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Vision-based Driver Assistance Systems (DAS) 

Test vehicle (S class) at Daimler AG, 2007 

Test vehicle (A class) at UoA, 2008 
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Stefan Gehrig, Daimler AG Germany, 
Talk at Tamaki campus, 7 November 2008 

Vision-Based DAS in the Market 
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Stereopsis 

= visual perception leading  
to the sensation of depth 

disparities 

Computer Vision: depth from detected horizontal disparities 
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HAKA1 

We have a “cat” at Tamaki campus, without wide-angle vision, just with  
two 640 x 480 gray level cameras, but with 10 bit per pixel. 

Sponsors: Mercedes Benz New Zealand & Coutts Cars North Shore  
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.enpeda.., HAKA1 and Tobi Vaudrey on TV  
    also showing Dr. Uwe Franke (Daimler AG) and Ali Al-Sarraf on 
                   TV3 (Campbell Live), New Zealand, in February 2008 

(for the clip, visit the TV3 website, search for “smart cars”) 
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Preparing the Car and 
Preprocessing of Recorded Sequences 
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HAKA1 in the Waitakeres: geometrically rectified stereo images 
High  
Awareness  
Kinematic  
Automobile  
no. 1 

with prior calibration  
at Tamaki campus 

epipolar line 

(see standard references  
in computer vision) 

(see J.-Y. Bouguet, 
Calibration Toolbox) 
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Computer installation, thanks to MIT 

Sponsor: Blackhawk Tracking Devices Ltd 

We read yaw rate and velocity at 25 Hz from 
the car’s computer, thanks to the  
                       research department at 
                 Daimler AG Germany 
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.enpeda..   Project 

Environment    
Perception and    
Driver    
Assistance 

Trajectory  
of the 
ego-vehicle  
(assumed  
plane) 
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Actually: roads are not planar, and there is ego-vehicle motion  
(pitch or tilt,   and roll) 

Demonstration (in 2006) of distortion in 
detected motion due to ego-motion (pitch), by 

courtesy of Uwe Franke, Daimler AG  
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Right: trajectory  of the   ego-vehicle  
(still on an assumed plane) 

BUT 

There are (various) ways to correct for 
ego-motion. 
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One option:   
Ego-motion correction based on calculated disparities 

d is the disparity at P 
b is the base distance 
θ tilt angle (pitch) 

See [Liu and Klette,  
ICONIP 2008] 
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Estimate a few (dozens) of accurate disparities at feature points  
                           (use of a feature-based stereo algorithm for sparse but accurate disparities) 
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OpenCV 

Kovesi-Owens max Kovesi-Owens min 

Sobel Canny (high thresholds) 

 Our “top 4” in edge detectors [Al-Sarraf, Vaudrey, Klette, Woo, IVCNZ 2008]: 

OpenCV 
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Example: estimated mean tilt angles  
                                       for (disjoint) intervals of 10 stereo frames within one stereo sequence 

Demonstration (in 2006) of ego-motion (i.e., tilt an roll) correction. 
Left: original sequence.                                        Right: corrected.                

By courtesy of Uwe Franke, Daimler AG  

See [Liu and Klette, PSIVT 2009] 
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Another option:   
Ego-motion correction based on tracked features 

The size of shown 
circles corresponds 
to maxima of scale 
characteristics of 
tracked features in 
derivative scale 
space. 

See [Sanchez, Klette, Destefanis, PSIVT 2009] 
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Tracked features in a test sequence 
provided by Daimler AG in 2007 

Estimated mean navigation angles 
(yaw and roll) for each of the 250 
stereo frames. 

Illustration of those mean navigation 
angles (  and  Kalman 
filtering). 
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Motion Analysis 
with one eye 
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Local motion (optic flow) estimation 

For each of the two sequences, motion vectors 
(u,v) are calculated by comparing frames along 
the time scale. Vectors at (x,y) are shown as 
one colored dot, representing direction by 
using the HSI scheme on the left; note that 
length is encoded by intensity (black = no motion). 

flow key 
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BBPW algorithm on left and right sequence separately 
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BBPW algorithm on the Auckland Harbor Bridge 
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CLG algorithm (combining local and global motion analysis) 
[Bruhn, Weickert, Schnörr, IJCV 2005] 

applied to the synthetic stereo sequence (with ground truth) in Set 2 on 

with white = 
no motion 
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Stereo Analysis 
with two eyes 



www.mi.auckland.ac.nz 

disparity  d   at  (x,y)  in left image 
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Stereo Analysis 

Disparities are mapped into depth and shown in gray scale or color. 

far 

far far 

close 

close 

close 
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Dynamic programming stereo with temporal propagation 
[Liu and Klette, ICONIP 2008] 

A 2007 night-vision stereo sequence (on the German Autobahn) 
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   Original left input sequence                BP on original input sequences  

Sobel of left input sequence               BP on Sobel input sequences 

Belief propagation stereo with Sobel preprocessing 

See [Guan and Klette, Robot Vision 2008] 
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Specification of (finally) used BP algorithm 

Sobel preprocessing  
max-product 
4-adjacency 
quadratic cost function 
red-black speed-up method 
coarse to fine for more reliable matching (5 to 7 layers; reduces #iterations) 

(no initialization with disparities at time  t-1, for t>0; future work) 

(for one pair  
of images) 

(penalty for  
intensity differences) 

(allows to handle  
occlusions) 
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A modified SGM = Semi-Global Matching  
(original SGM was proposed by Hirschmüller, CVPR 2005) 

Each image pair is pre-processed by a 3x3 Sobel edge detector. 

Edge images are smoothed using the kernel         |  1   2   1 | 
                                                                                        |  2   4   2 | 
                                                                                        |  1   2   1 | 

Resulting image pairs are processed with an SGM Algorithm (parameters c1 = 20, c2 
= 125, and 8-path optimization using a new cost function (1x5 window) as 
published in [Hermann, Klette, and Destefanis, PSIVT 2009]; as common for SGM, 
outliers are filtered by a 5x5 median. 

Mismatches are interpolated by a naive scheme (see the same paper) -  here is 
potential for further improvement. 
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A difficult night-vision stereo sequence (Daimler AG, Germany)  
“dancing lights” 
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Modified SGM recovers complex 3D shapes above ground  “quite well” 
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From Disparity Map to Occupancy Grid 
[Vaudrey, Badino, Gehrig, Robot Vision 2008] 
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Occupancy grid improvement by using a Kalman filter  
for disparity and (!) disparity rate 

also allows (pixel-wise) good estimates  
of speed of lead vehicle 
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Use of radar tracking (of lead vehicle) for  
generating `ground truth’ 
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[Vaudrey, Badino, Gehrig, Robot Vision 2008] 

Incorporating disparity rate improved distance (speed) 
estimates to lead vehicle, compared to static stereo integration 
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[Vaudrey, Badino, Gehrig, Robot Vision 2008] 

More accurate (right) detection of the bicyclist compared to 
disparity integration only in the middle  
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Stereo and Motion Analysis Combined 
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Stereo and motion data may be combined into 

3D spatial + 3D motion =  

                                      6D combined scene representation  

known as    scene flow 
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Scene Flow 
Combines flow and disparity into one frame-work: 

dense optical flow   (BBPW) 
Dense stereo            (SGM) 

Estimates the flow (u and v) and the disparity rate 
     (d’) at every pixel 

Compensated using ego-motion estimation 
See [Wedel, Rabe, Vaudrey, Brox, Franke, Cremers,  ECCV 2008]  
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Input from the left camera 
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SGM (real time at 25 Hz) dense stereo result 

color encodes depth (distance) 
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BBPW for the left camera (real time at 25 Hz)  

see color on the border for flow key 
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Segmented  depth map also using motion data 
(using scene flow = detected motion in 3D) 

gray: below  1 meter of height 
green - no motion, yellow - slow motion, red - fast motion 
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Obviously, 3D data allow various perspectives on the 3D scene 

gray: below  1 meter of height 
green - no motion, yellow - slow motion, red - fast motion 
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Conclusions 
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Vision-based driver assistance is imminent for standard cars; 
currently it moves from top-end products into less expensive models. 

There are several mature components (lane departure warning, dis–
tance to lead vehicle, blind spot surveillance, parking assistant, …); 
stereo and motion based solutions are currently still `leading edge’ 
material with ongoing challenges. 

The stereo and motion `data collection phase’ is likely to turn into a 
stereo and motion `data analysis phase’ (scene flow, segmentation, 
analysis of moving objects, forward-looking evaluation of current 
situations,…), followed by a `complex traffic-scene understanding 
phase’, possibly also allowing incremental 3D scene modeling using 
3D models on local (stationary) servers, such as current GPS allows 
the integration of traffic flow updates. A scene studied before should 
not be forgotten; it should be memorized and used during subsequent 
visits. 

Analysis, recognition and understanding will define new challenges, 
                especially for the neural network community. We are ready 
                for collaboration! Please contact the .enpeda.. team if 
                interested. We have the low-level vision data. 
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