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1. Problems with Crypto on End-user Systems 
The majority of current crypto implementations run under general-purpose operating systems with a 
relatively low level of security, alongside which exist a limited number of smart-card assisted 
implementations which store a private key in, and perform private-key operations with, a smart card.  
Complementing these are an even smaller number of implementations which perform further operations in 
dedicated (and generally very expensive) hardware. 

The advantage of software-only implementations is that they are inexpensive and easy to deploy.  The 
disadvantage of these implementations is that they provide a very low level of protection for 
cryptovariables, and that this low level of security is unlikely to change in the future.  For example 
Windows NT provides a function ReadProcessMemory() which allows a process to read the memory 
of (almost) any other process in the system (this was originally intended to allow debuggers to establish 
breakpoints and maintain instance data for other processes [1]), allowing both passive attacks such as 
scanning memory for high-entropy areas which constitute keys [2] and active attacks in which a target 
processes’ code or data is modified to provide supplemental functionality of benefit to a hostile process.  
This type of modification would typically be performed by obtaining the target processes’ handle, using 
SuspendThread() to halt it, VirtualProtectEx() to make the code pages writeable, 
WriteProcessMemory() to modify the code, and ResumeThread() to restart the processes’ 
execution (these are all standard Windows functions and don’t require security holes or coding bugs in order 
to work).  By subclassing an application such as the Windows shell, the hostile process can receive 
notification of any application (a.k.a. “target”) starting up or shutting down, after which it can apply the 
mechanisms mentioned previously.  A very convenient way to do this is to subclass a child window of the 
system tray window, yielding a system-wide hook for intercepting shell messages [3].  Another way to 
obtain access to other processes’ data is to patch the user-to-kernel-mode jump table in a processes’ Thread 
Environment Block (TEB), which is shared by all processes in the system rather than being local to each 
one, so that changing it in one process affects every other running process [4].  Sometimes it isn’t even 
necessary to perform heuristic scans for likely keying information, for example by opening a handle to 
WINLOGON.EXE (the Windows logon process), using ReadProcessMemory() to read the page at 
0x10000, and scanning for the text string lMprNotifyPassword= it’s possible to obtain the current 
user’s password, which isn’t cleared from memory by the logon process [5]. 

Although the use of functions like ReadProcessMemory() requires Administrator privileges, most 
users tend to either run their system as Administrator or give themselves equivalent privileges since it’s 
extremely difficult to make use of the machine without these privileges.  In the unusual case where the user 
isn’t running with these privileges, it’s possible to use a variety of tricks to bypass any OS security measures 
which might be present in order to perform the desired operations.  For example by installing a Windows 
message hook it’s possible to capture messages intended for another process and have them dispatched to 
your own message handler.  Windows then loads the hook handler into the address space of the process 
which owns the thread which the message was intended for, in effect yanking your code across into the 
address space of the victim [6].  Even simpler are mechanisms such as using the HKEY_LOCAL_MACHINE\-
Software\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs key, which specifies a list of DLLs 
which are automatically loaded and called whenever an application uses the USER32 system library (which 
is automatically used by all GUI applications and many command-line ones).  Every DLL specified in this 
registry key is loaded into the processes’ address space by USER32, which then calls the DLL’s 
DllMain() function to initialise the DLL (and, by extension, trigger whatever other actions the DLL is 
designed for). 

A more sophisticated attack involves persuading the system to run your code in ring 0 (the most privileged 
security level usually reserved for the OS kernel) or, alternatively, convincing the OS to allow you to load a 
selector which provides access to all physical memory (under Windows NT, selectors 8 and 10 provide this 
capability).  Running user code in ring 0 is possible due to the peculiar way in which the NT kernel loads.  
The kernel is accessed via the int 2Eh call gate, which initially provides about 200 functions via 
NTOSKRNL.EXE but is then extended to provide more and more functions as successive parts of the OS 
are loaded.  Instead of merely adding new functions to the existing table, each new portion of the OS which 
is loaded takes a copy of the existing table, adds its own functions to it, and then replaces the old one with 
the new one.  To add supplemental functionality at the kernel level, all that’s necessary is to do the same 
thing [7].  Once your code is running at ring 0, an NT system starts looking a lot like a machine running 
DOS. 

Although the problems mentioned so far have concentrated on Windows NT, many Unix systems aren’t 
much better.  For example the use of ptrace with the PTRACE_ATTACH option followed by the use of 
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other ptrace capabilities provides similar headaches to those arising from ReadProcessMemory().  
The reason why these issues are more problematic under NT is that users are practically forced to run with 
system Administrator privileges in order to perform any useful work on the system, since a standard NT 
system has no equivalent to Unix’s su functionality and, to complicate things further, frequently assumes 
that the user always has Administrator privileges (that is, it assumes it’s a single-user system with the user 
being Administrator).  While it’s possible to provide some measure of protection on a Unix system by 
running crypto code as a daemon in its own memory space under a different account, under NT all services 
run under the single System Account so that any service can use ReadProcessMemory() to interfere 
with any other service [8].  Since an Administrator can dynamically load NT services at any time and since 
a non-administrator can create processes running under the System Account by overwriting the handle of 
the parent process with that of the System Account [9], even implementing the crypto code as an NT service 
provides no escape. 

1.1 The Root of the Problem 
The reason why problems like those described above persist, and why we’re unlikely to ever see a really 
secure consumer OS is because it’s not something which most consumers care about.  One recent survey of 
Fortune 1000 security managers showed that although 92% of them were concerned about the security of 
Java and ActiveX, nearly three quarters allowed them onto their internal networks, and more than half didn’t 
even bother scanning for them [10].  Users are used to programs malfunctioning and computers crashing 
(every Windows NT user can tell you what the abbreviation BSOD means even though it’s never actually 
mentioned in the documentation), and see it as normal for software to contain bugs.  Since program 
correctness is difficult and expensive to achieve, and as long as flashiness and features are the major selling 
point for products, buggy and insecure systems will be the normal state of affairs [11].  Unlike other Major 
Problems like Y2K (which contain their own built-in deadline), security generally isn’t regarded as a 
pressing issue unless the user has just been successfully attacked or the corporate auditors are about to pay a 
visit, which means that it’s much easier to defer addressing it to some other time [12].  Even in cases where 
the system designers originally intended to implement a rigorous security system employing a proper TCB, 
the requirement to add features to the system inevitably results in all manner of additions being crammed 
into the TCB as application-specific functionality starts migrating into the OS kernel.  The result of this 
creep is that the TCB is neither small, nor verified, nor secure. 

An NSA study [13] lists a number of features which are regarded as “crucial to information security” but 
which are absent from all mainstream operating systems.  Features such as mandatory access controls which 
are mentioned in the study correspond to Orange Book B-level security features which can’t be bolted onto 
an existing design but generally need to be designed in from the start, necessitating a complete overhaul of 
an existing system in order to provide the required functionality.  This is often prohibitively resource-
intensive, for example the task of reengineering the Multics kernel (which contained a “mere” 54,000 lines 
of code) to provide a minimised TCB was estimated to cost $40M (in 1977 dollars) and was never 
completed [14].  The work involved in performing the same kernel upgrade or redesign from scratch with an 
operating system containing millions or tens of millions of lines of code would make it beyond prohibitive. 

At the moment security and ease of use are at opposite ends of the scale, and most users will opt for ease of 
use over security.  JavaScript, ActiveX, and embedded active content may be a security nightmare, but they 
do make life a lot easier for most users, leading to comments from security analysts like “You want to write 
up a report with the latest version of Microsoft Word on your insecure computer or on some piece of junk 
with a secure computer?” [15], “Which sells more products: really secure software or really easy-to-use 
software?” [16], “It’s possible to make money from a lousy product […] Corporate cultures are focused on 
money, not product” [17], and “The marketplace doesn’t reward real security.  Real security is harder, 
slower and more expensive, both to design and to implement.  Since the buying public has no way to 
differentiate real security from bad security, the way to win in this marketplace is to design software that is 
as insecure as you can possibly get away with […] users prefer cool features to security” [18]. 

One study which examined the relationship between faults (more commonly referred to as bugs) and 
software failures found that one third of all faults resulted in a mean time to failure (MTTF) of more than 
5,000 years, with somewhat less than another third having a MTTF of more than 1,500 years.  Conversely, 
around 2% of all faults had a MTTF of less than five years [19].  The reason for this is that even the most 
general-purpose programs are only ever used in stereotyped ways which exercise only a tiny portion of the 
total number of code paths, so that removing (visible) problems from these areas will be enough to keep the 
majority of users happy.  This conclusion is backed up by other studies such as one which examined the 
behaviour of 30 Windows applications in the presence of random (non-stereotypical) keyboard and mouse 
input.  The applications were chosen to cover a range of vendors, commercial and non-commercial software, 
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and a wide variety of functionality including word processors, web browsers, presentation graphics editors, 
network utilities, spread sheets, software development environments, and assorted random applications such 
as Notepad, Solitaire, the Windows CD player, and similar common programs.  The study found that 21% 
of the applications tested crashed and 24% hung when sent random keyboard/mouse input, and when sent 
random Win32 messages (corresponding to events other than direct keyboard- and mouse-related actions), 
all the applications tested either crashed or hung [20]. 

Even when an anomaly is detected, it’s often easier to avoid it by adapting the code or user behaviour which 
invokes it (“don’t do that, then”) because this is less effort than trying to get the error fixed1.  In this manner 
problems are avoided by a kind of symbiosis through which the reliability of the system as a whole is 
greater than the reliability of any of its parts [21].  Since most of the faults which will be encountered are 
benign (in the sense that they don’t lead to failures for most users), all that’s necessary in order for the 
vendor to provide the perception of reliability is to remove the few percent of faults which cause noticeable 
problems.  Although it may be required for security purposes to remove every single fault (as far as is 
practical), for marketing purposes it’s only necessary to remove the few percent which are likely to cause 
problems. 

In many cases users don’t even have a choice as to which software they can use, if they can’t process data 
from Word, Excel, PowerPoint, and Outlook and view web pages loaded with JavaScript and ActiveX, their 
business doesn’t run, and some companies go so far as to publish explicit instructions telling users how to 
disable security measures in order to maximise their web-browsing experience [22].  Going beyond basic 
OS security, most current security products still don’t effectively address the problems posed by hostile 
code such as trojan horses (which the Bell-LaPadula model was designed to combat), and the systems the 
code runs on increase both the power of the code to do harm and the ease of distributing the code to other 
systems. 

This presents a rather gloomy outlook for someone wanting to provide secure crypto services to a user of 
these systems.  In order to solve this problem, we adopt a reversed form of the Mohammed-and-the-
mountain approach: Instead of trying to move the insecurity away from the crypto through various operating 
system security measures, we move the crypto away from the insecurity.  In other words although the user 
may be running a system crawling with rogue ActiveX controls, macro viruses, trojan horses, and other 
security nightmares, none of these can come near the crypto. 

1.2 Solving the Problem 
The FIPS 140 standard provides us with a number of guidelines for the development of cryptographic 
security modules.  NIST originally allowed only hardware implementations of cryptographic algorithms (for 
example the original NIST DES document allowed for hardware implementation only [23][24]), however 
this requirement was relaxed somewhat in the mid-1990’s to allow software implementations as well 
[25][26].  FIPS 140 defines four security levels ranging from level 1 (the cryptographic algorithms are 
implemented correctly) through to level 4 (the module or device has a high degree of tamper-resistance 
including an active tamper response mechanism which causes it to zeroise itself when tampering is 
detected).  To date only one general-purpose product family has been certified at level 4 [27][28]. 

Since FIPS 140 also allows for software implementations, an attempt has been made to provide an 
equivalent measure of security for the software platform on which the cryptographic module is to run.  This 
is done by requiring the underlying operating system to be evaluated at progressively higher Orange Book 
levels for each FIPS 140 level, so that security level 2 would require the software module to be implemented 
on a C2-rated operating system.  Unfortunately this provides something if an impedance mismatch between 
the actual security of hardware and software implementations, since it implies that products such as a 
Fortezza card [29] or Dallas iButton (a relatively high-security device) [30] provide the same level of 
security as a program running under Windows NT.  It’s possible that the OS security levels were set so low 
out of concern that setting them any higher would make it impossible to implement the higher FIPS 140 
levels in software due to a lack of systems evaluated at that level. 

Even with sights set this low, it doesn’t appear to be possible to implement secure software-only crypto on a 
general-purpose PC.  Trying to protect cryptovariables (or more generically critical security parameters, 
CSP’s in FIPS 140-speak) on a system which provides functions like ReadProcessMemory seems 
pointless, even if the system does claim a C2/E2 evaluation.  On the other hand trying to source a B2 or 
more realistically B3 system to provide an adequate level of security for the crypto software is almost 

                                                           
1 This document, prepared with MS Word, illustrates this principle quite well, having been produced in a manner which 
avoided a number of bugs which would crash the program. 
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impossible (the practicality of employing an OS in this class, whose members include Trusted Xenix, XTS 
300, and Multos, speaks for itself).  A simpler solution would be to implement a crypto coprocessor using a 
dedicated machine running at system high, and indeed FIPS 140 explicitly recognises this by stating that the 
OS security requirements only apply in cases where the system is running programs other than the crypto 
module (to compensate for this, FIPS 140 imposes its own software evaluation requirements which in some 
cases are even more arduous than the Orange Book ones). 

An alternative to a pure-hardware approach might be to try to provide some form of software-only 
protection which attempts to compensate for the lack of protection present in the OS.  Some work has been 
done in this area involving the obfuscation of the code to be protected, either mechanically [31][]32 or 
manually [33].  The use of mechanical obfuscation (for example reordering of code and the insertion of 
dummy instructions) is also present in a number of polymorphic viruses, and can be quite effectively 
countered [34][35].  Manual obfuscation techniques are somewhat more difficult to counter automatically, 
however computer game vendors have trained several generations of crackers in the art of bypassing the 
most sophisticated software protection and security features they could come up with [36][37][38], 
indicating that this type of protection won’t provide any relief either, and this doesn’t even go into the 
portability and maintenance nightmare which this type of code presents (it is for these reasons that the 
obfuscation provisions were removed from a later version of the CDSA specification where they were first 
proposed [39]).  There also exists a small amount of experimental work involving trying to create a form of 
software self-defence mechanism which tries to detect and compensate for program or data corruption 
[40][41][42][43], however this type of self-defence technology will probably stay restricted to Core Wars 
Redcode programs for some time to come.  As the final nail in the coffin, a general proof exists which 
shows that real code obfuscation is impossible [44]. 

1.3 Coprocessor Design Issues 
The main consideration when designing a coprocessor to manage crypto operations is how much 
functionality we should move from the host into the coprocessor unit.  The baseline, which we’ll call a tier2 
0 coprocessor, has all the functionality in the host, which is what we’re trying to avoid.  The levels above 
tier 0 provide varying levels of protection for cryptovariables and coprocessor operations, as shown in 
Figure 1.  The minimal level of coprocessor functionality, a tier 1 coprocessor, moves the private key and 
private-key operations out of the host.  This type of functionality is found in smart cards, and is only a small 
step above having no protection at all, since although the key itself is held in the card, all operations 
performed by the card are controlled by the host, leaving the card at the mercy of any malicious software on 
the host system.  In addition to these shortcomings, smart cards are very slow, offer no protection for 
cryptovariables other than the private key, and often can’t even protect the private key fully (for example a 
card with an RSA private key intended for signing can be misused to decrypt a key or message since RSA 
signing and decryption are equivalent). 

Protection

Tier

Private key

Session key

Metadata

Command verification

App-level functionality5
4
3
2
1

 

Figure 1: Levels of protection offered by crypto hardware 

The next level of functionality, tier 2, moves both public/private-key operations and conventional 
encryption operations along with hybrid mechanisms such as public-key wrapping of content-encryption 
keys into the coprocessor.  This type of functionality is found in devices such as Fortezza cards and a 
number of devices sold as crypto accelerators, and provides rather more protection than that found in smart 
cards since no cryptovariables are ever exposed on the host.  Like smart cards however, all control over the 

                                                           
2 The reason for the use of this somewhat unusual term is because almost every other noun used to denote hierarchies is 
already in use; “tier” is unusual enough that no-one else has got around to using it in their security terminology. 
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device’s operation resides in the host, so that even if a malicious application can’t get at the keys directly, it 
can still apply them in a manner other than the intended one. 

The next level of functionality, tier 3, moves all crypto-related processing (for example certificate 
generation and message signing and encryption) into the coprocessor.  The only control the host has over 
processing is at the level of “sign this message” or “encrypt this message”, all other operations (message 
formatting, the addition of additional information such as the signing time and signer’s identity, and so on) 
is performed by the coprocessor.  In contrast if the coprocessor has tier 1 functionality the host software can 
format the message any way it wants, set the date to an arbitrary time (in fact it can never really know the 
true time since it’s coming from the system clock which another process could have altered), and generally 
do whatever it wants with other message parameters.  Even with a tier 2 coprocessor such as a Fortezza card 
which has a built-in real-time clock (RTC), the host is free to ignore the RTC and give a signed message any 
timestamp it wants.  Similarly, even though protocols like CSP which is used with Fortezza incorporate 
complex mechanisms to handle authorisation and access control issues [45], the enforcement of these 
mechanisms is left to the untrusted host system rather than the card(!).  Other potential problem areas 
involve handling of intermediate results and composite call sequences which shouldn’t be interrupted, for 
example loading a key and then using it in a cryptographic operation [46].  In contrast, with a tier 3 
coprocessor which performs all crypto-related processing independent of the host the coprocessor controls 
the message formatting and the addition of additional information such as a timestamp taken from its own 
internal clock, moving them out of reach of any software running on the host.  The various levels of 
protection when the coprocessor is used for message decryption are shown in Figure 2. 

 

Figure 2: Protection levels for the decrypt operation 

Going beyond tier 3, a tier 4 coprocessor provides facilities such as command verification which prevent the 
coprocessor from acting on commands sent from the host system without the approval of the user.  The 
features of this level of functionality are explained in more detail in Section 4, which covers extended 
security functionality. 

Can we move the functionality to an even higher level, tier 5, giving the coprocessor even more control over 
message handling?  Although it’s possible to do this, it isn’t a good idea since at this level the coprocessor 
will potentially need to run message viewers (to display messages), editors (to create/modify messages), 
mail software (to send and receive them), and a whole host of other applications, and of course these 
programs will need to be able to handle MIME attachments, HTML, JavaScript, ActiveX, and so on in order 
to function as required.  In addition the coprocessor will now require its own input mechanism (a keyboard), 
output mechanism (a monitor), mass storage, and other extras.  At this point the coprocessor has evolved 
into a second computer attached to the original one, and since it’s running a range of untrusted and 
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potentially dangerous code we need to think about moving the crypto functionality into a coprocessor for 
safety.  Lather, rinse, repeat. 

The best level of functionality therefore is to move all crypto and security-related processing into the 
coprocessor, but to leave everything else on the host. 

2. The Coprocessor 
The traditional way to build a crypto coprocessor has been to create a complete custom implementation, 
originally with ASICs and more recently with a mixture of ASICs and general-purpose CPUs, all controlled 
by custom software.  This approach leads to long design cycles, difficulties in making changes at a later 
point, high costs (with an accompanying strong incentive to keep all design details proprietary due to the 
investment involved), and reliance on a single vendor for the product.  In contrast an open-source 
coprocessor by definition doesn’t need to be proprietary, so it can use existing COTS hardware and software 
as part of its design, which greatly reduces the cost (the coprocessor described here is one to two orders of 
magnitude cheaper than proprietary designs while offering generally equivalent performance and superior 
functionality), and can be sourced from multiple vendors and easily migrated to newer hardware as the 
current hardware base becomes obsolete. 

The coprocessor requires three layers, the processor hardware, the firmware which manages the hardware 
(for example initialisation, communications with the host, persistent storage, and so on) and the software 
which handles the crypto functionality.  The following sections describe the coprocessor hardware and 
resource management firmware on which the crypto control software runs. 

2.1 Coprocessor Hardware 
Embedded systems have traditionally been based on the VME bus, a 32-bit data/32-bit address bus 
incorporated onto cards in the 3U (1016cm) and 6U (2316cm) Eurocard form factor [47].  The VME bus 
is CPU-independent and supports all popular microprocessors including Sparc, Alpha, 68K, and x86.  An 
x86-specific bus called PC/104, based on the 104-pin ISA bus, has become popular in recent years due to 
the ready availability of low-cost components from the PC industry.  PC/104 cards are much more compact 
at 99.5cm than VME cards, and unlike a VME passive backplane-based system can provide a complete 
system on a single card [48].  PC/104-Plus, an extension to PC/104, adds a 120-pin PCI connector alongside 
the existing ISA one, but is otherwise mostly identical to PC/104 [49] 

In addition to PC/104 there are a number of functionally identical systems with slightly different form 
factors, of which the most common is the biscuit PC shown in Figure 3, a card the same size as a 3½” or 
occasionally 5¼” drive, with a somewhat less common one being the credit card or SIMM PC roughly the 
size of a credit card.  A biscuit PC provides most of the functionality and I/O connectors of a standard PC 
motherboard, as the form factor shrinks the I/O connectors do as well so that a SIMM PC typically uses a 
single enormous edge connector for all its I/O. In addition to these form factors there also exist card PC’s 
(sometimes called slot PC’s), which are biscuit PC’s built as ISA or (more rarely) PCI-like cards.  A typical 
configuration for a low-end system is a 5x86/133 CPU (roughly equivalent in performance to a 133 MHz 
Pentium), 8-16MB of DRAM, 2-8MB of flash memory emulating a disk drive, and every imaginable kind 
of I/O (serial ports, parallel ports, floppy disk, IDE hard drive, IR and USB ports, keyboard and mouse, and 
others).  High-end embedded systems built from components designed for laptop use provide about the 
same level of performance as a current laptop PC, although their price makes them rather impractical for use 
as crypto hardware. To compare this with other well-known types of crypto hardware, a typical smart card 
has a 5MHz 8-bit CPU, a few hundred bytes of RAM, and a few kB of EEPROM, and a Fortezza card has a 
10 or 20MHz ARM CPU, 64kB of RAM and 128kB of flash memory/EEPROM. 
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Figure 3: Biscuit PC (life-size) 

All of the embedded systems described above represent COTS components available from a large range of 
vendors in many different countries, with a corresponding range of performance and price figures.  
Alongside the x86-based systems there also exist systems based on other CPU’s, typically ARM, 
Dragonball (embedded Motorola 68K), and to a lesser extent PowerPC, however these are available from a 
limited number of vendors and can be quite expensive.  Besides the obvious factor of system performance 
affecting the overall price, the smaller form factors and use of exotic hardware such as non-generic-PC 
components can also drive up the price.  In general the best price/performance balance is obtained with a 
very generic PC/104 or biscuit PC system. 

2.2 Coprocessor Firmware 
Once the hardware has been selected the next step is to determine what software to run on it to control it.  
The coprocessor is in this case acting as a special-purpose computer system running only the crypto control 
software, so that what would normally be thought of as the operating system is acting as the system 
firmware, and the real operating system for the device is the crypto control software.  The control software 
therefore represents an application-specific operating system, with crypto objects such as encryption 
contexts, certificates, and envelopes replacing the user applications which are managed by conventional 
OS’s.  The differences between a conventional system and the crypto coprocessor running one typical type 
of firmware-equivalent OS are shown in Figure 4. 

Hardware

Firmware

Operating system

Hardware

Linux

Crypto control SW

Applications Crypto objects

 

Figure 4: Conventional system vs. coprocessor system layers 
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Since the hardware is in effect a general-purpose PC, there’s no need to use a specialised, expensive 
embedded or real-time kernel or OS since a general-purpose OS will function just as well.  The OS choice is 
then something simple like one of the free or nearly-free embeddable forms of MSDOS [50][51][52] or an 
open source operating system like one of the x86 BSDs or Linux which can be adapted for use in embedded 
hardware.  Although embedded DOS is the simplest to get going and has the smallest resource requirements, 
it’s really only a bootstrap loader for real-mode applications and provides very little access to most of the 
resources provided by the hardware.  For this reason it’s not worth considering except on extremely low-
end, resource-starved hardware (it’s still possible to find PC/104 cards with 386/40’s on them, although 
having to drive them with DOS is probably its own punishment). 

A better choice than DOS is a proper operating system which can fully utilise the capabilities of the 
hardware.  The only functionality which is absolutely required of the OS is a memory manager and some 
form of communication with the outside world.  Also useful (although not absolutely essential) is the ability 
to store data such as private keys in some form of persistent storage.  Finally, the ability to handle multiple 
threads may be useful where the device is expected to perform multiple crypto tasks at once.  Apart from the 
multithreading, the OS is just acting as a basic resource manager, which is why DOS could be pressed into 
use if necessary. 

Both FreeBSD and Linux have been stripped down in various ways for use with embedded hardware 
[53][54].  There’s not really a lot to say about the two, both meet the requirements given above, both are 
open source systems, and both can use a standard full-scale system as the development environment — 
whichever one is the most convenient can be used.  At the moment Linux is a better choice because its 
popularity means there’s better support for devices such as flash memory mass storage (relatively speaking, 
as the Linux drivers for the most widely-used flash disk are for an old kernel while the FreeBSD ones are 
mostly undocumented and rather minimal), so the coprocessor described here uses Linux as its resource 
management firmware.  A convenient feature which gives the free Unixen an extra advantage over 
alternatives like embedded DOS is that they’ll automatically switch to using the serial port for their consoles 
if no video drivers and/or hardware are present, which enables them to be used with cheaper embedded 
hardware which doesn’t require additional video circuitry just for the one-off setup process.  A particular 
advantage of Linux is that it’ll halt the CPU when nothing is going on (which is most of the time), greatly 
reducing coprocessor power consumption and heat problems. 

2.3 Firmware Setup 
Setting up the coprocessor firmware involves creating a stripped-down Linux setup capable of running on 
the coprocessor hardware.  The services required of the firmware are: 

 Memory management 

 Persistent storage services 

 Communication with the host 

 Process and thread management (optional) 

All newer embedded systems support the M-Systems DiskOnChip (DOC) flash disk which emulates a 
standard IDE hard drive by identifying itself as a BIOS extension during the system initialisation phase 
(allowing it to install a DOC filesystem driver to provide BIOS support for the drive) and later switching to 
a native driver for OS’s which don’t use the BIOS for hardware access [55].  More recently systems have 
begun moving to the use of compact flash cards which emulate IDE hard drives due to their popularity in 
digital cameras and somewhat lower costs then DOCs.  The first step in installing the firmware involves 
formatting the DOC or compact flash card as a standard hard drive and partitioning it prior to installing 
Linux.  The flash disk is configured to contain two partitions, one mounted read-only which contains the 
firmware and crypto control software, and one mounted read/write with additional safety precautions like 
noexec and nosuid, for storage of configuration information and encrypted keys. 

The firmware consists of a basic Linux kernel with every unnecessary service and option stripped out.  This 
means removing support for video devices, mass storage (apart from the flash disk and floppy drive), 
multimedia devices, and other unnecessary bagatelles.  Apart from the TCP/IP (or similar protocol) stack 
needed by the crypto control software to communicate with the host, there are no networking components 
running (or even present) on the system, and even the TCP/IP stack may be absent if alternative, more low-
level means of communicating with the host (explained in more detail further on) are employed.  All 
configuration tasks are performed through console access via the serial port, and software is installed by 
connecting a floppy drive and copying across pre-built binaries.  This both minimises the size of the code 
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base which needs to be installed on the coprocessor, and eliminates any unnecessary processes and services 
which might constitute a security risk.  Although it would be easier if we provided a means of FTP’ing 
binaries across, the fact that a user must explicitly connect a floppy drive and mount it in order to change the 
firmware or control software makes it much harder to accidentally (or maliciously) move problematic code 
across to the coprocessor, provides a workaround for the fact that FTP over alternative coprocessor 
communications channels such as a parallel port is tricky without resorting to the use of even more potential 
problem software, and makes it easier to comply with the FIPS 140 requirements that (where a non-Orange 
Book OS is used) it not be possible for extraneous software to be loaded and run on the system.  Direct 
console access is also used for other operations such as setting the onboard real-time clock, which is used to 
add timestamps to signatures.  Finally, all paging is disabled, both because it isn’t needed or safe to perform 
with the limited-write-cycle flash disk, and because it avoids any risk of sensitive data being written to 
backing store, eliminating a major headache which occurs with all virtual-memory operating systems [56]. 

At this point we have a basic system consisting of the underlying hardware and enough firmware to control 
it and provide the services we require.  Running on top of this will be a daemon which implements the 
crypto control software which does the actual work. 

3. Crypto Functionality Implementation 
Once the hardware and functionality level of the coprocessor have been established, we need to design an 
appropriate programming interface for it.  An interface which employs complex data structures, pointers to 
memory locations, callback functions, and other such elements won’t work with the coprocessor unless a 
complex RPC mechanism is employed.  Once we get to this level of complexity we run into problems both 
with lowered performance due to data marshalling and copying requirements and potential security 
problems arising from inevitable implementation bugs.  A better way to handle this is to apply the 
forwarder-receiver model shown in Figure 5, which takes cryptlib function calls on the local machine and 
forwards them to the coprocessor, returning the results to the local machine in a similar manner. 

Marshal Unmarshal

Unmarshal Marshal
ForwarderReceiver

ReceiverForwarder

function()function()

Network
 

Figure 5: Coprocessor communication using the forwarder-receiver model 

The interface used by cryptlib is ideally suited for use in a coprocessor since only the object handle (a small 
integer value) and one or two arguments (either an integer value or a byte string and length) are needed to 
perform most operations.  This use of only basic parameter types leads to a very simple and lightweight 
interface, with only the integer values needing any canonicalisation (to network byte order) before being 
passed to the coprocessor.  A coprocessor call of this type, illustrated in Figure 6, requires only a few lines 
of code more than what is required for a direct call to the same code on the host system.  In practice the 
interface is further simplified by using a pre-encoded template containing all fixed parameters (for example 
the type of function call being performed and a parameter count), copying in any variable parameters (for 
example the object handle) with appropriate canonicalistion, and dispatching the result to the coprocessor.  
The coprocessor returns results in the same manner. 
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cryptSignCert( cert, caKey ) krnlSendMessage( cert,
MESSAGE_CERT_SIGN, NULL, caKey );

Host Coprocessor

[COMMAND_CERTSIGN, cert, caKey]

 

Figure 6: Command forwarding to the coprocessor 

The coprocessor interface is further simplified by the fact that even the local cryptlib interface constitutes a 
basic implementation of the forwarder-receiver model in which both ends of the connection happen to be on 
the same machine and in the same address space, reducing the use of special-case code which is only 
required for the coprocessor. 

3.1 Communicating with the Coprocessor 
The next step after designing the programming interface is to determine which type of communications 
channel is best suited to controlling the coprocessor.  Since the embedded controller hardware is intended 
for interfacing to almost anything, there are a wide range of I/O capabilities available for communicating 
with the host.  Many embedded controllers provide an Ethernet interface either standard or as an option, so 
the most universal interface uses TCP/IP for communications.  For card PCs which plug into the host’s 
backplane we should be able to use the system bus for communications, and if that isn’t possible we can 
take advantage of the fact that the parallel ports on all recent PCs provide sophisticated (for what was 
intended as a printer port) bidirectional I/O capabilities and run a link from the parallel port on the host 
motherboard to the parallel port on the coprocessor.  Finally, we can use more exotic I/O capabilities such as 
USB and similar high-speed serial links to communicate with the coprocessor.  By using (or at least 
emulating via a sockets interface) TCP/IP over each of these physical links, we can provide easy portability 
across a wide range of interface types. 

The most universal coprocessor consists of a biscuit PC which communicates with the host over Ethernet 
(or, less universally, a parallel port).  One advantage which an external, removable coprocessor of this type 
has over one which plugs directly into the host PC is that it’s very easy to unplug the entire crypto 
subsystem and store it separately from the host, moving it out of reach of any covert access by outsiders [57] 
while the owner of the system is away.  In addition to the card itself, this type of standalone setup requires a 
case and a power supply, either internal to the case or an external wall-wart type (these are available for 
about $10 with a universal input voltage range which allows them to work in any country).  The same 
arrangement is used in a number of commercially-available products, and has the advantage that it interfaces 
to virtually any type of system, with the commensurate disadvantage that it requires a dedicated Ethernet 
connection to the host (which typically means adding an extra network card), as well as adding to the clutter 
surrounding the machine. 

The alternative option for an external coprocessor is to use the parallel port, which doesn’t require a network 
card but does tie up a port which may be required for one of a range of other devices such as external disk 
drives, CD writers, and scanners which have been kludged onto this interface alongside the more obvious 
printers.  Apart from its more obvious use, the printer port can be used either as an Enhanced Parallel Port 
(EPP) or as an Extended Capability Port (ECP) [58].  Both modes provide about 1-2 MB/s data throughput 
(depending on which vendor’s claims are to be believed) which compares favourably with a parallel port’s 
standard software-intensive maximum rate of around 150 kB/s and even with the throughput of a 10Mbps 
Ethernet interface.  EPP was designed for general-purpose bidirectional communication with peripherals 
and handles intermixed read and write operations and block transfers without too much trouble, whereas 
ECP (which requires a DMA channel which can complicate the host system’s configuration process) 
requires complex data direction negotiation and handling of DMA transfers in progress, adding a fair 
amount of overhead when used with peripherals which employ mixed reading and writing of small data 
quantities.  Another disadvantage of DMA is that its use paralyses the CPU by seizing control of the bus, 
halting all threads which may be executing while data is being transferred.  Because of this the optimal 
interface mechanism is EPP.  From a programming point of view, this communications mechanism looks 
like a permanent virtual circuit which is functionally equivalent to the dumb wire which we’re using the 
Ethernet link as, so the two can be interchanged with a minimum of coding effort. 
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To the user, the most transparent coprocessor would consist of some form of card PC which plugs directly 
into their system’s backplane.  Currently virtually all card PCs have ISA bus interfaces (the few which 
support PCI use a PCI/ISA hybrid which won’t fit a standard PCI slot [59]) which unfortunately doesn’t 
provide much flexibility in terms of communications capabilities since the only viable means of moving 
data to and from the coprocessor is via DMA, which requires a custom kernel-mode driver on both sides.  
The alternative, using the parallel port, is much simpler since most operating systems already support EPP 
and/or ECP data transfers, but comes at the expense of a reduced data transfer rate and the loss of use of the 
parallel port on the host.  Currently the use of either of these options is rendered moot since the ISA card 
PCs assume they have full control over a passive-backplane-bus system, which means they can’t be plugged 
into a standard PC which contains its own CPU which is also assuming that it solely controls the bus.  It’s 
possible that in the future card PCs which function as PCI bus devices will appear, but until they do it’s not 
possible to implement the coprocessor as a plug-in card without using a custom extender card containing an 
ISA or PCI connector for the host side, a PC104 connector for a PC104-based CPU card, and buffer 
circuitry in between to isolate the two buses.  This destroys the COTS nature of the hardware, limiting 
availability and raising costs. 

The final communications option uses more exotic I/O capabilities such as USB (and occasionally other 
high-speed serial links such as FireWire) which are present on newer embedded systems, these are much 
like Ethernet but have the disadvantage that they are currently rather poorly supported by operating systems 
targeted at embedded systems. 

The discussion so far has looked at the communications mechanism either as an interface-specific one or an 
emulated TCP/IP sockets interface, with the latter being built on top of the former.  Although the generic 
sockets interface provides a high level of flexibility and works well with existing code, it requires that each 
device and/or device interface be allocated its own IP address and creates extra code overhead for providing 
the TCP/IP-style interface.  Instead of using the standard AF_INET family, the sockets interface could 
implement a new AF_COPROCESSOR family with the address passed to the connect() function being a 
device or interface number or some similar identifier which avoids the need to allocate an IP address.  This 
has the disadvantage that it loses some of the universality of the TCP/IP interface, which by extension 
makes it more difficult to perform operations such as direct device-to-device communications for purposes 
such as load balancing.  Another advantage of the TCP/IP interface is that it’s possible to apply existing 
cryptlib security mechanisms to the interface so that, for example, one coprocessor could talk directly to 
another over an SSL-protected link which would keep the communications secure even if the host which 
was handling them was compromised.  Another possibility (covered in more detail in section 4.3) is that this 
interface frees the coprocessor from having to be located in the same physical location as the host or 
coprocessor which it’s communicating with it. 

Since we’re using Linux as the resource manager for the coprocessor hardware, we can use a multithreaded 
implementation of the coprocessor software to handle multiple simultaneous requests from the host.  After 
initialising the various cryptlib subsystems, the control software creates a pool of threads which wait on a 
mutex for commands from the host.  When a command arrives, one of the threads is woken up, processes 
the command, and returns the result to the host.  In this manner the coprocessor can have multiple requests 
outstanding at once, and a process running on the host won’t block whenever another process has an 
outstanding request present on the coprocessor. 

3.2 Coprocessor Session Control 
When cryptlib is being run on the host system, the concept of a user session doesn’t exist since the user has 
whatever control over system resources are allowed by their account privileges.  When cryptlib is being 
used in a coprocessor which exists independently from the host, the concept of a session with the 
coprocessor applies.  This works much like a session with a more general-purpose computer except that the 
capabilities available to the user are usually divided into two classes, those of a security officer or SO (the 
super-user- or administrator-equivalent for the coprocessor) and those of a standard user.  The SO can 
perform functions such as initialising the device and (in some cases) performing key loading and generation 
actions but can’t actually make use of the keys, while the user can make use of the keys but can’t generally 
perform administrative actions. 

The exact details of the two roles are somewhat application-specific, for example the Fortezza card allows 
itself to be initialised and initial keys and certificates to be loaded by the SO (in the circles where Fortezza is 
used the term is site security officer or SSO), after which the initial user PIN is set which automatically logs 
the SO out.  At this point the card initialisation functions are disabled, and the SO can log in again to 
perform maintenance operations or the user can log in to use the card to sign or encrypt data.  When logged 
in as SO it’s not possible to use the card for standard operations, and when logged in as user it’s not possible 
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to perform maintenance operations [60].  The reason for enforcing this sequence of operations is that it 
provides a clear chain of control and responsibility for the device, since the card is moved into its initial 
state by the SO who started with a pristine (at least as far as the FIPS 140 tamper-evident case is able to 
indicate) card into which they load initial values and then hand the device on to the user.  The SO knows 
(with a good degree of certainty) that they have an untampered card, and initialises it as required, after 
which the user knows that they have an initialised card which was configured for them by the SO.  This 
simplified version of the Fortezza life cycle (the full version has a more fine-grained number of states) is 
shown in Figure 7. 

Manufacturer
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User

Load firmware

Initialise card

 

Figure 7: Fortezza card life cycle 

A similar function is played by the SO in the Dallas iButton (in iButton terms the crypto officer), who is 
responsible for initialising the device and setting various fixed parameters, after which they set the initial 
user PIN and hand the device over to the user.  At the point of manufacture the iButton is initialised with the 
Dallas Primary Feature Set which includes a private key generated in the device when the feature set was 
initialised.  The fixed Primary Feature Set allows the SO to initialise the device and allows the user to check 
whether the SO has altered various pre-set options.  Since the Dallas Primary key is tied to an individual 
device and can only sign data under control of the iButton internal code, it can be used to guarantee that 
certain settings are in effect for the device and to guarantee that a given user key was generated in and is 
controlled by the device.  Again, this provides a trusted bootstrap path which allows the user and relying 
parties to determine with a good degree of confidence that everything is as it should be. 

An even more complex secure bootstrap process is used in the IBM 4758.  This is a multi-stage process 
which begins with the layer 0 miniboot code in ROM.  This code allows (under carefully controlled 
conditions) layer 1 miniboot code to be loaded into flash memory, which in turn allows layer 2 system 
software to be loaded into flash, which in turn loads and runs layer 3 user applications [27][61].  The device 
contains various hardware-based interlocks which are used to protect the integrity of each layer, during the 
boot process each boot phase advances a ratchet which ensures that once execution has passed through layer 
n to a lower-privileged layer n + 1, it can never move back to layer n.  As execution moves into higher and 
higher layers, the capabilities which are available become less and less, so that code at layer n + 1 can no 
longer access or modify resources available at layer n.  An attempt to reload code at a given layer can only 
occur under carefully controlled conditions either hardcoded into or configured by the installer of the layer 
beneath it.  A normal reload of a layer (that is, a software update with appropriate authorisation) will leave 
the other data in that layer intact, an emergency reload (used to initially load code and for emergencies such 
as code being damaged or non-functional) erases all data such as encryption keys for every layer from the 
one being reloaded on up.  This has the same effect as the Fortezza multi-stage bootstrap where the only 
way to change initial parameters is to wipe the card and start again from scratch.  Going beyond this, the 
4758 also has an extensive range of authorisation and authentication controls which allow a trusted 
execution environment within the device to be preserved. 

As discussed in a previous chapter, cryptlib’s flexible security policy can be adapted to enforce at least the 
simpler Fortezza/iButton-type controls without too much trouble.  At present this area has seen little work 
since virtually all users are working with either a software-only implementation or a dedicated coprocessor 
under the control of a single user, however in future work the implications of multiuser access to 
coprocessor resources will be explored.  Since cryptlib provides native SSL/TLS and ssh capabilities, it’s 
likely that multiuser access will be protected with one of these mechanisms, with per-user configuration 
information being stored using the PKCS #15 format [62] which was originally designed to store 
information in smart cards and which is ideally suited for this purpose. 
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3.3 Open vs. Closed-source Coprocessors 
There are a number of vendors who sell various forms of tier 2 coprocessor, all of which run proprietary 
control software and generally go to some lengths to ensure that no outsiders can ever examine it.  The usual 
way in which vendors of proprietary implementations try to build the same user confidence in their product 
as would be provided by having the source code and design information available for public scrutiny is to 
have it evaluated by independent labs and testing facilities, typically to the FIPS 140 standard when the 
product constitutes crypto hardware (the security implications of open source vs. proprietary 
implementations have been covered exhaustively in various fora and won’t be repeated here).  
Unfortunately this process leads to prohibitively expensive products (thousands to tens of thousands of 
dollars per unit) and still requires users to trust the vendor not to insert a backdoor or to accidentally void 
the security via a later code update or enhancement added after the evaluation is complete (strictly speaking 
such post-evaluation changes would void the evaluation, but vendors sometimes forget to mention this in 
their marketing literature).  There have been numerous allegations of the former occurring [63][64][65], and 
occasional reports of the latter. 

In contrast, an open source implementation of the crypto control software can be seen to be secure by the 
end user with no degree of blind trust required.  The user can (if they feel so inclined) obtain the raw 
coprocessor hardware from the vendor of their choice in the country of their choice, compile the firmware 
and control software from the openly-available source code, and install it knowing that no supplemental 
functionality known only to a few insiders exists.  For this reason the entire suite of coprocessor control 
software is made available in source code form for anyone to examine, build, and install as they see fit. 

A second, far less theoretical advantage of an open-source coprocessor is that until the crypto control code is 
loaded into it, it isn’t a controlled cryptographic item as crypto source code and software aren’t controlled in 
most of the world.  This means that it’s possible to ship the hardware and software separately to almost any 
destination (or source it locally) without any restrictions and then combine the two to create a controlled 
item once they arrive at their destination (like a two-component glue, things don’t get sticky until you mix 
the parts). 

4. Extended Security Functionality 
The basic coprocessor design presented so far serves to move all security-related processing and 
cryptovariables out of reach of hostile software, but by taking advantage of the capabilities of the hardware 
and firmware used to implement it, it’s possible to do much more.  One of the features of the cryptlib 
architecture is that all operations are controlled and monitored by a central security kernel which enforces a 
single, consistent security policy across the entire architecture.  By tying the control of some of these 
operations to features of the coprocessor, it’s possible to obtain an extended level of control over its 
operation as well as avoiding some of the problems which have traditionally plagued this type of security 
device.  While this isn’t a panacea (there are too many ways to get at sensitive information which don’t 
require any type of attack on the underlying cryptosystem or its implementation [66]), the measures help 
close some of the more glaring holes. 

4.1 Controlling Coprocessor Actions 
The most important type of extra functionality which can be added to the coprocessor is extended failsafe 
control over any actions it performs.  This means that instead of blindly performing any action requested by 
the host (purportedly on behalf of the user), it first seeks confirmation from the user that they have indeed 
requested that the action be taken.  The most obvious application of this mechanism is for signing 
documents where the owner has to indicate their consent through a trusted I/O path rather than allowing a 
rogue application to request arbitrary numbers of signatures on arbitrary documents.  This contrasts with 
other tier 1 and 2 processors which are typically enabled through user entry of a PIN or password, after 
which they are at the mercy of any commands coming from the host.  Apart from the security concerns, the 
ability to individually control signing actions and require conscious consent from the user means that the 
coprocessor provides a mechanism required by a number of digital signature laws which recognise the 
dangers inherent in systems which provide an automated (that is, with little control from the user) signing 
capability. 
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Figure 8: Normal message processing 

The means of providing this service is to hook into the cryptlib kernel’s sign action and decrypt action 
processing mechanisms.  In normal processing the kernel receives the incoming message, applies various 
security-policy-related checks to it (for example it checks to ensure that the object’s ACL allows this type of 
access), and then forwards the message to the intended target, as shown in Figure 8.  In order to obtain 
additional confirmation that the action is to be taken, the coprocessor can indicate the requested action to the 
user and request additional confirmation before passing the message on.  If the user chooses to deny the 
request or doesn’t respond within a certain time, the request is blocked by the kernel in the same manner as 
if the object’s ACL didn’t allow it, as shown in Figure 9.  This mechanism is similar to the command 
confirmation mechanism in the VAX A1 security kernel, which takes a command from the untrusted VMS 
or Ultrix-32 OSs running on top of it, requests that the user press the (non-overridable) secure attention key 
to communicate directly with the kernel and confirm the operation (“Something claiming to be you has 
requested X.  Is this OK?”), and then returns the user back to the OS after performing the operation [67]. 

Sign
Source Kernel

Sign
Target

Deny

Request confirmation
from user

 

Figure 9: Processing with user confirmation 

The simplest form of user interface involves two LEDs and two pushbutton switches connected to a suitable 
port on the coprocessor (for example the parallel port or serial port status lines).  An LED is activated to 
indicate that confirmation of a signing or decryption action is required by the coprocessor.  If the user 
pushes the confirmation button, the request is allowed through, if they push the cancel button or don’t 
respond within a certain time, the request is denied. 

4.2 Trusted I/O Path 
The basic user confirmation mechanism presented above can be generalised by taking advantage of the 
potential for a trusted I/O path which is provided by the coprocessor.  The main use for a trusted I/O path is 
to allow for secure entry of a password or PIN which is used to enable access to keys stored in the 
coprocessor.  Unlike typical tier 1 devices which assume that the entire device is secure and therefore can 
afford to use a short PIN in combination with a retry counter to protect cryptovariables, the coprocessor 
makes no assumptions about its security and instead relies on a user-supplied password to encrypt all 
cryptovariables held in persistent storage (the only time keys exist in plaintext form is when they’re 
decrypted to volatile memory prior to use).  Because of this, a simple numeric keypad used to enter a PIN 
isn’t sufficient (unless the user enjoys memorising long strings of digits for use as passwords).  Instead, the 
coprocessor can optionally make use of devices such as PalmPilots for password entry, perhaps in 
combination with novel password entry techniques such as graphical passwords [68].  Note though that, 
unlike a tier 0 crypto implementation, obtaining the user password via a keyboard sniffer on the host doesn’t 
give access to private keys since they’re held on the coprocessor and can never leave it, so that even if the 
password is compromised by software on the host, it won’t provide access to the keys. 

In a slightly more extreme form, the ability to access the coprocessor via multiple I/O channels allows us to 
enforce strict red/black separation, with plaintext being accessed through one I/O channel, ciphertext 
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through another, and keys through a third.  Although cryptlib doesn’t normally load plaintext keys (they’re 
generated and managed internally and can never pass outside the security perimeter), when the ability to 
load external keys is required FIPS 140 mandates that they be loaded via a separate channel rather than the 
one used for general data, which can be provided for by loading them over a separate channel such as a 
serial port (a number of commercial crypto coprocessors come with a serial port for this reason). 

4.3 Physically Isolated Crypto 
It has been said that the only truly tamperproof computer hardware is Voyager 2, since it has a considerable 
air gap (strictly speaking a non-air gap) which makes access to the hardware somewhat challenging (space 
aliens notwithstanding).  We can take advantage of air-gap security in combination with cryptlib’s remote-
execution capability by siting the hardware performing the crypto in a safe location well away from any 
possible tampering.  For example by running the crypto on a server in a physically secure location and 
tunnelling data and control information to it via its built-in ssh or SSL/TLS capabilities, we can obtain the 
benefits of physical security for the crypto without the awkwardness of having to use it from a secure 
location or the expense of having to use a physically secure crypto module (the implications of remote 
execution of crypto from countries like China or the UK (with the RIPA act in force) with keys and crypto 
being held in Europe or the US are left as an exercise for the reader). 

Physical isolation at the macroscopic level is also possible due to the fact that the cryptlib separation kernel 
has the potential to allow different object types (and, at the most extreme level, individual objects) to be 
implemented in physically separate hardware.  For those requiring an extreme level of isolation and 
security, it should be possible to implement the different object types in their own hardware, for example 
keyset objects (which don’t require any real security since certificates contain their own tamper protection) 
could be implemented on the host PC, the kernel (which requires a minimum of resources) could be 
implemented on a cheap ARM-based plug-in card, envelope objects (which can require a fair bit of memory 
but very little processing power) could be implemented on a 486 card with a good quantity of memory, and 
encryption contexts (which can require a fair amount of CPU power but little else) could be implemented 
using a faster Pentium-class CPU.  In practice though it’s unlikely that anyone would consider this level of 
isolation worth the expense and effort. 

4.4 Coprocessors in Hostile Environments 
Sometimes the coprocessor will need to function in a somewhat hostile environment, not so much in the 
sense of it being exposed to extreme environmental conditions but more that it will need to be able to 
withstand a larger than usual amount of general curiosity by third parties.  The standard approach to this 
problem is to embed the circuitry in some form of tamper-resistant envelope which in its most sophisticated 
form has active tamper response circuitry which will zeroise cryptovariables if it detects any form of attack. 

Such an environmental enclosure is difficult and expensive to construct for the average user, however there 
exist a variety of specialised enclosures which are designed for use with embedded systems which are 
expected to be used under extreme environmental conditions.  A typical enclosure of this form, the HiDAN 
system3, is shown in Figure 10.  This contains a PC104 system mounted on a heavy-duty aluminium-alloy 
chassis which acts as both a heatsink for the PC and provides a substantial amount of physical and 
environmental protection for the circuitry contained within it. 

                                                           
3 HiDAN images copyright Real Time Devices USA, all rights reserved. 
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Figure 10: HiDAN embedded PC internals (image courtesy RTD) 

This type of enclosure provides a high degree of shielding and isolation for the internal circuitry, with a 
minimum of 85dB of EMI shielding from 10-100MHz and 80dB of shielding to 1GHz, sufficient to meet a 
number of TEMPEST emission standards.  All I/O is via heavily-shielded milspec connectors, and the 
assembly contains a built-in power supply module (present in the lower compartment) to isolate the internal 
circuitry from any direct connection to an external power source.  As Figure 11 indicates, the unit is 
constructed in a manner capable of withstanding medium-calibre artillery fire. 

 

Figure 11: HiDAN embedded PC system (image courtesy RTD) 

This type of enclosure can be easily adapted to meet the FIPS 140 level 2 and 3 physical security 
requirements.  For level 2, “the cryptographic module shall provide evidence of tampering (e.g., cover, 
enclosure, and seal)” (section 4.5.1) and “the cryptographic module shall be entirely contained within a 
metal or hard plastic production-grade enclosure” (section 4.5.4), requirements which the unit more than 
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meets (the EMI shielding includes a self-sealing gasket compound which provides a permanent 
environmental seal to a tongue-and-groove arrangement once the case is closed). 

For level 3, “the cryptographic module shall be encapsulated within a hard potting material (e.g., a hard 
opaque epoxy)” (section 4.5.3), which can be arranged by pouring a standard potting mix into the case 
before it is sealed shut. 

5. Crypto Hardware Acceleration 
So far the discussion of the coprocessor has focused on the security and functionality enhancements it 
provides, avoiding any mention of performance concerns.  The reason for this is that for the majority of 
users the performance is good enough, meaning that for typical applications such as email encryption, web 
browsing with SSL, and remote access via ssh, the presence of the coprocessor is barely noticeable since the 
limiting factors on performance are set by network bandwidth, disk access times, modem speed, bloatware 
running on the host system, and so on.  Although never intended for use as a special-purpose crypto 
accelerator of the type capable of performing hundreds of RSA operations per second on behalf of a 
heavily-loaded web server, it is possible to add extra functionality to the coprocessor through its built-in 
PC104 bus to extend its performance.  By adding a PC104 daughterboard to the device, it’s possible to 
enhance its functionality or add new functionality in a variety of ways, as explained below (although the 
prices quoted for devices will change over time, the price ratios should remain relatively constant). 

5.1 Conventional Encryption/Hashing 
Implementing an algorithm like DES, which was originally targeted at hardware implementations, in a field-
programmable gate array (FPGA) is relatively straightforward, and hash algorithms like MD5 and SHA-1 
can also be implemented fairly easily in hardware by implementing a single round of the algorithm and 
cycling the data through it the appropriate number of times.  Using a low-cost FPGA, it should be possible 
to build a daughterboard which performs DES and MD5/SHA-1 acceleration for around $50.  Unfortunately 
a number of hardware and software issues conspire to make this non-viable economically.  The main 
problem is that although DES is faster to implement in hardware than in software, most newer algorithms 
are much more efficient in software (ones with large, key-dependent S-boxes are particularly difficult to 
implement in FPGAs because they require huge numbers of logic cells, requiring very expensive high-
density FPGAs).  A related problem is the fact that in many cases the CPU on the coprocessor is already 
capable of saturating the I/O channel (ethernet/ECP/EPP/PC104) using a pure software implementation, so 
there’s nothing to be gained by adding expensive external hardware (all of the software-optimised 
algorithms run at several MB/s whereas the I/O channel is only capable of handling around 1MB/s).  The 
imbalance becomes even worse when any CPU faster than the entry-level 5x86/133 configuration is used, 
since at this point any common algorithm (even the rather slow triple DES) can be executed more quickly in 
software than the I/O channel can handle.  Because of this it doesn’t seem profitable to try to augment 
software-based conventional encryption or hashing capabilities with extra hardware. 

5.2 Public-key Encryption 
Public-key algorithms are less amenable to implementation in general-purpose CPUs than conventional 
encryption and hashing algorithms, so there’s more scope for hardware acceleration in this area.  We have 
two options for accelerating public-key operations, either using an ASIC from a vendor or implementing our 
own version with an FPGA.  Bignum ASICs are somewhat thin on the ground since the vendors who 
produce them usually use them in their own crypto products and don’t make them available for sale to the 
public, however there is one company who specialise in ASICs rather than crypto products who can supply 
a bignum ASIC (it’s also possible to license bignum cores and implement the device yourself, this option is 
covered peripherally in the next section).  Using this device, the PCC201 [69], it’s possible to build a 
bignum acceleration daughterboard for around $100. 

Unfortunately, the device has a number of limitations.  Although impressive when it was first introduced, 
the maximum key size of 1024 bits and maximum throughput of 21 operations/s for 1024-bit keys and 74 
operations/s for 512-bit keys compares rather poorly with software implementations on newer Pentium-class 
CPU’s, which can achieve the same performance with a CPU speed of around 200MHz.  This means that 
although one of these devices would serve to accelerate performance on a coprocessor based on the entry-
level 5x86/133 hardware, a better way to utilise the extra expense of the daughterboard would be to buy the 
next level up in coprocessor hardware, giving somewhat better bignum performance and accelerating all 
other operations as well as a free side-effect (the entry level for Pentium-class cards is one containing a 
266MHz Cyrix MediaGX, although it may be possible to put together an even cheaper one using a bare card 
and populating it with an AMD Duron 750, currently selling for around $30).  A second disadvantage of the 
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PCC201 is that it’s made available under peculiar export control terms which can make it cumbersome (or 
even impossible) to obtain for anyone who isn’t a large company. 

An alternative to using an ASIC is to implement our own bignum accelerator with an FPGA, with the 
advantage that we can make it as fast as required (within the limits of the available hardware).  Again, there 
is the problem that much of the published work in the area of bignum accelerator design is by crypto 
hardware vendors who don’t make the details available, however there is one reasonably fast 
implementation which achieves 83 operations/s for 1024-bit keys and 340 operations/s for 512-bit keys 
using a total of 6,700 FPGA basic cells (configurable logic blocks or CLBs) [70].  The use of such a large 
number of CLBs requires the use of very high-density FPGAs, of which the most widely-used 
representative is the Xilinx XC4000 family [71].  The cheapest available FPGA capable of implementing 
this design, the XC40200, comes with a pre-printed mortgage application form and a $2000-$2500 price tag 
(depending on speed grade and quantity), providing a clue as to why the design has to date only been 
implemented on a simulator.  Again, it’s possible to buy an awful lot of CPU power for the same amount of 
money (an equivalent level of performance to the FPGA design is obtainable using (in early-2000 prices) 
about $200 worth of AMD Athlon CPU [72]). 

This illustrates a problem faced by all hardware crypto accelerator vendors, which may be stated as a 
derivation of Moore’s law: AMD and Intel can make it faster cheaper than you can.  In other words, putting 
a lot of effort into designing an ASIC for a crypto accelerator is a risky investment because, aside from the 
usual flexibility problems caused by the use of an ASIC, it’ll be rendered obsolete by general-purpose CPUs 
within a few years.  This problem is demonstrated by several products currently sold as crypto hardware 
accelerators which in fact act as crypto handbrakes since, when plugged in or enabled, performance slows 
down. 

For pure acceleration purposes, the optimal price/performance tradeoff appears to be to populate a 
daughterboard with a collection of cheap CPUs attached to a small amount of memory and just enough glue 
logic to support the CPU (this approach is used by nCipher, who use a cluster of ARM CPUs in their SSL 
accelerators [73]).  The mode of operation of this CPU farm would be for the crypto coprocessor to halt the 
CPUs, load the control firmware (a basic protected-mode kernel and appropriate code to implement the 
required bignum operation(s)) into the memory, and restart the CPU running as a special-purpose bignum 
engine.  For x86 CPUs, there are a number of very minimal open-source protected-mode kernels which were 
originally designed as DOS extenders for games programming available, these ignore virtual memory, page 
protection, and other issues and run the CPU as if it were a very fast 32-bit real-mode 8086.  By using a 
processor like a Duron which contains 128K of onboard level 1 cache (running at the full CPU speed), the 
control code can be loaded initially from slow, cheap external memory but will execute from cache at full 
speed from then on.  Each of these dedicated bignum units should be capable of ~500 512-bit RSA 
operations per second, with the added benefit that they can run standard applications when they’re not 
acting as crypto accelerators. 

Unfortunately the use of commodity x86 CPUs of this kind has several disadvantages.  The first is that they 
are designed for use in systems with a certain fixed configuration (for example SDRAM, PCI and AGP 
busses, a 64-bit bus interface, and other high-performance options) which means that using them with a 
single cheap 8-bit memory chip requires a fair amount of glue logic to fake out the control signals from the 
external circuitry which is expected to be present.  The second problem is that these CPU’s consume 
significant amounts of power and dissipate a large amount of heat, with current drains of 10-15A and 
dissipations of 20-40W being common for the range of low-end processors which might be used as cheap 
accelerator engines.  Adding more CPUs to improve performance only serves to exacerbate this problem, 
since the power supplies and enclosures designed for embedded controllers are completely overwhelmed by 
the requirements of a cluster of these processors.  Although the low-cost processing power offered by 
general-purpose CPU’s appears to make them ideal for this situation, the practical problems they present 
rules them out as a solution. 

A final alternative is offered by digital signal processors (DSPs), which require virtually no external 
circuitry since most newer ones contain enough onboard memory to hold all data and control code, and 
don’t expect to find sophisticated external control logic present.  The fact that DSPs are optimised for 
embedded signal-processing tasks makes them ideal for use as bignum accelerators, since a typical 
configuration contains two 32-bit single-cycle multiply-accumulate (MAC) units which provide in one 
instruction the most common basic operation used in bignum calculations.  The best DSP choice appears to 
be the ADSP-21160, which consumes only 2 watts and contains built-in multiprocessor support allowing up 
to 6 DSPs to be combined into one cluster [74].  The aggregate 3,600 MFLOPS processing power provided 
by one of these clusters should prove sufficient (in its integer equivalent) to accelerate bignum calculations. 
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5.3 Other Functionality 
In addition to pure acceleration purposes, it’s possible to use a PC104 add-on card to handle a number of 
other functions.  The most important of these is a hardware random number generator (RNG), since the 
effectiveness of the standard entropy-polling RNG using by cryptlib is somewhat impaired by its use in an 
embedded environment.  A typical RNG would take advantage of several physical randomness sources 
(typically thermal noise in semiconductor junctions) fed into a Schmitt trigger with the output mixed into 
the standard cryptlib RNG.  The use of multiple independent sources ensures that even if one fails the others 
will still provide entropy, and feeding the RNG output into the cryptlib PRNG ensures that any possible bias 
is removed from the RNG output bits. 

A second function which can be performed by the add-on card is to act as a more general I/O channel than 
the basic LED-and-pushbutton interface described earlier, providing the user with more information 
(perhaps via an LCD display) on what it is they’re authorising. 

6. Conclusion 
This chapter has presented a design for an inexpensive, general-purpose cryptlib-based cryptographic 
coprocessor which is capable of keeping crypto keys and crypto processing operations safe even in the 
presence of malicious software on the host which it is controlled from.  Extended security functionality is 
provided by taking advantage of the presence of trusted I/O channels to the coprocessor.  Although 
sufficient for most purposes, the coprocessor’s processing power may be augmented through the addition of 
additional modules based on DSPs which should bring the performance into line with considerably more 
expensive commercial equivalents.  Finally, the open-source nature of the design and use of COTS 
components means that anyone can easily reassure themselves of the security of the implementation and can 
obtain a coprocessor in any required location by refraining from combining the hardware and software 
components until they’re at their final destination. 
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