-Art Report on Formal Program Development, pages
123{160. Springer-Verlag.

Bernhard M�oller (1993b). Algebraic calculation of graph and sorting algorithms. In
Dines Bj�rner, Manfred Broy, and Igor V. Pottosin, editors, LNCS 735: Formal

Methods in Programming and Their Applications, pages 394{413. Springer-
Verlag.

Bob Paige (1994). Comment at IFIP Working Group 2.1 meeting, Renkum.

Ross Paterson (1994). Interpretations of term graphs. Draft. Department of Com-
puting, Imperial College.

David B. Skillicorn (1994). Foundations of Parallel Programming. Cambridge

University Press.

Chris J. Wright (1988). A theory of arrays for program derivation. Transferral
dissertation, Programming Research Group, Oxford University.

