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Vision-based Driver Assistance Systems (DAS)
Test vehicle (A class) at UoA, 2008

Test vehicle (S class) at Daimler AG, 2007
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Vision-Based DAS in the Market

Mitsubishi Diamante (1995-1996). Camera for lane recognition and Radar for ACC
Mercedes Truck (since 2000): Lane Departure Warner

Subaru Legacy (1998-2004): Stereo-based ACC

Cadillac (2001-2004): FIR Night Vision System

Toyota (since 2004): Night Vision System, Parking Guide, Lane Monitoring

Nissan (since 2004): Lane Keeping System

Honda (since 2004): Lane Keeping System,

Since 2005 every major car manufacturer offers camera-based driver assistance
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Possibly the cat,
a hunting animal, surveys a wide range of depth at low accuracy, whereas
man, a sophisticated toolmaker, surveys a narrow band at high accuracy,
varying the position of the band with his convergence movements.

THE NEURAL MECHANISM OF
BINOCULAR DEPTH DISCRIMINATION

By H. B. BARLOW, C. BLAKEMORE®* axp J. D. PETTIGREW+¢

We have a “cat” at Tamaki campus, without wide-angle vision, just with
two 640 x 480 gray level cameras, but with 10 bit per pixel.
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.enpeda.., HAKA1 and Tobi Vaudrey on TV

also showing Dr. Uwe Franke (Daimler AG) and Ali Al-Sarraf on
, New Zealand, in February 2008

(for the clip, visit the TV3 website, search for “smart cars”)

www.mi.auckland.ac.nz



Preparing the Car and
Preprocessing of Recorded Sequences
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HAKA1 in the Waitakeres: geometrically rectified stereo images

High (see standard references
Awareness in computer vision)
Kinematic ' | R

Automobile
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el gl with prior calibration
e == at Tamaki campus

(see J.-Y. Bouguet,
Calibration Toolbox)
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Rear wheels

We read yaw rate and velocity at 25 Hz from
the car’s computer, thanks to the
research department at

Daimler AG Germany Sponsor: Blackhawk Tracking Devices Ltd
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Actually roads are not planar, and there is ego-vehicle motion
(pitch or tilt, and roll)

Demonstration (in 2006) of distortion in |
detected motion due to ego-motion (pitch), by
courtesy of
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Right: trajectory of the ego-vehicle
(still on an assumed plane)

BUT

There are (various) ways to correct for
ego-motion.
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One option:
Ego-motion correction based on calculated disparities

Image plane

Ad infinitum

d is the disparity at P
Road surface | b |S the base distance
" @ tilt angle (pitch)
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Our “top 4” in edge detectors

Kovesi-Owens max ‘ Kovesi-Owens min

. OpenCV
Canny (high thresholds) .
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Example: estimated mean tilt angles

for (disjoint) intervals of 10 stereo frames within one stereo sequence

First pair of frames 1 11 21 31 41 51 61 71 &1 91 101 111
Tilt angle (1072 of a radian) 80 71 60 60 62 63 65 70 77 71 63 66
First pair of frames 121: 131 141 151 161 171 181 191 201 211 221 231

Tilt angle (10~° of a radian) 60 50 50 59 58 54 55 56 58 53 53 42
See [Liu and Klette, PSIVT 2009]

Demonstration (in 2006) of ego-motion (i.e., tilt an roll) correction.
Left: original sequence. Right: corrected.
By courtesy of Uwe Franke, Daimler AG
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Another option:
Ego-motion correction based on tracked features

-

N34 :

The size of shown S
circles corresponds B
to maxima of scale &
characteristics of
tracked features in
derivative scale

space.

See [Sanchez, Klette, Destefanis, PSIVT 2009]
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Tracked features in a test sequence
provided by Daimler AG in 2007

Estimated mean navigation angles
(yaw and roll) for each of the 250
stereo frames.

lllustration of those mean navigation
angles (with and without Kalman
filtering).
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Motion Analysis

with one eye
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Local motion (optic flow) estimation

For each of the two sequences, motion vectors
(u,v) are calculated by comparing frames along
the time scale. Vectors at (x,y) are shown as
one colored dot, representing direction by
using the HSI scheme on the left; note that
length is encoded by intensity (black = no motion).

flow key
t+1
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BBPW algorithm on left and right sequence separately
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BBPW algorithm on the Auckland Harbor Bridge
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CLG algorithm (combining local and global motion analysis)
[Bruhn, Weickert, Schnorr, [JCV 2005]

with white =
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applied to the synthetic stereo sequence (with ground truth) in Set 2 on
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Stereo Analysis

with two eyes
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left camera

right camera

ideal
epipolar line

disparity d at (x,y) in left image
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Disparities are mapped into depth and shown in gray scale or color.
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A 2007 night-vision stereo sequence (on the German Autobahn)

Dynamic programming stereo with temporal propagation
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Belief propagation stereo with Sobel preprocessing
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Original left input sequence BP on original input sequences

Sobel of left input sequence BP on Sobel input sequences

www.mi.auckland.ac.nz



Specification of (finally) used BP algorithm

Number Max-disparity Iterations Image size Running time Truncation of discontinuity cost ~Truncation of data cost
1 30 pixel 7 640 x 360 pixel 29s 11 30
2 35 pixel 7 640 x 360 pixel 3.1s 11 25
3 40 pixel 5 640 x 360 pixel 29s 23 20
1 30 pixel 7 640 x 360 pixel 295 20 60
5 30 pixel 5 640 x 360 pixel 27s 11 30
6 35 pixel 6 640 x 360 pixel 3.1s 10 30
7 40 pixel 5 640 x 360 pixel 29s 11 30
(for one pair (penalty for (allows to handle
of images) intensity differences) occlusions)

Sobel preprocessing

max-product

4-adjacency

quadratic cost function

red-black speed-up method

coarse to fine for more reliable matching (5 to 7 layers; reduces #iterations)

(no initialization with disparities at time t-1, for t>0; future work)

www.mi.auckland.ac.nz



A modified SGM = Semi-Global Matching

Each image pair is pre-processed by a 3x3 Sobel edge detector.

Edge images are smoothed using the kernel

N BN

| 1 1]

| 2 4 2]

| 1 1]

Resulting image pairs are processed with an SGM Algorithm (parameters ¢4 = 20, ¢,
= 125, and 8-path optimization using a new cost function (1x5 window) as

published in - as common for SGM,
outliers are filtered by a 5x5 median.

Mismatches are interpolated by a naive scheme (see the same paper) - here is
potential for further improvement.
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A difficult night-vision stereo sequence (Daimler AG, Germany)
“dancing lights”

A amp MO I ™
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Modified SGM recovers complex 3D shapes above ground “quite well”
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From Disparity Map to Occupancy Grid

Depth (m)
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Occupancy grid improvement by using a Kalman filter
for disparity and (!) disparity rate

e OO0 [Q occ_grid_truck_vel_with_limg.mpg

Boulingen bauid

also allows (pixel-wise) good estimates
of speed of lead vehicle

< fulnlol . ! 0:00:09
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Use of radar tracking (of lead vehicle) for
generating ‘ground truth’

800 |<° RadarTracking.avi
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40 | | | Radar
Disparity Rate Model
35 Static Stereo Integration v

Distance (m)

0 Al 100 150 200 250 300

Time (Frame Number)

Incorporating disparity rate improved distance (speed)
estimates to lead vehicle, compared to static stereo integration

[Vaudrey, Badino, Gehrig, Robot Vision 2008]
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BI00 |2) stereolntegration.mpg
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More accurate (right) detection of the bicyclist compared to
disparity integration only in the middle
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Stereo and Motion Analysis Combined
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Stereo and motion data may be combined into

3D spatial + 3D motion =

6D combined scene representation

known as scene flow
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Scene Flow

Combines flow and disparity into one frame-work:

dense optical flow (BBPW)
Dense stereo (SGM)

Estimates the flow (z and v) and the disparity rate
(d’) at every pixel

Compensated using ego-motion estimation

See [Wedel, Rabe, Vaudrey, Brox, Franke, Cremers, ECCV 2008]
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Input from the left camera
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SGM (real time at 25 Hz) dense stereo result

color encodes depth (distance)
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BBPW for the left camera (real time at 25 Hz)

see color on the border for flow key
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Segmented depth map also using motion data
(using scene flow = detected motion in 3D)

-t W

gray: below 1 meter of height
green - no motion, yellow - slow motion, red - fast motion
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Obviously, 3D data allow various perspectives on the 3D scene

gray: below 1 meter of height
green - no motion, yellow - slow motion, red - fast motion
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Conclusions
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Vision-based driver assistance is imminent for standard cars;
currently it moves from top-end products into less expensive models.

There are several mature components (lane departure warning, dis—
tance to lead vehicle, blind spot surveillance, parking assistant, ...);

stereo and motion based solutions are currently still ‘leading edge’
material with ongoing challenges.

The stereo and motion data collection phase’ is likely to turn into a
stereo and motion "data analysis phase’ (scene flow, segmentation,
analysis of moving objects, forward-looking evaluation of current
situations,...), followed by a ‘complex traffic-scene understanding
phase’, possibly also allowing incremental 3D scene modeling using
3D models on local (stationary) servers, such as current GPS allows
the integration of traffic flow updates. A scene studied before should

not be forgotten; it should be memorized and used during subsequent
Visits.

Analysis, recognition and understanding will define new challenges,
especially for the neural network community. We are ready
for collaboration! Please contact the .enpeda.. team if
Interested. We have the low-level vision data.
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Beyond 6D Vision:

Dense Scene Flow




