
Underappreciated Security Mechanisms

Peter Gutmann

University of Auckland

Introduction

Standards for secure email and network communication
have been around for years

Everyone has heard of S/MIME, SSL, IPsec

Why isn’t the Internet secure yet?
•Existing mechanisms are too hard to use
•Existing mechanisms solve the wrong problem

Lesser-known (but very useful) security mechanisms get
almost no coverage

What this talk will cover

User identification

Opportunistic encryption

Key continuity management

User Identification /Authentication

Allow users to sign up for online information (mailing lists,
web sites)
•Fraudsters sign up in other people’s names
–Used for DoS, not just pure fraud

•Bots sign up large numbers of addresses to obtain accounts for
spam purposes

Email-based Identification

Use the ability to receive mail as a form of (weak)
authentication
•Sign up using an email address
•Server sends an authenticator to the given address
•Address owner responds with the authenticator to confirm the

subscription
•Sometimes known as double opt-in

Widely used for password resets, mailing list subscriptions
•Good enough unless the opponent is the ISP

Email-based Identification (ctd)

Self-auditing via email confirmation
•Attempting to use the account results in the legitimate owner

being notified
•Changing the email address should result in a notification

being sent to the original address

Outlook
•More of the same
•Low-value authentication, but relatively difficult to defeat

Identifying Humans

Prevent bots from signing up for online accounts
•Reverse Turing test
–Turing test: Can’t distinguish between human and machine
–Reverse Turing test: Distinguishes between human and

machine
–Also known as a Human Interactive Proof (HIP)

Reverse Turing Test example
•Display distorted/noisy picture

of a word
•User has to enter the actual word
•Text recognition in the presence of noise is extraordinarily

difficult for computers

Identifying Humans (ctd)

Harness humans to defeat it
•Pay people in third-world-country Internet cafes to perform the

text recognition
•Grant access to porn sites in exchange for performing text

recognition

Outlook
•RTT will at least slow the flood
•Not a perfect solution, since you can always use real humans to

defeat it

Send porn spam to attract users to…

Perform text recognition to allow you to…

Opportunistic Encryption

After 10-15 years effort, S/MIME and PGP use is lost in
the noise floor
•Most mail clients include S/MIME support
•Many (OSS) clients include PGP support
•Usage is virtually nonexistent
–It’s too much bother for most people

The vast majority of users detest anything they must configure
and tweak. Any really mass-appeal tool must allow an
essentially transparent functionality as default behaviour;
anything else will necessarily have limited adoption

— Bo Leuf, “Peer to Peer: Collaboration and
Sharing over the Internet”

Opportunistic Encryption (ctd)

Encrypt data using keys managed via key continuity (see
next section)
•Completely transparent to end users
•Requires no extra effort to use
•Effectively free (except for the slight CPU overhead)

Most commonly encountered in SMTP/POP/IMAP
•Protects mail in transit
•Authenticates sender/prevents unauthorised relaying/spamming

STARTTLS/STLS/AUTH TLS

What is it?
•Opportunistic encryption for SMTP/POP/IMAP/FTP

220 mail.foo.com ESMTP server ready
EHLO server.bar.com
250-STARTTLS
STARTTLS
220 Ready to start TLS
<encrypted transfer>

•Totally transparent, (almost) idiot-proof, etc
•Protects more mail than all other email encryption protocols

combined

STARTTLS/STLS/AUTH TLS (ctd)

Outlook
•A year after appearing, STARTTLS was protecting more email

than all other email encryption protocols combined, despite
their 10-15 year lead
•Just as SSH has displaced telnet, so STARTTLS may displace

(or augment) straight SMTP
–Auckland Uni turned off unencrypted mail to local servers

after STARTTLS appeared, just as they turned off telnet
after SSH appeared

•Not perfect, but boxes attackers into narrower and narrower
channels

Key Continuity Management

Where’s the PKI?

It’s too…
•Expensive
•Complex
•Difficult to deploy
•Doesn’t meet any real business need
•etc etc etc

Key Continuity Management (ctd)

The only visible use of PKI is SSL
•This is certificate manufacturing, not PKI
•Once a year, exchange a credit card number for a pile of bits
•Three quarters of all SSL server certs are invalid

(SecuritySpace survey, December 2003)
•No-one notices…

Assurance through Continuity

Continuity = knowing that what you’re getting now is what
you’ve had before/what you were expecting
•McDonalds food is the same no matter which country you’re in
•Coke is Coke no matter what shape bottle (or can) it’s in, or

what language the label is in

Continuity is more important than third-party attestation
•Equivalent to brand loyalty in the real world
•Businesses place more trust in established, repeat customers

Use continuity for key management
•Verify that the current key is the same as the one you got

previously

Key Continuity in SSH

First app to standardise its key management this way
•On first connect, client software asks the user to verify the key
–Done via the key fingerprint, a hash of the key components
–Standard feature for PGP, X.509, …

•On subsequent connects, client software verifies that the
current server key matches the initial one
–Warn user if it changes

Concept was formalised in the resurrecting duckling
security model
•Device imprints on the first item it sees
•Device trusts that item for future exchanges

Key Continuity in SIP

Same general model as SSH
•First connect exchanges self-signed certificates
•Connection is authenticated via voice recognition

Same principle has been used in several secure IP-phone
protocols
•Users read a hash of the session key over the link

Key Continuity in STARTTLS et al

SMTP/POP/IMAP servers are usually configured by
sysadmins unconcerned about browser warning dialogs
•Remember the initial certificate, warn if it changes
•Using self-signed certificate avoids having to pay a CA

The ideal key continuity solution
•Automatically generate self-signed certificate on install
•Use key continuity to warn if the certificate changes

Key Continuity in STARTTLS et al (ctd)

Currently still somewhat haphazard
•Many open-source implementations support it fully
•Some still require tedious manual operations for certificate

management
•Commercial implementations often require CA-issued

certificates, an even more tedious (and expensive) manual
operation

Key Continuity in S/MIME

S/MIME has a built-in mechanism to address the lack of a
PKI
•Include all signing certificates in every message you send
•Lazy-update PKI distributes certificates on an on-demand basis

S/MIME gateways add two further stages
•Auto-generate certificates for new users
•Perform challenge-response for new certificates they encounter

Key Continuity in S/MIME (ctd)

Msg0 gets remote certificates to local server (as standard
S/MIME message)

Msg1 gets local certificates to remote user

Msg2 proves possession of remote server keys/certificates

(Variants, e.g remote server sends challenge in Msg3)

Local Remote
SignR(msg, CertR)

SignL(EncrR(chall), CertL)

SignR(chall)

Msg0

Msg1

Msg2

Key Continuity in S/MIME (ctd)
•Provides mutual proof of possession of keys and certificates to

both sides
–In practice has a few extra tricks to avoid various attacks

•Both parties now have verified keys for the other side
•Fully automatic, no human intervention required

Outlook
•Invented/reinvented as needed by implementors
–Not specified in any formal standard
–Standards groups are still waiting for PKI to start working

–Present in many apps, but needs standardisation to unify
approaches

•IETF BCP draft in progress

Conclusion

Simple human-in-the-loop solutions can be remarkably
effective against large-scale automated harvesting
attacks

Opportunistic encryption has achieved more penetration in
one year than traditional methods did in 10

